粉末冶金压制方法范文

时间:2023-11-30 17:13:01

粉末冶金压制方法

粉末冶金压制方法篇1

1粉末冶金技术应用于钢铁循环经济的意义

1.1提升资源利用率

粉末冶金是制取金属粉末或用含有金属的混合粉末作为原料,通过化学方法、物理方式进行加工,制造金属材料、复合材料以及其他各种类型制品的一种生产、加工技术。在钢铁工业的生产活动中,会产生许多金属粉末和混合粉末,对其进行二次加工可以有效提升铁资源的利用率[1]。

1.2提升经济效益

钢铁循环经济的重要追求之一即是对经济效益的提升,而粉末冶金技术则是钢铁循环经济的重要组成部分,其可以通过对金属粉末的二次利用达到提升企业经济效益的目的[2]。

2粉末冶金技术在钢铁循环经济中的应用

2.1含铁粉末产生的环节

一般来说,钢铁企业的含铁粉末主要是来自于两个生产环节,即炼铁原料系统和出铁口系统,以武汉钢铁集团为例,其部分产生含铁二次资源的统计如表1所示。

2.2制取铁粉的方式和要求

2.2.1利用固体碳制取铁粉

固体碳还原法是目前使用较为广泛的铁粉制取方法,其具有操作简单、技术成熟、经验丰富的优势,其基本原理是将还原剂、脱硫剂加入含铁粉末中,再进行粉碎筛选,直到所获铁粉达到合格要求,具体流程是,在各生产车间放置收集设备,对含铁粉末进行收集,之后对其进行简单加热,使粉末中的水分蒸发,放入反应容器中,加入固体碳还原剂,初步将铁粉和其他杂质脱离,再加入脱硫剂,去除铁粉中的硫化物,之后通过磁化设备进行精选,得到质量较高的铁粉后,通过专业设备进行检测,如果其质量达标,则属于合格产品,可以用于正常使用,如果质量不达标,则需进行二次制取,重新筛选,直到合格为止,利用固体碳回收的铁粉,其品质较高,利用粉末冶金技术,可以将其加工成复合材料和金属材料,用于相关领域[3]。

2.2.2固体碳回收法对含铁粉末的要求

一般来说,含铁粉末是在加工过程或者出铁时产生,由于加工技术、钢铁用途的差异,含铁粉末往往也不尽相同,比如含硫量、其他杂质含量的不同等。主要标准为粉末的铁含量,铁含量在70%以上的混合粉末回收价值较大,由于我国目前对含铁粉末二次加工的技术并不是特别先进,如果混合粉末中铁含量较低,那么加工所需花费和消耗将大于回收的铁粉的价值,二次利用就没有意义了,通常来说,如果混合粉末中铁粉含量低于20%,就不适合通过固体碳方式进行回收,同时,如果混合粉末中盐酸等不溶物的含量大于1%、硫含量大于0.5%,也要考虑更合适的回收方式,比如磁化装置回收法。

2.2.3磁化装置回收法

磁化装置回收法是最简单的铁粉回收法,其基本原理是利用铁元素同极相斥、异极相吸的原理,通过对较大型的装置进行磁化,使其将铁粉从混合粉末中分离出来。磁化装置回收法的基本流程是,在车间、出铁口周围安置混合粉末回收装置,大量收集混合粉末,之后提取部分粉末送检,研究其铁含量,如果铁含量较高,则可以通过固体碳等方式回收,如果其铁含量在30%以下,则表明这部分混合粉末适合通过磁化装置回收法进行回收[4]。

2.3铁粉的压制

通过固体碳、磁化装置等方式完成铁粉收集工作后,需要对铁粉进行压制处理,将其加工成具有一定规格和形状的铁坯,压制处理的方式通常为加压式,即通过物理方法向铁粉增加压力,将颗粒之间的空气挤压出去,使其最终成型[5]。

2.4铁坯的烧结

烧结是压制过后的进行粉末冶金的关键技术。压制成型后的铁坯,往往依然含有较多的杂质、碳化物、硫化物等,通过烧结,可以使铁坯在高温中发生变化,最终将杂质去除。通常来说,烧结分为元烧结和多元烧结,一些特殊的领域也会采用熔浸、热压等烧结方法。烧结环节需要重点注意的是温度,其基本流程是,将铁坯输入烧结设备中,如果采取的是固相烧结,需保持烧结温度低于铁坯的熔点,铁坯只发生纯金属的组织变化,同时铁粉颗粒间黏结、致密化,金属组织间的不会出现溶解,也不出现合金等新型金属。烧结过后的铁坯,基本上可以满足各行业所需,其杂质等经过铁粉制取、烧结已经基本被清除,此时可以根据所要加工的工件对铁坯进行热处理、电镀、轧制等,将其制成工件或者使其符合下一步加工的要求[6]。

2.5回收铁粉的应用

调查显示,利用回收的铁粉进行机械加工,材料利用率往往在90%以上,而直接使用金属材料进行加工,利用率只有50%左右,一个值得注意的现象是,大部分的回收铁粉都被应用于汽车制造行业,日本80%的回收铁粉应用于汽车零部件制造,其行业利润也远大于我国,如何将回收铁粉应用于汽车制造领域或者其他领域,是目前我国相关行业需要考虑的问题。

3总结

对资源进行二次利用,是社会进步的体现,也是时展的要求,在钢铁循环经济中应用粉末冶金技术,充分了解铁粉回收、铁坯压制、铁坯烧结等关键环节并对其进行有效把控,有利于粉末冶金技术的发展、进步,也有利于其在钢铁循环经济中的进一步应用。

作者:胡沙 潘友发 单位:商丘阳光铝材有限公司

参考文献

[1]郭志猛,杨薇薇,曹慧钦.粉末冶金技术在新能源材料中的应用[J].粉末冶金工业,2013,(3):10-20.

[2]江涛,吕巧飞,张维娜,等.粉末冶金技术在材料科学与工程专业教学实践中的研究和讨论[J].人力资源管理,2014,(4):182-183.

[3]任朋立.浅析粉末冶金材料及冶金技术的发展[J].新材料产业,2014,(9):17-20.

[4]陈晓华,贾成厂,刘向兵.粉末冶金技术在银基触点材料中的应用[J].粉末冶金工业,2009,(4):41-47.

[5]亓家钟.粉末冶金技术的最新进展[J].粉末冶金材料科学与工程,1999,(2):113-117.

粉末冶金压制方法篇2

【关键词】粉末冶金上盖 ; 三点焊 ; 振动试验 ; 力学性能

【中图分类号】G64 【文献标识码】B 【文章编号】2095-3089(2014)27-0008-01

1.引言

材料与制造技术的进步使粉末冶金零件取代各种应用的铸锻零件日益有吸引力。有时往往需要将粉末冶金零件相互连接或与其它材料相连接,制成一体零件。鉴于粉末冶金的独特材料组成和能压制成为复杂几何形状,因此,粉末冶金零件生产的灵活性具有巨大经济优势。

压缩机设计的目标将集中在轻量化、改进结构整体性及减低制造与组装成本上。满足设计准则的能力需要制造技术与新材料可达到较高强度,较长耐久性,较好质量及较低成本。粉末冶金零件能全面满足这些要求,因此,粉末冶金零件正在不断地替代汽车制造中使用的各种其它生产方法[1]。现已采用压缩机中三点焊的连接方法,研究粉末冶金上盖与结构钢筒体之间的三点焊接性。

2.试验材料与方案

2.1 材料与仪器

试验材料:LG粉末冶金上盖、铸铁上盖、GQ046Y4筒体、振动金属板。

试验仪器:气体保护焊机、UD?鄄T2000振动试验台(SAI90?鄄T2000?鄄53A?鄄ST)。

2.2 试验方案

将粉末冶金上盖和铸铁上盖分别在GQ046Y4筒体中进行三点焊接。制备样件数量5个,其中编号2?鄄1、2?鄄3、2?鄄5为粉末冶金上盖,2?鄄2、2?鄄4为铸铁上盖。将样件用夹具固定于试验台,夹具与台面力矩要求88N/m,在水平方向按试验条件:频率200Hz,加速度 20g,轴向水平,推力 67KN进行持续4小时振动试验,每过1小时对样件焊点进行检查,查看焊点是否脱落,并记录数据。试验结束后,线切割样件焊点,通过光学显微镜对焊点进行金相分析。确认粉末冶金焊点的力学性能。

