粉末冶金范文

时间:2023-03-19 04:42:23

粉末冶金

粉末冶金范文第1篇

反应合成的TiC对铜基摩擦材料摩擦磨损性能的影响陈百明 刘晓斌 王珺 尹新权 张振宇 (248)

氢气含量对电弧等离子法制备纳米Ni粉影响的研究侯聪花 鲁玉玲 张景林 王晶禹 (253)

放电等离子体烧结W粉数值模拟陈小安 尚福军 宋顺成 (256)

超细硬质合金棒料挤压成形剂预脱除工艺研究孙丹 李广生 林春芳 杜玉国 孙卫权 (262)

材料·制品·应用

制备工艺对粉末高钒高速钢组织和力学性能的影响王浩强 燕青芝 旷峰华 葛昌纯 (266)

电弧离子镀ZrN/TiN涂层对烧结NdFeB的耐腐蚀及磨损性能的影响杜军 张平 蔡志海 赵军军 (269)

热处理对钢结硬质合金TLMW50覆层抗磨性的影响赵一生 高志国 魏世忠 (273)

喷雾干燥-直接碳化法制备WC-Co复合粉末汤昌仁 易茂中 谭兴龙 (279)

工艺与设备

流动温压制备不锈钢十字件的试验研究胡昌旭 倪东惠 谭文昌 杨义 肖志瑜 李元元 (284)

M42高速钢粉末球磨工艺优化及其SPS烧结文小浩 丁小芹 韩小云 张学彬 徐金富 (288)

喷雾热分解法合成BaTiO_3超细粉末及其形貌控制李启厚 高宇波 刘志宏 刘智勇 李玉虎 (292)

一种新型难熔金属异型件的制备技术及其应用闵小兵 王跃明 夏光明 严淑群 卢静 (297)

表面活性剂PEG对制备Co_3O_4前驱体的影响曹钦存 赵跃智 张战营 (302)

文献综述

WC-Co功能梯度硬质合金研究进展史留勇 张守全 黄继华 (305)

四海文苑

为新发动机新气门可变动作角与升程(VVEL)机构开发的新粉末冶金零件藤木章 山田雄一 鹤田诚次 阿部微雄 川濑欣也 韩凤麟(译) (313)

粉末冶金产业动态

1998~2009年美国MPIF获奖粉末冶金汽车零件介绍(连载)——粉末冶金发动机零件 (316)

PLZT压电陶瓷准同晶相界处显微组织与性能的研究魏伟 姚萍屏 罗丰华 (163)

镁在热压过程中的氧化行为研究魏琴琴 罗国强 李君 沈强 张联盟 (167)

Si3N4(p)/SiC(w)强韧化MoSi2基复合材料的显微组织与力学性能周宏明 易丹青 李丹 肖来荣 柳公器 (172)

燃烧合成MgSiN2粉末反应过程研究彭桂花 卢锋奇 梁振华 刘茜 李文兰 (178)

材料·制品·应用

不同制备工艺对Mo-Mo3Si-Mo5SiB2(T2)三相合金组织的影响刘应超 刘志国 林晨光 (183)

粉末制粒工艺在金刚石工具制造中的应用研究孟凡爱 刘英凯 王建强 (188)

原位反应制备Mo2FeB2基金属陶瓷烧结过程热力学分析李文虎 刘福田 (192)

喷射成形镍基高温合金过喷粉末特征分析康福伟 孙剑飞 唐增武 (196)

特殊形貌微米铜粉的水热制备陈庆春 (200)

工艺与设备

M3与T15高速钢的SPS烧结与热处理胡宓宓 贾成厂 曲选辉 胡学晟 (204)

SPS法制备铜-2%碳纳米管复合材料吴清英 刘向兵 褚克 贾成厂 陈晓华 盖国胜 郭宏 (210)

新型富铈镍基合金粉末及工艺性能研究苏义祥 丁丁 门志慧 张绍斌 (215)

真空微波烧结制备TiCN基金属陶瓷唐思文 张厚安 颜建辉 严迪科 (220)

文献综述

钴粉生产技术研究进展徐斌 王成均 吕小刚 (224)

四海文苑

模具技术的定量评价和新剂开发 藤木 章 前川 幸広 安達 恭史 曹刚(译) (230)