3.试验结果

3.1 振动试验结果

振动试验是让样件承受一段给出频率的正弦振动或承受在一定的时间周期内处于离散的频率的正弦振动。是为了了解产品的耐振寿命和性能指标的稳定性,寻找可能引起破坏或失效的薄弱环节,对系统在模拟实际环境的振动、冲击条件下进行的考核试验。

振动试验后,对样件焊点沿中心线切割,分析结果见表1。

由上表数据可知,在持续4小时的振动试验后,只有粉末冶金2-5样件焊点未振脱,铸铁两样件全部振脱。可以初步确定粉末冶金三点焊接已达到可以接受的最低焊接强度。

试验结束后,除了确认焊点是否振脱外,还对样件的其他部位进行了检查,结果发现,编号2?鄄4样件中,铸铁上盖脖子中部已经断裂。由于在振动试验后才发现铸铁上盖振裂,所以无法判断焊点振脱和上盖振裂的先后顺序,但可以说明本次振动试验强度已达到压缩机所能承受的最大值。

4.结果分析与讨论

2?鄄1样件持续一个小时后焊点就振脱,主要是焊接工艺问题,焊偏导致焊缝未充满,未能与基体形成牢固的结合,而只是靠焊缝局部应力胶合,随着振动时间的增长,应力渐渐减弱,故造成很快脱落。

由于金属材料本身存在空隙或夹渣,加之焊接过程中焊料熔渣的影响(熔渣的氧化性增大时,有CO引起的气孔倾向增加;熔渣的还原性增大时,则氢气孔的倾向增加),所以任何材料在焊接过程中,焊点内部都会有或多或少的气孔形成,是不可避免的。

分析粉末冶金上盖焊接样件2?鄄3焊点振脱的原因:1.粉末冶金基体与焊缝界面存在气孔,气孔的存在减少了结合面的有效截面积,破环了焊点熔合区的致密性,降低了接头的疲劳性。焊点的熔合区是焊缝和基体金属的交接过渡区,焊缝和基体有良好的结合在很大程度上决定着焊接接头的性能。而气孔作为应力集中因素,在振动过程中只是加大了焊点脱落的可能性;2.三焊点中有一焊点出现烧穿现象。可能是由于操作者在焊接电流一定的情况下,焊接速度过慢造成的。焊缝中有穿孔会严重影响焊接接头的力学性能,也是该样件焊点振脱的主要原因。

振动试验后,粉末冶金三点焊2?鄄5样件焊点完好, 2?鄄3样件焊点脱落,通过比较两者金相形貌,分析发现,焊缝-基体结合面的状态与粉末冶金焊接牢固性有一定关系,结合面无气孔,提高了焊接结合强度,延长了样件使用寿命。

综合考虑,振动样件焊点强度:2?鄄5>2?鄄2≥2?鄄3,2?鄄4>2?鄄1,表明粉末冶金上盖三点焊接性能等效于铸铁上盖三点焊接性能。

5.结论

(1)本次振动试验条件可以作为考核压缩机三点焊强度的参考标准。

(2)粉末冶金三点焊接力学性能等效于铸铁上盖三点焊接力学性能。

(3)通过本次试验可说明,粉末冶金上盖应用于压缩机三点焊是可行的,且具有良好的可靠性。

(4)粉末冶金基体与焊缝结合面存在少许气孔虽然可以达到本次试验要求,但对粉末冶金焊接件使用寿命影响较大。要尽量避免在结合面形成气孔,进一步提高焊接质量。

参考文献

粉末冶金压制方法篇3

1高速压制

高速压制技术的诞生实现了总质量大于5.0kg的高密度大型粉末冶金零件的烧结,在20ms之内对粉末实现压缩处理,在3000ms之内实现多次的压制,提高齿轮零件的密度。当前粉末冶金的困境可通过高速压制打破,鉴于传统的压制成形对成形压力的要求非常高,但是压机吨位又对成形压力造成了限制,因此无法满足传统压制成形技术的成形压力要求,高速压制基本上不会受到成形压力的影响。粉末带有预合金化与扩散合金化的双重特征,其密度最大可达到7.7g/cm3,在粉末冶金行业得到了广泛的应用。通过液压进行控制的冲锤,其产生的冲击波比较强,可实现高速压制的致密化,而致密化的程度主要是由冲锤的速度以及质量而决定的,因此其采用的是液压控制,因此可防止出现非轴向反弹,避免损坏压坯。进行多次高速压制是可行的,并且经过重复压制之后,齿轮零件的密度会显著增加,单次的冲击时间间隔要求<300ms,通过计算机对冲锤的冲击功以及行程实现精准的控制,确保多次冲击压制可快速完成。然而,高速压制技术尚处于研究阶段,在复杂的台阶型的零件制备方面尚有很大的潜力可供挖掘。

2烧结齿轮的表面致密化技术

提高粉末冶金齿轮零件性能的核心方法在于提高密度,笔者认为,经过热处理以及后加工的齿轮零件,其性能并不十分理想,出现了失效的问题,而失效问题出现的主要原因是齿轮的表面接触疲劳,提高齿轮疲劳性能的的主要途径及时提高其表面的密度。对齿轮进行表面渗碳或者是激光热处理,可提高齿轮的外部硬度,增加其碳含量,提高其耐磨性与韧性。粉末冶金齿轮普遍存在着一定数量的孔隙,因此其表面接触疲劳强度不如经过铸轧钢加工的齿轮,然而经过表面致密化处理之后,齿部跟轧辊模进行接触的表面可达到全致密的效果。经过表面致密化之后,齿轮的齿部表面处于无孔状态,心部则是多孔体,因为只有齿轮的表面承受外加的应力,所以可降低齿轮的生产成本。通过轧辊模对烧结齿轮进行反复地轧制,可切实提高齿轮的齿形精度以及尺寸精度。如果齿轮的表面致密化深度>0.7mm,则齿轮的表面接触疲劳强度得以增强,降低齿轮的表面粗糙度,臻于“镜面”标准,保持绝对的光滑状态,降低齿轮在运行时所产生的噪音。再对表面无孔的齿轮进行热处理,按照渗碳钢的水平对齿轮的接触疲劳强度以及弯曲疲劳强度进行适当的调整,大致的技术流程为成形烧结机加工表面致密化热处理。表面致密化技术的优点可概括为噪音低、尺寸精度高、耐磨性高、耐腐蚀性强等,而这正是高质量的齿轮所必须要具备的客观条件,即便是密度仅仅为7.25g/cm3的烧结齿轮,经过表面致密化处理之后,其表面接触的疲劳性能比铸轧钢更高。

3结语

总而言之,利用粉末冶金新技术所制备出来的烧结齿轮,其尺寸精度、力学性能、表面粗糙度均比较理想,可用于大批量生产,性价比极高。就目前而言,烧结齿轮实现全致密的技术难关已经被攻破,未来的发展趋势是集高精度、低成本、高密度于一身的烧结齿轮生产方向。

粉末冶金压制方法篇4

关键词:线切割;粉末冶金;压销;组配

1 概述

近年来,随着粉末冶金技术的飞速发展,粉末冶金材料能够充分满足零件的使用要求,大大降低了生产成本,国内外电动工具厂纷纷使用粉末冶金齿轮等零件,我厂也在手枪钻、冲击钻、电动螺丝批等系列电动工具进行了大批量生产,产品成熟稳定,客户反映良好。粉末冶金的高速发展也促进了快走丝线切割技术的发展和运用,例如:粉末冶金模具的制作、产品特殊部位切割方便检测、大型零件设计机加工无法批量加工等。而电动工具的生产一般是成套的,存在某些产品组配的工序,最常见的就是行星架和行星齿轮的压销组配,本文介绍的就是在这道工序中线切割的应用,具体就是用线切割切割组配工装中的压销垫,用于固定压销钉,确保行星齿轮与行星架的配合完好。

2 线切割的工作原理

电火花线切割简称线切割,线切割是一种电加工机床,其基本工作原理是利用连续移动的细金属丝(称为电极丝)作电极,对工件进行脉冲火花放电蚀除金属、切割成型。主要用于加工各种形状复杂、材料特殊、精密细小的工件等。目前已经广泛应用于生产中。

根据电极丝移动速度的大小分为高速走丝线切割和低速走丝线切割。我国普遍采用高速走丝线切割。高速走丝时,线电极采用高强度钼丝,加工过程中钼丝可重复使用。低速走丝时,多采用铜丝,电极丝只能一次性使用。

电极丝与工件之间的相对运动一般采用自动控制,现在已全部采用数字程序控制,即电火花数控线切割。

工作液起绝缘、冷却和冲走屑末的作用。工作液一般采用皂化液。

3 压销垫制作实例

3.1 压销垫材料选择与制作

根据实际要求我们选择45#钢为原材料,并且经过调质处理使其硬度达到HRC28-32,这样能基本保证生产过程中的使用周期和组配质量的基本要求。

压销垫一般尺寸为Φ40,M8的螺纹孔和Φ30,M6的螺纹孔两种,这是根据我厂的产品特性制作出来的,其他尺寸需根据情况调整。

3.2 下料

本文我采用我厂生产较成熟产品为例作说明,组配的两个产品分别为(图2):

根据两个产品的尺寸要求O计压销工艺,如下(图3):

并提出如下技术要求:销钉中心距、高度符合图纸要求,销钉与孔配合牢固,每只销钉脱拔力?芏1kN,注意检查压销钉时,孔口不允许开裂。

根据产品特性及压销工艺我们确定了压销垫的高度,然后将制作好的压销垫材料固定于线切割机床上,通过打火花的方式确定销垫材料是否垂直,保证切下来的材料保持很好的平面度,可适当放大材料高度,便于后道工序的加工,材料固定好后,利用电脑编程直接切割直线即可。

粗糙的材料准备好后,需要经过磨床的平磨方可得到需要的尺寸,经过平磨的材料平面度必须达到要求,否则压销过程中会出现相关问题。

3.3 编程

目前我所采用的是CAXA xp软件对产品加工轨迹进行编程,首先根据产品的尺寸绘制加工轨迹如下(图4):

轨迹的设置需要根据压销垫材料的内孔径的大小、销钉的直径等因素综合考虑,根据实际经验我们一般设置的加工轨迹的偏移量是向内部的,这样能保证销钉能充分完好的配合,避免冲压时造成销钉倾斜甚至崩掉,这主要由销钉的直径大小这一关键因素决定的。

3.4 线切割加工

将生成好的3B代码导入电脑,并将准备好的压销垫材料平整的放在待加工区,穿好电极丝,这里要保证电极丝不能抖动,在X和Y轴方向的垂直度很好,调整好脉冲宽度及脉冲间隙,打开运丝筒电机和水泵电机开始加工。

3.5 组配

加工好的压销垫开始装机,利用压销垫M8的螺纹孔固定在底座上,将销钉放入孔内,再将行星架对准销钉,利用压销机的压力将销钉与行星架配合在一起,如图5所示:

这一步的关键是销钉与行星架的配合度,销钉不易过松,会脱落;也不易过紧,会造成行星架边缘开裂;销钉冲入行星架的深度也有一定标准,不可露头太多或太少,不然影响装配。这些因素都直接影响产品后期组配情况:噪音、使用持久度等。

销钉与行星架组配完成后,与行星齿轮的组配效果如下(图6):

4 装机效果

实际装车后,这一整套电动工具组配安装调试结果良好,各项性能均符合要求,使用效果良好,现已大批量生产。

参考文献

[1]周作平,申小平.粉末冶金机械零件实用技术[M].北京:化学工业出版社,2006.

[2]王卫兵.CAXA线切割应用案例教程[M].北京:机械工业出版社,2008.

[3]伍端阳,梁庆.数控电火花线切割加工实用教程[M].北京:化学工业出版社,2015.

[4]齿轮手册编委.齿轮手册[M].北京:机械工业出版社,1990.

粉末冶金压制方法篇5

不锈钢具有良好的耐腐蚀、综合力学性能等优点,一般采用熔工艺法生产,由于其切削加工困难,故由其制造的零件存在尺寸精度差、表面粗糙、易产生元素偏析、有缩孔和砂眼等不足,因此在不锈钢的加工制造中仍存在许多技术难题[1]。早在20世纪70年代,人们就开始采用雾化法制备不锈钢预合金粉,进而利用粉末冶金工艺制备出高性能的不锈钢[2]。粉末冶金不锈钢具有良好的力学、物理和化学性能,与传统熔炼工艺生产的不锈钢相比,生产的零件接近净成型、尺寸精度高、材料利用率高、组织结构均匀,使其在实际生产中具有较大优势,已广泛应用于机械、化工、船舶、汽车、仪器仪表等行业[3]。由于粉末冶金不锈钢内部会存在孔隙,其力学性能、耐磨性和耐腐蚀性都不及致密不锈钢的,从而较大地限制了其应用[4]。有研究表明,粉末冶金不锈钢几乎所有的性能都随着密度的增大而提高[5]。因此,如何提高粉末冶金不锈钢的密度,减少其孔隙度,从而提高粉末冶金不锈钢的性能,是研究者们一直探究的问题。以此问题为核心,作者综述了近年来国内外利用粉末冶金工艺制备不锈钢的研究进展,包括烧结理论、成形和烧结技术的进展及成分添加剂对其组织和性能的改善,并提出了今后研究应重点关注的方向。

1烧结理论的研究进展

烧结是粉末冶金制备不锈钢最重要的环节之一,它对不锈钢烧结体的显微组织以及材料的最终性能起着决定性作用。不锈钢粉体颗粒的烧结是物理、化学、物理化学和物理冶金等多种因素相互作用的复杂过程,其理论研究主要包括烧结的驱动力(热力学)和烧结机制(动力学)两个最基本的问题[6]。20世纪40年代,Krenkel发表了粘性流动烧结理论,并与Kuczynski创立了烧结模型;50年代Kuc-zynski、Kingery、Coble等提出了粘性及塑性流动、蒸发与凝聚、表面扩散和体积扩散等烧结理论,并提出了烧结动力学方程;在60年代,人们对烧结过程和机制进行了大量研究,如多种烧结机制进行了大量研究综合作用下的烧结动力学[6]。80年代后期,随着人们对烧结过程本质的了解和计算机模拟的发展,开始使用计算机对不锈钢烧结时的晶粒生长进行模拟,并建立了两球单元烧结模型[7]。

传统不锈钢烧结一般采用固相烧结,烧结温度一般为1100~1390℃[8]。其烧结过程如下:当粉体作规则堆积并加热至0.4T熔(T熔为不锈钢的熔点)时,由于原子热振动振幅的增大,颗粒接触处许多原子开始离开初始晶格点阵发生扩散,形成了颗粒间的初始金属结合;当烧结温度升高到0.5T熔时,颗粒凸出处自由表面上的原子开始向邻近颗粒的接触区迁移,形成烧结颈;随着烧结的进行,烧结颈长大,孔隙开始球化并缩小,使烧结体致密度提高、强度增加[6]。

然而,固相烧结时不锈钢内部残留大量孔隙,使其致密度和性能都较低。近年来,人们开始采用超固相线液相烧结(SLPS)使不锈钢预合金粉末在烧结时形成液相,液相通过流动填充孔隙进而提高烧结体的致密度和性能[9]。不同于普通的液相烧结,SLPS是对预合金粉的烧结,且在烧结过程中始终是单一相,烧结温度位于固相线和液相线之间,在该温度下预合金粉颗粒的晶粒内、晶界处及颗粒表面均形成液相,颗粒在液相毛细管力作用下实现重排,其表面曲率变化较大的地方将优先溶解,通过液相流动传质,在大颗粒凹陷处或孔隙处析出,达到快速传递物质的目的,从而使烧结体达到致密[10]。