粉末冶金产业动态

1998~2009年美国MPIF获奖粉末冶金汽车零件介绍(连载)——粉末冶金发动机零件朔风 (235)

WD-40在粉末冶金行业的广泛应用刘颖 (238)

喷雾干燥W—Cu前驱体粉末煅烧和还原中的物相变化特征刘涛 范景莲 田家敏 成会朝 (83)

粉末冶金法制备Mo-30Cu合金微观组织研究韩胜利 蔡一湘 宋月清 崔舜 (87)

环路热管蒸发器的制作与性能测试陈懿 柏立战 林贵平 余培良 (92)

脉冲电磁场对草酸钴形貌的影响杜慧玲 王建中 陈丹凤 苍大强 (96)

Ti3AlC2自蔓延高温合成中组织分析陈秀娟 吴明亮 张全文 马淑芬 王思谦 (101)

材料·制品·应用

新型铝青铜合金粉体材料涂层耐腐蚀性能研究路阳 张巧 李文生 李亚斐 马保荣 冯力 李振 (105)

新型铁基固体自复合材料摩擦学特性的研究丁光玉 贾成厂 苗晓丽 柳学全 (110)

表面组装用Sn—Ag—Cu无铅焊锡粉末的制备许天旱 王党会 姚婷珍 (115)

工艺与设备

射频等离子体球化钛粉的工艺研究古忠涛 叶高英 刘川东 童洪辉 (120)

制备复相结构陶瓷坯件的自反应喷射成形工艺研究王建江 刘宏伟 姚文谨 胡文斌 (125)

共沉淀-共还原法制备金刚石工具用超细预合金粉末的研究赵文东 徐骏 宋月清 罗骥 郭志猛 (130)

细晶Mo-18Cu合金烧结工艺的研究陈玉柏 范景莲 田家敏 刘涛 成会朝 (136)

UO2粉末表面活化壳层的制备和性能研究高家诚 吴曙芳 杨晓东 李锐 王勇 (140)

粉末冶金产业动态

会议简讯 (139)

1998~2009年美国MPIF获奖粉末冶金汽车零件介绍(连载)——粉末冶金发动机零件朔风 (155)

文献综述

通过改善界面状态提高金刚石-Cu复合材料导热性的研究陈惠 贾成厂 褚克 梁雪冰 刘兆方 郭宏 (143)

四海文苑

铁基粉末冶金材料烧结程度的判定Thomas F. Murphy 韩凤麟(译) (150)

WD-40在粉末冶金行业的广泛应用刘颖 (157)

低温烧结制备超细晶FeAl合金及性能的研究詹肇麟 郭丽娜 李莉 刘安强 (3)

粉末冶金NiFe19 Al25合金的组织与性能研究袁勇 卢静 崔建民 张皓 罗丰华 (7)

气体雾化Al-Zn-Mg-Cu铝合金粉末的形貌及组织性能研究王少卿 于化顺 王海涛 张振亚 闵光辉 (12)

金刚石复合片(PDC)表面残余应力的XRD研究徐国平 尹志民 陈启武 徐根 (16)

超音速气雾化喷嘴中抽吸压力变化规律的研究赵新明 徐骏 朱学新 张少明 (21)

材料·制品·应用

W粉粒度对Ti-20%W合金组织和力学性能的影响王庆相 梁淑华 杨怡 范志康 (26)

硼含量对Ni—Cr—Mo合金热腐蚀性能的影响李文虎 (31)

热压反应合成Al2O3-Ho2O3/TiAl复合材料王芬 许红娅 朱建锋 王少龙 解宇星 (34)

SPS烧结M42粉末冶金高速钢的显微组织与性能文小浩 陈胜 丁小芹 韩小云 张学彬 徐金富 (39)

工艺与设备

碳热还原氮化制备氮化硅粉体反应条件研究陈宏 穆柏春 李辉 郭学本 (43)

粉末电磁压制电压对TiO2陶瓷密度的影响孟正华 黄尚宇 周静 孙伟 (48)

非规则管坯喷射沉积成形工艺优化及试验验证徐玉冰 马万太 张豪 张捷 (53)

烧结温度对碳化硅陶瓷力学性能的影响吴澜尔 江涌 乔发鹏 (58)

文献综述

MoSi2材料的制备及其应用席俊杰 (61)