在SLPS过程中,当孔隙被流动液相填充时,原液相处可能出现二次孔隙,但SLPS的液相是由晶界处的晶粒熔化产生,其形成的液相单元较小,使孔隙也相对较小,故SLPS可达到较高的烧结密度。Balaji等[11]发现在1400℃超固相线液相烧结时,得到316L不锈钢的致密度、硬度、耐磨性和耐腐蚀性均高于1200℃下固相烧结的。然而,因SLPS烧结温度过高,会使晶粒过度长大,当温度接近熔点时,不锈钢制品发生软化,产生歪曲和变形,造成过烧。此外,从炉子维修、节约能源、经济效益等方面考虑,一般要求烧结温度不宜过高。

2成形和烧结技术的研究进展

2.1成形技术

粉末冶金不锈钢的成形一般采用室温模压成形。由于不锈钢粉体颗粒较硬且压缩性较差,其压制压力较铁基粉体的高,一般为400~800MPa[8]。为了改善压制性能,常在预合金粉中加入剂,其主要作用是减缓压制过程中粉体之间及粉体与模壁之间的摩擦、减小脱模压力和提高压坯密度,常用的剂有硬酯酸、硬酯酸锌、硬酯酸锂和石蜡等[8]。室温模压成形因压制压力过高,对压力机及模具的要求也较高,且烧结后的制品弹性后效严重、密度低,且只能制备形状简单的零件,所以又开发了新的成形技术,如温压成形、金属注射成形、凝胶注模成形等来改善不锈钢粉的压制性并提高压坯密度[4,12-13]。

温压成形是将粉体和特殊的剂混合并加热至一定温度后在加热的模具内压制成形[12]。相比于冷压成形,它可以用较低的压制压力获得较高的压坯密度和强度,此指标可分别提高0.15~0.3g•cm-3和50%~100%,且可降低弹性后效[12]。温压工艺之所以能使生坯密度增加,其一是由于温压降低了粉体的加工硬化速率,从而使粉体的塑性变形增强,进而提高生坯密度;其二是由于剂的作用,当剂熔点较高时,它在温压温度下呈半固态,其液相成分会由颗粒间界流入孔隙,从而增加颗粒的接触,而当剂熔点较低时,它将全部熔化并从压坯中流出,起到模壁的效果,从而降低了脱模压力[14]。曹顺华等[15]研究了420不锈钢粉的温压工艺,在粉体温度为90℃,模具温度为120℃的条件下,当压制压力为784MPa时,相比冷压成形,其压坯密度提高了0.2g•cm-3。然而,由于温压成形的不锈钢零件密度较高,可能导致封闭孔中的聚合物裂解后很难挥发,进而使得其在预烧时产生缺陷,所以预烧时聚合物的脱除是温压成形的关键。

金属注射成形(MIM)是一种接近净成形的粉末冶金成形技术,它是将金属粉体或预合金粉体与有机粘结剂按一定比例并在一定工艺条件下混合成均匀的粘弹性体,经注射机注射成形,然后脱除粘结剂,最后烧结成高性能的粉末冶金制品[4]。它适合生产形状复杂的零件,其尺寸精度可达±(0.3%~0.5%)[16]。同时,它能够克服常规模压成形-烧结制品密度低、力学性能差的缺点,烧结密度可达理论密度的95%~99.5%[17]。Sung等[18]将17-4PH不锈钢粉和粘结剂按质量比60∶40的比例在行星式混料机中热混1h,然后在29.4kN•cm-2的注射压力下注射成形,经热脱脂后于氢气气氛中烧结,当烧结温度从900℃提高至1350℃,其烧结试样的相对密度从61%提高到了99%,抗拉强度也随着烧结体中气孔的球化、缩小和消失而不断提高。然而,由于金属注射成形过程中剂含量较高,需要专门的脱脂工艺,使成本大大提高。

用传统模压成形制备的不锈钢制品,因孔隙率高而使其力学、耐腐蚀和表面等性能均较差,且只限于生产形状简单的零件,而金属注射成形虽能使不锈钢零件达到净成形,但很难实现大尺寸且形状复杂零件的制备。凝胶注模成形技术(GelCasting)是继注射成形之后发展起来的又一种近净尺寸成形技术,它是将高分子化学单体聚合的方法引入到粉体的成形过程中,通过制备低黏度、高固相含量的浓悬浮体,可净成形获得强度高、均匀性好的坯体[13]。张建伟等[19]利用凝胶注模成形技术,分别用天然琼脂和聚丙烯酸作凝胶体和分散剂,在优化工艺条件下,成形出的浆料可烧结制备形状复杂的316L不锈钢制品,其烧结体的屈服强度达138MPa。然而,在制备不锈钢金属粉体时,由于其颗粒直径和密度较大,使其容易在悬浮液中沉淀,进而导致浆料凝聚和胀性流动,难以制得高浓度悬浮料浆。此外,此工艺在浆料凝胶成坯后会产生翘面、变形、装卸转运难等问题。

2.2烧结技术

真空/气氛烧结是制备粉末冶金不锈钢最常用的烧结方法。在烧结过程中,选择真空、还原性或惰性保护气氛是为了避免氧化、脱碳、渗碳等的发生,保护气氛除了可以控制压坯与环境之间的化学反应外,还可以排除剂中的分解产物[8]。姜峰等[20]研究了烧结气氛对316L不锈钢性能的影响,发现由于氮气露点较氢气和氩气的高,导致粉体烧结时水分和氧含量高,其氧化膜的产生阻碍了烧结颈的形成和原子扩散,在液相形成时包围液相颗粒阻碍液相流动,使烧结体的致密度较在氢气和氩气中低,但由于氮的固溶强化作用使其强度和硬度均高于在氢气和氩气中烧结的。目前,基于粉末冶金工艺制备不锈钢的烧结方法还有压力烧结、放电等离子烧结、微波烧结和激光烧结等[21-24]。

压力烧结是在对粉体压坯加热的同时也对其施加压力,其物质的迁移可以通过位错滑移、攀移、扩散、扩散蠕变等多种机制完成[21]。该工艺可获得比常压烧结晶粒更细、更致密的烧结体,人们常用热等静压(HIP)、低压热等静压烧结制备高性能的不锈钢。Kim等[25]在烧结温度为1125℃时,分别用50,100MPa的压力对不锈钢工件进行热等静压烧结,研究证明烧结时的压力加速了液相的流动和颗粒重排,压力越大,其致密化速率越大,经热等静压烧结后的不锈钢产品接近完全致密。然而,经热等静压处理的产品由于体积收缩容易发生畸变,会使其尺寸精度变差。

放电等离子烧结(SPS)是一种新型的烧结技术,它是直接将直流电施加于试样上加热,具有很高的升温和烧结速率,可以保证粉体在短时间内实现快速烧结的同时获得细小、均匀的组织[22]。张鑫[26]利用机械合金化制备了超细晶高氮304不锈钢粉,并采用放电等离子烧结技术对其进行烧结,发现在烧结过程中,颗粒间的放电对初始粉体有净化、活化的作用,从而有利于活化晶界和晶格扩散而抑制表面扩散,进而促进了不锈钢的烧结致密;当烧结温度为900℃、压力为50MPa时,烧结不锈钢试样的硬度和抗拉强度分别达460HV和557MPa,比普通304不锈钢的分别提高了近200HV和250MPa,且耐腐蚀性能也有所提高。故放电等离子烧结虽然成本相对较高,但对于制备超细晶烧结不锈钢仍具有一定的研究价值。

微波烧结是利用微波电磁场中材料的介质损耗使烧结体整体加热至烧结温度而实现致密化的快速烧结技术[23]。在烧结过程中,微波烧结可以快速跳过表面扩散阶段,使晶粒来不及长大就完成致密化并快速冷却,因而它对于控制烧结过程中晶粒的长大是一种比较有效的方法[27]。Panda等[28]经研究发现,在2.45GHz微波炉内以45℃•min-1的速率升温至1400℃对434L不锈钢进行微波烧结,相比于传统烧结法的烧结时间缩短了近90%,且致密度有较大提高。尽管微波烧结能抑制晶粒的过度长大,但由于烧结后残留有一些不规则大孔洞,使其硬度、强度和伸长率都低于传统烧结的。