人工神经网络在金属注射成形技术中的应用韩勇 何新波 曲选辉 周瑜 许均力 (66)

粉末冶金产业动态

会议简讯 (72)

中国机械工程学会粉末冶金分会换届消息张彤 (77)

1998~2009年美国MPIF获奖粉末冶金汽车零件介绍(连载)——(一)粉末冶金发动机零件朔风 (77)

WD-40在粉末冶金行业的广泛应用刘颖 (78)

四海文苑

用一次压制—一次烧结达到高密度Francis Hanejko (73)

微量合金元素Zr对Mo合金性能和显微组织的影响成会朝 卢明园 范景莲 田家敏 黄伯云 李勇明 (3)

喷射沉积Zn-38Al-2Cu合金微观形貌和摩擦磨损性能研究杨诚笑 陈兴 严彪 王军 唐人剑 (6)

添加镍包覆石墨对铁基固体自复合材料性能的影响丁光玉 冯辉霞 任卫 柳学全 李红印 (11)

球磨过程中水性咪唑啉类缓蚀剂对铝粉性能的影响唐新德 叶红齐 王敏 刘辉 (15)

材料·制品·应用

一种新型半金属刹车片材料的研究尹国洪 董元源 (20)

机械合金化制备Ag-Cu28合金过程的研究李良锋 丘泰 杨建 李晓云 (24)

基于激光重熔的纳米陶瓷颗粒改性喷涂层的耐磨性研究沈理达 田宗军 黄因慧 刘志东 花国然 (29)

原位合成NiAl(FeAl)/TiB2+Al2O3复合材料崔洪芝 黑鸿君 谢艳春 曹丽丽 (33)

工艺与设备

稀土含量和还原温度对制备超细(W,Ni,Fe)复合粉末的影响彭石高 范景莲 刘涛 祁美贵 丁飞 田家敏 (36)

非水基凝胶注模成形高氮无镍不锈钢粉末的研究韩跃朋 徐自伟 况春江 贾成厂 张秀丽 胡学晟 刘卫华 (40)

钨铜热变形致密化工艺及组织性能研究于洋 李达人 王尔德 刘祖岩 李子睿 (45)

烧结温度对Mo2FeB2合金组织性能的影响李文虎 刘福田 冯小明 (48)

文献综述

W和W/Ti合金靶材的应用及其制备技术王庆相 范志康 (52)

氮化钒制备技术的发展及应用孙涛 刘建雄 谢杰 李松 柏万春 (58)

低温烧结氮化铝陶瓷烧结助剂的研究进展王超 彭超群 王日初 余琨 王小锋 李超 (62)

四海文苑

螺旋齿轮与正齿轮的表面致密化 Sven Bengtsson Linnéa Fordén (67)

粉末冶金产业动态

“2009年全国粉末冶金学术会议”征文通知 (74)

全球领先的粉末冶金汽车配件供应商PMG落户奉贤朔风 (74)

“粉末冶金网上展”正式推出曾杰供 (75)

Q235钢表面氩弧熔覆MoNiSi/Ni3Si金属硅化物复合涂层组织与性能研究王永东 王振廷 陈丽丽 刘瑞堂 (83)

SiC粉末表面溶胶-凝胶法涂覆草酸锌研究崔升 沈晓冬 肖苏 高志强 林本兰 (86)

W-40%Cu合金应力-应变曲线的测定与描述苏新艳 刘祖岩 李达人 王尔德 (91)

机械合金化合成Ti3SiC2导电陶瓷的形貌特征研究段连峰 金松哲 贾树胜 杨晨 (95)

压制烧结法制备钼铜合金中的缺陷分析韩胜利 宋月清 崔舜 (99)

材料·制品·应用

氢化燃烧合成与机械合金化复合制备LaMg11.5Ni0.5储氢材料顾昊 朱云峰 李李泉 (104)

粉末冶金Ti6Al4V合金的研究赵瑶 贺跃辉 江垚 徐南平 黄伯云 (108)

溶胶凝胶-碳热还原法制备Si3N4纳米粉末陈宏 穆柏春 赵连俊 (114)

Al/Tb0.30Dy0.70Fe1.95复合材料的制备与性能研究江民红 顾正飞 刘心宇 (119)

工艺与设备

熔融盐法制备ZrO2纳米粉末的研究郭贵宝 刘铭 安胜利 (123)

无压烧结制备透辉石增韧补强氧化铝基结构陶瓷材料刘长霞 孙军龙 张希华 (127)

粉末涂敷法制备CuInSe2薄膜的硒化烧结过程研究聂洪波 王延来 王义民 果世驹 (132)

放电等离子体烧结工艺对La0.7Fe3CoSb10材料相对密度的影响肖代红 喻盈捷 (138)

文献综述

纳米镍粉制备技术研究进展李新春 成会朝 范景莲 (142)

四海文苑

现行烧结-硬化工艺回顾 Michael L. Marucci George Fil (148)

粉末冶金产业动态

日本粉末冶金工业会2007年获奖产品介绍(Ⅰ) (153)

粉末冶金范文第2篇

关键词:粉末冶金 温压技术 流动温压技术 模壁技术 高速压制技术 动磁压制技术 放电等离子烧结技术 爆炸压制技术

1 温压技术

虽然温压技术只是一项新技术,在近几年才取得了一些发展,但是由于它生产出来的粉末冶金零件具有高密度、高强度的特点,现阶段已经得到了大量的应用。这项技术和传统的粉末冶金工艺不同,它可以采用特制的粉末加温、粉末输送和模具加热系统,将加有特殊剂的预合金粉末和模具等加热至130~150℃,并将温度波动控制在±2.5℃以内,之后的压制和烧结工序和传统工艺是一样的。与传统工艺相比,区别点就集中在温压粉末制备和温压系统两个方面。采用这项技术不管是从压坯密度方面来说,还是从密度方面来说,都比采用传统工艺要好很多。在同样的压制压力下,使用温压材料比采用传统工艺不管是屈服强度、极限拉伸强度,还是冲击韧性都要高。此外,由于温压零件的生坯强度比传统方法下的生坯强度要高很多,可达20~30MPa,如此一来,既降低了搬运过程中生坯的破损率,也保证了生坯的表面光洁度。另外,采用该技术生产出来的零件不仅性能均一,精度高,而且材料的利用率很高。温压工艺的成本不高,而且工艺并不复杂。与传统的工艺相比,温压工艺下的粉末冶金的利用率高,耗能低,经济效益高,是节能、节材的强有力手段。

2 流动温压技术

流动温压粉末冶金技术(Warm Flow Compaction,简称WFC)是一种新型粉末冶金零部件成形技术,目前国外还处于研究的初试阶段,它的核心价值就是能够提高混合粉末的流动性、填充能力和成形性。

WFC技术有效利用了金属粉末注射成形工艺的优点并在粉末压制、温压成形工艺的基础上被发现。这项技术可以将混合粉末的流动性提高,这样就使混合粉末可以在80~130℃温度下,只需要在传统的压机上经过精密成形就可以形成各种各样外形的零件,省掉了二次加工的步骤。WFC技术在成形复杂几何形状方面具有很大的优势,是传统工艺无法比的,而且成本不高,具有非常广阔的应用前景。

综上所述,我们可以归纳出WFC技术具有以下四个优势:一是能够制造出各种各样外形的零件;二是有着很好的材料的适应性;三是工艺简单,成本低;四是压坯密度高、密度均匀。

3 模壁技术

模壁技术是在解决传统工艺面临的一系列难题的基础上应运而生。传统工艺是采用粉末来减少粉末颗粒之间和粉末颗粒与模壁之间的摩擦,然而现实往往是由于加进去的剂因密度低,使得粉末冶金零件的密度也得不到有效的保证。此外,剂的烧结不仅会给环境造成很大的不利影响,还可能会影响到烧结炉的寿命和产品的性能。现阶段,有两个渠道可以进行模壁:一是由于下模冲复位时与阴模及芯杆之间的配合间隙会出现毛细作用,利用这个作用可以把液相剂带到阴模及芯杆表面。二是选择带着静电的固态剂粉末利用喷枪喷射到压模的型腔表面上,就是安装一个剂靴在装粉靴的前部。在开始成形时,压坯会被剂靴推开,此时带有静电的剂会被压缩空气从靴内喷射到模腔内,但是此时得到的极性和阴模的是不一致的,在电场牵引下粉末会撞击在模壁上,同时粘连在上面,之后装靴粉装粉,只需进行常规压制即可。采用该项技术可使粉末材料的生坯密度达到7.4g/cm3,大大提高了粉末材料的生坯密度,并且采用该方法比采用传统的方法还能够大大提高铁粉的生坯强度。有研究结果结果表明,利用温压、模壁与高压制压力,使铁基粉末压坯全致密也是有可能的。