选择性激光烧结(SLS)是将三维数值模型分解成一系列二维层片结构后由计算机控制激光束移动,在逐层烧结的粉体上建构三维实体的快速成形技术[24]。其作为一种新型粉末冶金成形技术,能够自由成形,无需模压过程,使得产品开发时间大大缩短[29]。张永忠等[30]采用SLS技术制备的316L不锈钢组织致密、成分均匀,具有快速凝固组织特征,其力学性能与铸造及锻造退火态的相当,可直接满足使用要求。但该法需要昂贵的激光烧结设备,生产成本比较高。

3成分添加剂对组织和性能的改善

3.1合金元素的添加

为了降低粉末冶金制备不锈钢的成本,同时提高其致密度和性能,通常在粉体中添加某些低熔点的合金元素,通过其在烧结时形成的液相大大降低其孔隙率,从而使不锈钢满足更高的性能要求,这些合金元素主要有铜、锡、硼、硅等。Uzunsoy[31]在304不锈钢粉中添加2%~8%(质量分数,下同)的铜基合金,由于铜的熔点较低,在960℃时就开始形成液相,到1000℃时全部形成液相,当温度高于铜的熔点时,液相的流动使得表面气孔不断球化和缩小;通过显微分析发现,由于铜对不锈钢基体有较好的润湿性,可均匀分布在不锈钢基体中,使得烧结体的气孔显著减少,显微硬度也明显提高;在添加量为8%时,分别于1250℃和1350℃烧结后的密度分别提高至6.95g•cm-3和7.05g•cm-3。Coovattanachai等[32]在316L不锈钢粉中加入2%~6%的锡粉和锡合金粉,于氢气中在1300℃烧结45min,随着添加量的增加,其液相的形成逐渐增多使致密度逐渐提高,但其晶粒也有一定长大;其力学性能受致密度和晶粒长大两方面制约,在添加量为4%时其强度和硬度最高,但由于其在晶界上形成了固体锡和锡合金相,使伸长率有所下降。zkan[33-34]研究了添加NiB对17-4PH沉淀硬化马氏体不锈钢显微组织、致密度、力学性能和耐磨性的影响,结果发现,由于NiB的加入,在1161~1175℃发生了共晶反应,其液相在铁中的溶解度极低,包围在固相晶粒周围,形成了典型的液相烧结;随着NiB含量的增加,气孔逐渐减少且逐渐球化,当添加NiB的质量分数为1%时,在1280℃时烧结45min后其共晶液相完全包覆在固相晶粒周围,使烧结体几乎达到完全致密,其抗拉强度和硬度分别达到1402MPa和52.3HRC,相比于传统金属注射成形17-4PH不锈钢的分别提高了43%和53%;并且磨损质量损失和磨损速率也有所减小,耐磨性相比传统金属注射成形17-4PH不锈钢的提高了近49%。邱伟刚等[35]在316L奥氏体不锈钢粉中添加40%(质量分数)硅后,相同温度下由固相烧结变为部分液相烧结,其烧结密度较单相奥氏体的提高了近12%,孔隙率明显降低。由于硅为铁素体稳定元素,其组织变为α、γ双相不锈钢,其拉伸断裂形式由单一的穿晶断裂变成了穿晶断裂和解理断裂组合的混合断裂形式,明显改善了力学性能,其抗拉强度达到541MPa,伸长率达23.4%,接近冶炼316L不锈钢的水平。

3.2强化相的添加

通过添加强化相来进一步改进粉末冶金不锈钢的性能,特别是力学性能越来越受到人们的重视,这些增强体相主要有氧化物、碳化物、氮化物和金属间化合物等。Tiwari等[36]在434L不锈钢中添加了5%YAG(钇铝石榴石,化学式为Al5Y3O12或AlYO3,是由Y2O3和Al2O3反应生成的一种复合氧化物),在超固相线液相烧结时YAG均匀分布在不锈钢的晶界处,产生了弥散强化,并且抑制了烧结体晶粒的长大,孔隙也逐渐球化并变得更小,由于YAG和Cr2O3之间的交互作用形成了耐腐蚀性较强的氧化物,使得不锈钢耐腐蚀性在没有明显降低的情况下,强度、硬度和耐磨性都有所提高。Abenojar等[37]在316L不锈钢中分别添加了体积分数为1.5%和3%的SiC增强相,研究发现,由于SiC和不锈钢基体之间的交互作用,形成了低熔点的Fe-SiC相,提高了烧结体的致密度,其硬度和耐磨性也均有所提高,当SiC的添加量为3%(体积分数)时,其耐磨性最好,但耐腐蚀性有所降低。Farid等[38]研究了添加Si3N4对465不锈钢显微组织和力学性能的影响。结果表明,在1300℃烧结60min时,随着Si3N4添加量的增加,烧结体致密度随之增加,当Si3N4的质量分数超过2%时,多余的Si3N4在不锈钢基体中分解为硅和氮,使得基体中的氮含量超过其固溶极限而使过多的氮从基体中析出并留下气孔,从而使烧结体的致密度和抗拉强度降低;当Si3N4的质量分数为2%时烧结体的力学性能最好,其抗拉强度和硬度分别达到1011MPa和21HRC。Balaji等[39]研究了Ni3Al和Fe3Al两种金属间化合物的添加对316L不锈钢性能的影响,由于在高温时不锈钢基体和铝化物界面存在相互扩散,使得在超固相液相烧结时其致密度并没有降低,当这两种铝化物添加5%时,在没有明显降低耐腐蚀性的情况下,改善了强度和耐磨性。

4结束语

粉末冶金压制方法篇6

关键词:凸轮轴信号盘;粉末冶金;尺寸精度

中图分类号:U466 文献标志码:A 文章编号:1005-2550(2013)04-0058-06

发动机是汽车的动力源,而信号盘相当于控制发动机的开关,其相位角度的设计及精确控制,对发动机各个气缸的协调工作起着至关重要的作用,信号盘提供信号给转速传感器,转速传感器再把信号传递给ECU,ECU收到该信号就控制发动机喷油及点火。当信号盘旋转时,磁路中的气隙就会周期性地发生变化,磁路的磁阻和穿过信号线圈磁头的磁通量随之发生周期性变化。根据电磁感应原理,传感线圈中就会感应产生交变电动势,而产生的交变电动势控制着气缸点火时间及顺序,需要信号盘具有精确的相位角度;由于电磁感应式传感器输出电压的峰值随转速的大小而变化,在发动机启动时的低速状态下,感应电压很低,也需要信号盘的信号齿具有良好的磁感应性能,以提高信号输出灵敏度。

1 产品设计

1.1 产品性能设计

凸轮轴信号盘是传感器的信号转子,装配在凸轮轴上,利用其外圆的4个凸齿,在磁场里旋转过程中产生周期变电动势,控制发动机点火顺序,保证点火正时。主要利用其良好的磁感应性能及精确的相位角度,保证发动机各个气缸的协调工作,因其产生的信号是通过电流传递给ECU,为了削弱磁场对电流的影响,信号盘本身的磁场强度应有严格的限制。

1.2 产品结构设计

凸轮轴信号盘产品见图1。信号盘外圆有4个凸齿,2个68°大凸齿,2个18°小凸齿,2个72°大缺齿,2个22°小缺齿。信号盘每转过一个凸齿,传感器中就会产生一个周期变电动势,并相应地输出一个交变电压信号,故凸轮轴旋转一周会有4个交变信号产生,ECU每接收4个信号,即可知道凸轮轴旋转了一圈。

2 工艺方案设计

产品内孔精度等级较高,达到了8级精度,销孔精度达到7级;产品外圆信号齿角度的精确性关系到装机后信号的准确性,另外根据产品的使用工况,要求产品具有较低的剩磁强度,较高的齿部密度。产品主要技术要求如表1所示。

根据上述分析,结合供应商实际生产情况,确定此零件的生产应该包含以下主要工序:

(1)成形:保证产品的外形以及密度要求,如相位角度,內孔尺寸;

(2)烧结:保证产品基本性能的要求,如强度、硬度、密度等;

(3)整形:对烧结变形的产品进行外形的校正,同时提高内孔以及信号齿角度的精度;

(4)钻孔、铰孔:保证产品销孔达到要求。

(5)退磁:保证产品有较低的剩磁强度。

3 成形方案设计

3.1 方案设计以及压机选择

(1)考虑产品的工艺性能、形状、精度以及表面的要求,除了定位销孔处必须采用机械加工外,其余均可以不采用后续机械加工。

(2)通过产品结构分析,零件上端面1个台阶面,下端面2个台阶,整体上构成一个典型的上二下三结构的粉末冶金结构件,在粉末冶金压坯形状上定义为Ⅳ型压坯,Ⅳ型压坯必须由阴模,一个上模冲、三个下模冲和芯棒组成的模具成形,由于沿压制方向横截面有变化的不等高压坯,要保证其密度的均匀性,必须按相同的压缩比来计算装粉高度,同时为了保证外圆凹槽根部的圆角能够光滑过渡,采用台阶阴模结构取代了1个下模冲。

方案1:成型方案采用上一下二结构,信号盘正面信号齿部(A区)、齿根(B区)、台阶(C区)为一整体模冲,造成ABC区密度分布极不均匀,从其硬度分布可以得到验证(A区平均硬度32HRB, B区平均硬度52HRB,C区平均硬度70 HRB)。因为ABC区为一整体模冲,在成型时,A区松装填充不够,造成成型后密度低,而A区恰好是信号作用区域,磁感应强度和产品的密度值直接相关,密度越高,磁感应强度越高,若密度低,对其磁感应强度及传递信号准确度还是不容忽视的。矫顽力和磁导率都对孔隙杂质敏感,孔隙和杂质含量越少,矫顽力场就越小,磁导率就越高,若密度越低,孔隙就越多,对其矫顽力和磁导率影响就越大。故对于粉末冶金信号盘,其信号作用区齿部密度不宜过低。

方案2:成型方案采用上一下二+台阶阴模结构(上一下三结构),信号盘正面信号齿部(A区)、齿根(B区)为一模冲,台阶(C区)为台阶阴模。因为ABC区是分冲结构,在成型时,AB区和C区的松装填充可调,使得成型后ABC各区密度均匀,从其硬度分布及波动可以得到验证(A区平均硬度61 HRB, B区平均硬度66 HRB,C区平均硬度64 HRB)。A区的密度相对提高(方案2产品硬度61 HRB大于方案1产品硬度32 HRB),而A区恰好是信号作用区域,故方案2信号盘磁感应强度比方案1产品要好。同时方案2产品整体密度均匀,在装配过程中不会产生破裂,提高了产品各项性能要求。

(3)通过产品结构计算此产品所需压制压力,需130 T的成形压力。

(4)考虑到压坯各部分的密度分布的均匀性,压坯的精度、模冲的个数,以及成型过程中粉末的移动以及供应商成型压机的特点、模架结构,为充分体现粉末冶金的特点,此次选择带用上三下三模架的机械式S-200T压机。

3.2 模具参数设计

新开发凸轮轴信号盘模具设计主要参数如表2所示。

3.3 成型动作解析

成形动作:装粉上冲下行阴模强制拉下下浮动冲落在挡块上台阶阴模落在挡块上成形终了上缸给保护压力阴模止挡打开脱阴模下浮动冲挡块打开脱浮动冲脱芯棒上缸回程机械手夹持脱出产品。

(1)装粉:因为该零件壁厚较薄,粉末之间会产生拱桥效应,为了使装粉均匀,必须采用装粉效果较好的吸入法装粉。

(3)压制成形:上冲下行与阴模合缝后,强制拉下阴模,下浮动冲落在挡块上,上冲与阴模继续下行直至阴模落在挡块上,调整阴模和外浮动冲的压制速率,避免因非同时成形而产生裂纹。

(4)脱模:采用阴模拉下式脱模,即阴模向下运动,逐渐脱出下外冲、下内冲、芯棒。脱模时要注意采用保护脱模,即脱模过程中上模冲给予产品一定的压力,待下外冲脱出阴模的同时撤去上外冲的保护压力,上内冲继续保持压力,直至下内冲脱出阴模,最后中心缸将芯棒抽回。保护脱模可以避免产品出现掉块、裂纹等外观缺陷。

成形装配示意图如图3所示。

4 材质工艺设计

原材料选择依据:根据凸轮轴信号盘的工作原理、粉末冶金件凸轮轴信号盘的综合性能及尺寸要求,原材料应该具备以下四个方面的性能:

(1)磁性能好。对于磁性材料,碳的存在降低一定的磁性能,故碳含量应尽量低。同时,磁感应强度和产品的密度值有直接相关,密度越高,磁感应强度越高。矫顽力和磁导率都对烧结条件和间隙杂质敏感,烧结温度越高和杂质含量越少,矫顽力场就越小,磁导率就越高。烧结温度越高,时间越长,金相组织平均晶粒尺寸就越大,孔隙越圆滑,磁性能就越好[1]。

(2)压制性和稳定性好,磁性材料,传递信号部位密度越高,磁感应强度越高,传递信号就越准确。磁性粉末又必须同时具备稳定的粒度分布与粒度组成且化学成分均匀、无偏析、稳定的流速以及稳定的松装密度等重要特性。由于在混料中可能产生的不均匀,包括比重偏析在内的混合料不均匀性,在烧结中因烧结温度和保温时间及压坯密度不均匀等造成的扩散不充分,则会引起组织不均匀,并使零件性能产生波动。而采用Fe-Cu-C粉末原料,因Fe和Cu的比重相差不大,不容易发生偏析[2],且Cu相对较软,能提高压制性能。

(3)尺寸稳定性,凸轮轴信号盘信号齿角度精度越高,传递信号的准确度就越高,其金相组织平均晶粒尺寸越大,孔隙越圆滑,磁性能就越好。但对于粉末冶金件,要使其组织平均晶粒尺寸越大、孔隙越圆滑就需要较高的烧结温度和较长的烧结时间。而烧结温度越高,时间越长,尺寸变化又越大[3],尺寸精度尤其是相位角度就难以保证。同时信号盘需装配到凸轮轴上,其内孔精度及材料的强度和韧性一定要保证。综合以上各种因素,选择添加少量的C及一定比例的铜,既能稳定产品尺寸变化,提高强度、韧性,还能提高密度,降低孔隙率,后续再通过整形对零件的尺寸以及形位公差进行校正。既保证了可靠磁性能,又保证了产品强度、韧性及尺寸要求。

(4)烧结后要满足产品既定的性能要求:产品密度≥6.4 g/cm3 ,硬度≥40 HRB,抗拉强度≥300 MPa,延伸率≥1%。

根据以上提出的材料性能要求,经过性能试验对比和烧结综合参数测定,结合现有的材料标准提供的相关材质达到的性能指标,选取Fe-Cu-C材料。

综上所述,选取供应商牌号为F1407的铁粉,其性能参数如表3所示。

5 烧结工艺设计

为保证凸轮轴信号盘在烧结过程中具有理想的金相组织,稳定的尺寸,结合供应商现有设备实际特点,选用德国进口的步移梁式烧结炉,步进梁式烧结炉具有以下优点:

(1)能够实现高温烧结,提高烧结温度可以提高生产效率,实践中发现提高55℃烧结温度对致密化程度的影响效果相当于延长烧结时间几十倍或几百倍[4]。

(2)在工作过程中可提供连续的、可重复的时间-温度-气氛曲线,这在粉末冶金生产中非常重要,当炉子的舟速一定时,各个温度可控带设定的温度以及气氛组成、气氛流量已经确定时,则通过该烧结炉的所有压坯都是在一组相同的工艺参数下烧结的,结果是建立了一条稳定的加热曲线,这就保证了烧结零件的质量即零件尺寸、性能的均匀一致性[4]。