4 高速压制技术

瑞典的Hoaganas公司曾经推出过一项名叫高速压制技术(Hjgh Velocity Compaction)的新技术,简称HVC。虽然这项新技术生产零件的过程和过去的压制过程工序是一样的,但是这项新技术的压制速度比过去的压制速度提高了500-1000倍,同时也大大增加了液压驱动的锤头重量,提高了压机锤头速度,在这种情况下,粉末利用高能量冲击只需0.02s就可以进行压制,在压制的过程中会出现明显的冲击波。要想达到更高的密度,通过附加间隔0.3s的多重冲击就能做到。HVC技术具有很多优势,比如高密度、低成本、可成形大零件、高性能和高生产率等。现阶段该技术已经得到了广泛的应用,很多产品都采用了该项技术,比如制备阀门、气门导筒、轮毂、法兰、简单齿轮、齿轮、主轴承盖等。有了这项技术,未来将会出现更多更复杂的多级部件。

5 动磁压制技术

动力磁性压制技术(dynamic magnetic cornpaction)是一种新型的压制技术,简称DMC,它能够使高性能粉末最终成形,这项技术固结粉末的方式主要是通过利用脉冲调制电磁场施加的压力。虽然这项技术和传统的压制技术一样都是两维压制工艺,但是不同的是传统的压制技术是轴向压制,而这项技术是径向压制。利用该项技术进行压制只需1ms,整个过程非常的迅速,只需把粉末放入一个具有磁场的导电的容器(护套)内,护套就会产生感应电流。利用磁场和感应电流之间的相互作用,就可以完成粉末的压制工作。DMC具有成本低廉、不受温度和气氛的影响、适合所有材料、工作条件灵活、环保等优点。DMC技术适于制造柱形对称的零件,薄壁管,高纵横比部件和内部形状复杂的部件。现可以生产直径×长度:12.7mm×76.2mm到127.0mm×25.4mm的部件。

6 放电等离子烧结技术

早在1930年美国科学家就提出了这项放电等离子烧结技术(Spark Plasma Sintering),简称SPS,然而该技术直到近几年才得到世人的关注。SPS技术独到之处就在于无需预先成形,也不需要任何添加剂和粘结剂,是集粉末成形和烧结于一体的新技术。这项技术主要是通过先把粉末颗粒周围的各种物质清除干净,如此一来粉末表面的扩散能力会得到提高,然后再利用强电流短时加热粉末就可以达到致密的目的,注意加热时应在较低机械压力情况下。有研究结果显示,采用该项技术由于场活化等作用的影响,不仅有效降低了粉体的烧结温度,也大大缩短了烧结时间,再加上粉体自身可以发热的影响,不仅热效率很高,加热也很均匀,所以采用该技术只需一次成形就可以得到质量上乘的、符合要求的零件。现阶段,该技术大范围应用的主要是在陶瓷、金属间化合物、纳米材料、金属陶瓷、功能材料及复合材料等。另外,该技术在金刚石、制备和成形非晶合金等领域也得到了不错的发展。

7 爆炸压制技术

爆炸压制(Explosive Compaction)是一种利用化学能的高能成形方法,也被叫做冲击波压制。一般情况下,它都是通过在一定结构的模具内对金属粉末材料施加爆炸压力,在爆炸过程中产生的化学能可以转化为四周介质中的高压冲击波,然后利用脉冲波就可以实现粉末致密。整个过程只需10-100us,其中粉末成形时间只有大约1ms。这种压制方式最大的优势是可以解决传统的压制方式一直无法解决的难题,即可以使松散材料达到理论密度,比如金属陶瓷材料、低延性金属等采用传统的压制方法无法使其致密,一直是一个未解的难题,随着爆炸压制技术的出现,我们发现采用这项技术就可以把其压制成复合材料,并制造成零件。

我国的粉末冶金技术带来的前景是非常广阔的,作为一种新工艺、新技术,与国外先进水平相比,它还有很多地方需要改进、需要提高。

参考文献:

[1]张建国,冯湘.粉末冶金成形新技术综述[J].济源职业技术学院学报,2006-03-30.