(3)操作简单,自动化程度高;辅料消耗和热损失小,零件受热均匀;依据所选烧结炉制订烧结炉工艺,即各区温度、烧结速度,以及气氛流量的大小,结合烧结炉的结构、负荷的大小、加热时间以及保温时间并结合粉末具体参数变化,确定了以下摆放方式,即采用架烧模式,产品4x4均匀摆放在石墨垫板上,产品间隔10~20 mm,如图4所示。

6 整形工艺设计

6.1 整形方式的选择——全整形

为了保证信号盘的端面端跳、齿相位角度、平面度以及内孔精度,必须对烧结后的毛坯进行全整形,即内外径以及高度方向均产生塑性变形。全整形塑变充分,产品出模后弹性回弹小,制品的内外径尺寸精度可达到IT6-7级[5],满足本产品设计要求。

6.2 整形方案设计

(1)因为产品成形和烧结后,产品下部两个台阶面的高度可能会和预想的会有差异,所以下冲最好做成分冲,这样根据烧结后产品上下两个台阶的高度,可以调节好分冲之间的段差。

(2)理论上整形时应先让下外模冲和上模冲接触产品,再让下内冲接触产品,这样可以避免产品在台阶圆角处出现裂纹,实际上整形时压下量只有0.1 mm左右,在压机上不易测量,可根据产品出模后的状态做进一步的调整。

6.3 压机的选择

根据产品的形状以及整形方式,决定了整形压机必须选择带上二下二或上二下三模架的压机,同时该产品的整形压力经过计算需要100 T左右,结合供应商的实际情况,选择带有上二下三结构模架的315 T液压机。整形装配图如图5所示。

7 后加工工艺设计

凸轮轴信号盘销孔精度达到7级,其位置与产品外圆齿开口角度的位置关系精确度关系到装机后信号的准确性,故其孔径及孔位置精度的尺寸尤为重要。

(1)在样件阶段采用的是钻孔、铰孔方式,钻孔和绞孔是分开完成的,设计了专用夹具及检具,保证产品质量。

(2)量产后考虑使用专机加工,设计一套专用夹具,保证在一次装夹的情况下完成钻孔、绞孔、检测、压装,提高效率。

8 产品的性能及尺寸测试结果

对于不热处理的粉末冶金零件,烧结后产品的性能已确定,故产品关键尺寸检测如表6所示。

产品所有关键尺寸PPK>1.67,过程能力充分。

9 结论

(1)合理的成形模具分冲设计,使得凸轮轴信号盘各区密度均匀,提高了信号输出灵敏度。

(2)合理的烧结及全整形工艺设计,有效地提高了信号盘的相位角度、内孔IT8级精度等要求,保证了对发动机各个气缸工况的精确控制。

参考文献:

[1] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.

[2] 韩凤麟.粉末冶金零件设计与应用必备[M]. 北京:化学工业出版社,2001.

[3] 刘传习,周作平.粉末冶金工艺学[M]. 北京:科学普及出版社,1985.

[4] 周作平.粉末冶金机械零件实用手册[M]. 北京:化学工业出版社,2005.

粉末冶金压制方法篇7

Abstact:Metallurgical industry waste is the main by-products of steel metallurgical industry. The Steel production in our country the highest in the world, but the reasonable utilization rate of steel industry waste is low. It is part of the industrial waste, not only takes alarge space, but also is environmental pollution. Reasonable use of metallurgical industry waste, optimization ratio, innovation engineering practices, applied to the construction of the project. To shorten the construction period, improve work efficiency, saving building materials, reduce the cost for the project investment, improve the economic benefit of purpose. Both played a metallurgical industry waste characteristics, but also reduce the engineering material cost, expand the scope of application of engineering materials. Metallurgical industry waste highway subgrade treatment method of the application of the technology, the use of industrial waste proportion and range control requirements, the actual engineering construction of highway subgrade treatment can be practical application and promotion. Thus to save building materials, reuse, reduce cost, energy conservation and emission reduction in good effect.

中图分类号:U213.1文献标识码: A 文章编号:

作者简介:史 钰 1964年出生、男、满族,辽宁岫岩人、现供职于新兴际华进出口公司物流工程项目部、工程师、本科、研究方向为工程施工技术。

正文:

冶金工业废渣在公路路基处理工程中的应用技术

一、技术领域:

适用于钢铁冶金企业及其周边区域公路路基处理工程。

二、背景、技术及内容:

随着建筑行业改革发展。建筑业的生产方式和组织结构的变化,工程项目责任制的贯彻落实,工程项目管理水平得到有效提升。根据建筑行业对工程建设工期、人工劳效、建筑材料的需求,合理利用冶金工业废渣,进行优化配比,创新工程做法,运用到建筑工程当中。达到了缩短工期、提高劳效、节约建材、降低工程成本投入,提高经济效益之目的。结合工业废渣的化学成分及物理特性,合理改进常规工程施工技术做法,使工业废渣变废为宝,应用到建筑工程当中,缩短了工程建设工期,减少了工程人力投入,节约了大量工程材料成本。下面就几个方面论述冶金工业废渣在公路路基处理工程中的应用技术。

1、在公路路基处理工程中可利用冶金工业废渣的种类以及成分、物理性能。

(1)、炼钢后不能再生产利用废弃钢渣。

钢渣成分:氧化钙、氧化硅、氧化镁、氧化铁、其它氯化物。

钢渣成分比例:

氧化钙(CaO占41%)。

氧化硅(SiO2占11%)。

氧化镁(MgO占5%)。

氧化铁 (Fe2O3占5%)。

其它氯化物(占39%)。

钢渣的物理性能:粒径在40 mm左右,具有密度大,强度高,表面粗糙,稳定性好,耐磨耐久性强的特点。颗粒具有孔隙,透水性能强,与混凝土结合牢固,对基础周围混凝土、黄土无腐蚀性。

(2)、烧制白灰后不能再生产利用废弃石粉。

石粉成分:石子、石子粉末、白灰、杂土。

石粉成分比例:

石子(粒径《20 mm)、占45%。

石子粉末(粒径1 mm左右)、占40%。

白灰颗粒(白灰窑未烧透的返白灰粉颗粒,粒径1.5 mm左右)占10%。

杂土(呈粉末状)占5%。

石粉具有稳定性好,透水性能强,与混凝土结合牢固,对基础周围混凝土、黄土无腐蚀性。

(3)、炼铁后的外排水渣。

水渣成分比例:

锰(Me占40%)。

二氧化硅(SiO2≤35%)。

氧化铁 (Fe2O3≤19.4%)。

氧化钙(CaO≤5%)。

硫(S≤0.5%)。

磷(P≤0.25%)。

水(H2O≤1%)。

水渣粒径在2 mm左右具有潜在的水硬胶凝性能,无腐蚀性,耐高温。常用作水泥原料。

2、公路路基处理工程中应用冶金工业废渣项目以及相关创新技术工程做法

2.1公路钢筋混泥土路面下路基处理相关创新施工技术工程做法:

(1)、路基基槽开挖至设计深度,对原土找平碾压密实。

(2)、铺筑200mm厚粒径≤40mm钢渣。分二层碾压密实,每层厚度为100mm,要求第一层底部钢渣嵌入原土层中。

(3)、将钢渣与石粉用施工机械按比例搅拌均匀,分层铺筑,碾压密实,每层厚度为100mm。比例要求为钢渣:石粉=6:4。要求所用石粉施工前必须经过所用洒水润湿,已使石粉中未烧透的返白灰粉颗粒遇水粉化,降低其膨胀性。所用钢渣粒径必须≤40mm。

(4)、将钢渣、石粉、水泥用施工机械按比例搅拌均匀,分层洒水铺筑,碾压密实,铺筑

200mm厚路面底层,每层厚度为100mm。比例要求为钢渣:石粉:水泥=3:5:2。要求所用石粉施工前必须经过洒水润湿,已使石粉中未烧透的返白灰粉颗粒遇水粉化,降低其膨胀性。所用钢渣粒径必须≤40mm。

粉末冶金压制方法篇8

[关键词] CNTs;镁基;复合材料;制备方法

[中图分类号] TB331 [文献标识码] A 文章编号:1671-0037(2014)01-66-1.5

镁及镁合金具有密度低,比强度、比刚度高,铸造性能和切削加工性好等优点,被广泛应用于汽车、航空、航天、通讯、光学仪器和计算机制造业。但镁合金强度低,耐腐蚀性能差严重阻碍其广泛应用。