[2]郭峰.火电厂等离子点火装置中高性能阴极材料的制备与实验研究[D].华北电力大学,2006-03-01.

[3]刘双宇.高强度铁基粉末冶金材料复合制备方法及组织性能研究[D].吉林大学,2007-10-25.

[4]冯鹏发,孙军.钼及钼合金粉末冶金技术研究现状与发展[J].中国钼业,2010-06-30.

粉末冶金范文第3篇

关键词:粉末冶金 组合模具 压制成形 改进

0 引言

在粉末冶金工艺中,对于模具的应用范围非常广泛。而组合模具是综合了多种结构特征而形成的综合性模具。它克服了普通模具和单一压制方式的缺陷,解决了以往在粉末冶金工业中存在的难题,是粉末冶金工艺的一项突破。但是,随着技术水平的不断发展,组合模具存在的问题也随着暴露出来,成为我们当下需要解决的难题。

1 粉末冶金概述

1.1 粉末冶金工艺 粉末冶金,是通过制取金属粉末或金属粉末与非金属粉末的混合物作为生产原材料,通过过压制成形、烧结等工艺过程,制造出各种粉末冶金制品的工艺技术。现在,这种工艺已经成为我们在新材料研制领域内的重要工艺技术。

1.2 粉末冶金组合模具 在粉末冶金过程中,在压制成形、烧结以及后处理等制作工序中都会用到模具。在复杂零件的压制成形工序中,常会将模具设计成多种形状的组合模具,这样便可以在压制过程中综合运用多种压制方式,以保障压坯的质量。

2 粉末冶金压制成形过程中存在的问题

在粉末冶金整个制造工艺中,模具的使用在很多工序中都常常会看到。例如,在粉末冶金的压制成形阶段、烧结阶段、复压阶段、精整阶段都会用到粉末冶金模具。而其中最常用且应用最广泛的还是压制成形阶段。在粉末冶金的压制成形阶段,组合模具是形式最多且应用最广泛的模具。目前,组合模具还存在着一些不足之处,其对于粉末冶金工业具有较大的危害。

2.1 压坯密度分布不均匀 在粉末冶金压制成形过程中,常会出现压坯密度分布不均匀的现象。在压制过程中,在垂直方向上,上层粉末的密度比下层粉末密度大;在水平面上,接近上模冲的断面密度分布是两边大,中间小;远离上模冲的段面密度分别是中间大,两边小。造成这一问题主要是由于组合模具的内壁摩擦力较大、组合模具设计的高径比较大、以及压制方式不当等原因造成的。

2.2 粉末粘结组合模具盖板内壁 在粉末冶金压制成形过程中,会出现粉末粘结组合模具盖板内壁的现象。这主要是由于模具内压制密度较低和盖板内壁摩擦力较大等原因造成的。粉末粘结于盖板内壁,一方面,会造成原料的浪费,并对组合模具形成污染;另一方面,会对粉末冶金制品的质量造成严重影响。另外,由于组合模具设计上存在的一些不足之处,还会使粉末冶金制品出现制品的形状偏斜、产品对角开裂等问题,这些问题严重影响了粉末冶金工业的生产效率和产品质量,同时也造成了严重的经济损失。

3 粉末冶金中组合模具的改进办法

3.1 增强组合模具内壁的光洁度 在组合模具制造过程中,提高与粉末存在直接接触的压板内壁、盖板内壁等的光洁度,降低其与粉末之间的摩擦力,将在一定程度上有效的避免模具内壁对粉末压制造成不良影响。其具体改进办法如下:①在模具内壁打磨过程中要提高内壁的光洁度;②对于某些与粉末接触处,可酌情采取局部打磨的方式增加其光洁程度,以提高模具的性能;③在使用过程中,为了提高模具内壁的光洁度,还可以采用向模具内壁涂抹油的方法达到所需的效果。

3.2 在组合模具的设计上加设脱模弹簧 在组合模具的侧板与盖板的连接面上,以及模具侧板和压机的侧缸之间增加一个脱模弹簧。这样的设计改进看似简单,但会解决粉末冶金压制成形过程中存在的很多问题。由于脱模弹簧的存在,在压制和脱模时便会存在一定的缓冲力,这样压制成形的制品外表形状就会比较规则,而且也会有效避免制品对角开裂的问题发生。另外,这一设计上的改进对于减少压制成形过程中的加粉量、加工量也具有明显的效果。