碳纳米管不仅具有极高的强度、韧性和弹性模量,而且具有良好的导电性能,还是目前最好的导热材料。这些独特的性能使之特别适宜作为复合材料的纳米增强相。近年来,碳纳米管作为金属的增强材料来强度、硬度、耐摩擦、磨损性能以及热稳定性等方面发挥了重要作用。

近些年,镁基复合材料成为了金属基复合材料领域的新兴研究热点之一,碳纳米管增强镁基复合材料的研究也逐渐成为材料学者研究重点之一。本文就目前有关碳纳米管增强镁基合金复合材料的制备技术做综述,以供研究者参考。

1 熔体搅拌法

熔体搅拌法是通过机械或电磁搅拌使增强相充分弥散到基体熔体中,最终凝固成形的工艺方法。主要原理是利用高速旋转的搅拌器搅动金属熔体,将CNTS加入到熔体漩涡中,依靠漩涡的负压抽吸作用使CNTS进入金属熔体中,并随着熔体的强烈流动迅速扩散[1]。

周国华[2]等人采用搅拌铸造法制备了CNTs/AM60镁基复合材料。研究采用机械搅拌法,在精炼处理后,在机械搅拌过程下不断加入碳纳米管到镁熔体中,搅拌时间20 min,然后采用真空吸铸法制得拉伸试样。研究结果显示,碳纳米管具有细化镁合金组织的作用,在拉伸过程中,能够起到搭接晶粒和承载变形抗力的作用。

C.S.Goh[3]等采用搅拌铸造法制备了CNTS / Mg基复合材料时,金属熔化后采用搅拌桨以450 r / min的转速搅拌,然后用氩气喷枪将熔体均匀地喷射沉积到基板上,从而制得CNTS / Mg基复合材料。力学性能测试表明,复合材料具有较好的力学性能。

李四年[4]等人采用液态搅拌铸造法制备了CNTS/Mg基复合材料。CNTS加入前首先经过了化学镀镍处理,研究采用了正交实验,考察了CNTS加入量、加入温度和搅拌时间对复合材料组织和性能的影响。研究结果表表明,CNTS加入量在1.0%、加热温度在680 ℃、搅拌3 min时,能获得综合性能较好的复合材料。

搅拌铸造法优点是工艺简单、成本低、操作简单,因此在研究CNTS增强镁基复合材料方面得到广泛应用。但搅拌铸造法在熔炼和浇铸时,金属镁液容易氧化,CNTS均匀地分散到基体中也存在一定难度。

2 消失模铸造法

消失模铸造是将与铸件尺寸形状相似的石蜡或泡沫模型黏结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。

周国华[5]等人就通过消失模铸造法制备CNTs / ZM5镁合金复合材料。将PVC母粒加入到二甲苯中溶解,把CNTs加入上述溶液中超声分散10 min后过滤、静置20 h,装入发泡模具发泡成型,用线切割机加工制得消失模。把制得的含碳纳米管的消失模具放入砂箱内,填满砂并紧实,将自行配制的ZM5镁合金熔体浇注制得复合材料。实验结果表明,碳纳米管对镁合金有较强的增强效果,对ZM5合金的晶粒有明显的细化作用。

3 粉末冶金法

粉末冶金法是把CNTS与镁合金基体粉末进行机械混合,通过模压等方法制坯,然后加入到合金两相区进行烧结成型的一种成型工艺。粉末冶金法的优点在于合金成分体积分数可任意配比而且分布比较均匀,可以避免在铸造过程中产生的成分偏析现象,而且由于烧结温度是在合金两相区进行,能够避免由于高温产生的氧化等问题。

沈金龙[6]等人采用粉末冶金的方法制备了多壁碳纳米管增强镁基复合材料。试验采用CCl4作为分散剂将镁粉和CNTS混合,在室温下将混合粉末采用双向压制成型后进行真空烧结,制成碳纳米/强镁基复合材料。研究结果表明:碳纳米管提高了复合材料的硬度和强度,镁基复合材料的强化主要来自增强体的强化作用、细晶强化和析出强化。

Carreno-Morelli[7]等利用真空热压烧结粉末冶金法制备了碳纳米管增强镁基复合材料。研究发现,当CNTs含量为2%时,复合材料的弹性模量提高9%。

杨益利用利用粉末冶金法,制备了碳纳米管增强镁基复合材料,研究了碳纳米管制备工艺和含量对复合材料组织和性能的影响。研究采用真空热压烧结技术,通过研究发现,在热压温度为600 ℃、保压时间20 min、保压压力在20MPa、CNTS含量为1.0%时,制得的复合材料具有强度最高值。TEM分析CNTS与镁基体结合良好,增强机理主要有复合强化、桥连强化和细晶强化。

4 熔体浸渗法

熔体浸渗法是先把增强相预制成形,然后将合金熔体倾入,在熔体的毛细现象作用下或者一定的压力下使其浸渗到预制体间隙而达到复合化的目的。按施压方式可以分为压力浸渗、无压浸掺和负压浸渗三种。

Shimizu等采用无压渗透的方法制备了碳纳米管增强镁基复合材料,随后进行了热挤压,力学性能测试显示,抗拉强度达到了388MPa、韧性提高了5%。

5 预制块铸造法

周国华等人采用碳纳米管预制块铸造法制备了CNTS / AZ91镁基复合材料。将AL粉、Zn粉、CNTs按比例混合分散后,用50目不锈钢网筛过滤后在模具中压制成预制块。然后利用钟罩将预制块压入镁熔体并缓慢搅拌至预制块完全溶解,采用真空吸铸法制得复合材料试样。研究结果表明,预制块铸造法能够使CNTs均匀分散到镁合金熔体中,复合材料的晶粒组织得到细化,力学性能明显提高。

6 结语

近年来,CNTs在增强镁基复合材料的研究越来越多,目前存在的主要问题是CNTs的分散和与基体界面的结合等问题。由于但碳纳米管具有高的比表面能,使其在与其他材料的复合过程中易形成团聚,导致复合材料性能不甚理想,最终起不到纳米增强相的效果,同时碳纳米管属轻质纳米纤维,与各类金属的比重相差太大,不易复合。目前有关碳纳米管增强镁基合金复合材料的研究还处于初期阶段,随着技术的不断发展,新工艺和新方法不断出现,CNTs的分散及与基体的界面结合等问题将逐渐被解决,开发出性能优异的CNTs / Mg基复合材料将有着重要的意义。

参考文献:

[1]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社,2003

[2]周国华,曾效舒,袁秋红.铸造法制备CNTS/AM60镁基复合材料的研究[J].铸造,2009,58(1):43-46.

[3]Goh C S, Wei J, et al.Ductility improvement and fatigue studies in Mg-CNT nano-composites[J].Compos Sci.Techn,2008,

68:1432.

[4]李四年,宋守志,余天庆等.铸造法制备纳米碳管增强镁基复合材料[J].特种铸造及有色合金,2005,25(5):313-315.

[5]周国华,曾效舒,袁秋红等.消失模铸造法制备CNTS/ZM5镁合金复合材料的研究[J].热加工工艺,2008,37(9):11-14.

[6]沈金龙,李四年,余天庆等.粉末冶金法制备镁基复合材料的力学性能和增强机理研究[J].铸造技术,2005,26(4):309-312.

[7]Carreno-Morelli E, Yang J, et al.Carbon nanotube/magnesium composites[J].Phys Status Solidi A, 2004,201(8):53.

[8]杨益.碳纳米管增强镁基复合材料的制备与性能研究[D].北京:国防科学技术大学硕士论文,2006.

收稿日期:2013年12月12日。

基金项目:郑州市科技攻关项目(20130839),黄河科技学院大学生创新创业实践训练计划项目(2013XSCX025)。

作者简介:杨林冲(1991-),本科生,黄河科技学院工学院。

上一篇:电工安全基本知识范文 下一篇:绿色设计的特征范文