3.3 在外模冲上安装保护套 在粉末冶金压制成形过程中,组合模具的外模冲由于受到的压力复杂,再加之对于热处理硬度难以把握,因此,外模冲易于受损、开裂,使用寿命较短,同时也增加了粉末冶金的压制成本。经过设计实验后发现,在外模冲上安装一个保护套将有效改善外模冲的使用环境,克服其受到直接磨损等威胁,这样就可有效的延长外模冲的使用寿命,降低压制成本。另外,由于保护套易于安装、替换,且生产成本低,因此,增加保护套是解决外模冲受损最为合适的办法。

4 结语

在粉末冶金工艺中,组合模具的应用非常广泛,对于粉末冶金制品的质量也起到一定的决定作用,于是,对于组合模具的设计、制造具有较高的要求。目前,对于组合模具的设计、制造仍然具有很大的发展空间,有时对于组合模具一点小小的改进,就可能为粉末冶金工业带来巨大的收获。因此,我们仍需不断对组合模具乃至整个粉末冶金工艺进行发展、改进,逐渐缩小我国粉末冶金工业与发达国家的差距。

参考文献:

[1]孙国勋.粉末冶金多台面零件压制组合模具探讨[J].粉末冶金工业,1998(2).

[2]耿锁俊.粉末冶金中组合模具的改进[J].内蒙古石油化工,2006(2).

[3]孙国勋,彭世超.粉末冶金杆座成形模具设计探讨[J].粉末冶金工业,1998(02).

粉末冶金范文第4篇

[关键词] 粉末冶金;汽车;零件;展望

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2016. 13. 060

[中图分类号] F407.471 [文献标识码] A [文章编号] 1673 - 0194(2016)13- 0114- 02

0 引 言

随着汽车产量的攀升,汽车产业的节约材料、节能、减排以及降低生产成本,毫无疑问成为汽车产业目前面临的重要挑战。粉末冶金是节能环保、节材的金属加工制造工艺,在现代汽车制造中无疑扮演着不可或缺的角色。

1 粉末冶金技术介绍

粉末冶金技术是先进的金属成形加工技术。1910年美国的Coolidge W D“The Production of Ductile Tungsten”,是近代粉末冶金的诞生的标志。目前粉末冶金已经发展逾百年,应用领域也在不断拓展。粉末冶金包括三个重要技术步骤,分别是原料粉末的制备、粉末成型为所需形状的坯块、坯块的烧结、产品的后序处理。粉末冶金可以直接制造出尺寸准确、表面光洁的零件,减少了金属切削过程,节约材料和加工工时,可以加工形状复杂普通铸造难以加工的金属零件。

2 粉末冶金在汽车上的应用

最早利用粉末冶金批量生产的零件即为粉末冶金自轴承,该轴承是由通用公司研发制造,1922年开始用于汽车发动机当中,这是粉末冶金自轴承的起源。在很长一段时间内,粉末冶金自轴承都是粉末冶金主要的零部件。1940年,因其低廉的价格、优异的机械性能,美国汽车公司率先采用粉末冶金油泵齿轮,这一事件标志着粉末冶金在汽车工业已经扎根。粉末冶金的起源与发展均与汽车产业密不可分,由于粉末冶金巨大的潜力,美国汽车三巨头早在1941年就建立了粉末冶金部门用于研发自身需要的粉末冶金零部件。目前据统计,粉末冶金的主要市场一直是汽车产业,在北美为70%~75%,西欧为80%,而在日本接近90%,这充分表明了粉末冶金与汽车产业的紧密性。

汽车产业使用的粉末冶金制品主要有两类,一种是自轴承,另一种是粉末冶金结构零件,前者主要是由90Cu-10Sn青铜生产的,后者基本上是由铁粉为基本原料制造的。从粉末冶金的发展史上看,粉末冶金结构零件在一定程度上是有粉末冶金自轴承发展起来的。粉末冶金自轴承,又称为烧结金属含油轴承,构造简单但因其多孔性自行供油特性所以必须才有粉末冶金制造。铁基自轴承经济实用,已经被汽车行业广泛采用。而粉末冶金结构零件的产生之初就是为了替代已有的齿轮、链轮、凸轮及各种形状的铸件,锻造件以及需要切削加工的零件和开发新种类的零件。

2.1 同步器锥环

同步器作为汽车机械式变速器的重要部件起到使换挡迅速方便,减轻换挡冲击的作用。而同步器锥环作为同步器的核心部件,经常受到换挡拨环力矩、摩擦力矩的冲击以及磨损,一旦其失效,变速器将不能换挡。过去同步器锥环多采用耐磨的铝锰黄铜精锻而成,而现在国内外汽车企业为降低成本、提高寿命,往往采用粉末冶金制造该零件。同步器锥环需要搞得尺寸精度及良好的耐磨损性能,目前国内外已经有成品面世。日本Aichi Machine Industry Co.制造的粉末冶金钢同步器锥环获得了美国MPIF(金属粉末工业联合会)组织的粉末冶金零件设计大赛优秀奖,该零件比拉削的钢零件可节约成本25%。

2.2 曲轴正时齿轮和凸轮轴正时齿轮

曲轴正时齿轮和凸轮轴正时齿轮是用于发动机控制点火、喷油、气门开闭等动作的关键部件,对于发动机最大功率、最大扭矩、燃油消耗率起重要作用。过去汽车采用45钢或40Gr经调质处理作为曲轴正时齿轮和凸轮轴正时齿轮使用,现在从降低成本和减少切削加工两方面考虑,许多新型发动机已经采用粉末冶金材料制造以上两类零件。正时齿轮的主要制造要求是尺寸精度,这就需要模具在设计和制造过程中严格,国外有采用电火花加工的工艺,能够比较精确地将模具加工出来,然后研磨降低粗糙度。

2.3 曲轴连杆

发动机连杆是连接曲轴和活塞的连接件,将活塞产生的动力传递给曲轴,将活塞的往复运动转变为曲轴的旋转运动,工作中承受活塞销的作用力和活塞的往复惯性力,这些力大小、方向随时间快速变化,所以连杆承受压缩、拉伸等交变载荷的作用,故连杆必须有足够的刚度和疲劳强度。疲劳强度不足,往往会造成连杆体或连杆螺栓断裂,进而产生整机破坏的重大事故。若刚度不足,则会造成杆体弯曲变形及连杆大头的失圆变形,导致活塞、汽缸、轴承和曲柄销等的偏磨。汽车发动机连杆多采用锻造或铸造工艺,锻造生产的连杆分为调质钢和非调质钢。美国通用公司、德国宝马公司等企业已经在其生产的发动机中采用粉末冶金连杆,该项应用前景广阔。

2.4 凸轮轴

凸轮轴是活塞发动机里的一个部件。它的作用是控制气门的开启和闭合动作。虽然在四冲程发动机里凸轮轴的转速是曲轴的一半,不过通常它的转速依然很高,而且需要承受很大的扭矩,因此设计中对凸轮轴在强度和支撑方面的要求很高。由于气门运动规律关系到一台发动机的动力和运转特性,因此凸轮轴在发动机中占据着十分重要的地位。近年来,研究人员提出了新型组合式中空凸轮轴,具有重量轻、能耗低、中空结构可做油路的优点。首先把粉末冶金凸轮压坯套入中空管,然后进行烧结工艺,巧妙地利用了烧结后粉末冶金收缩的特性。该工艺具有广泛的应用前景。

3 粉末冶金在汽车产业应用的展望

粉末冶金范文第5篇

关键词: 单向压制 双向压制

中图分类号:TP217.4 文献标识码:A 文章编号:1672-3791(2015)02(b)-0000-00

1、引言

粉末冶金是用金属粉末(或金属粉末与非金属粉末的混合料)作为原料,经过成型和烧结制造金属材料、复合材料以及各种类型制品的工艺过程【1】。随着粉末冶金技术发的发展,粉末冶金产品的性能要求也不断提高,相对产生多种不同的成型方法。目前传统压制成型方法有:单向压制和双向压制两种。其中双向压制又分为阴模浮动式压制和阴模拉下式压制。

2、成型方法

2.1单向压制

单向压制工作原理:阴模型腔和下模冲的位置固定不动,上模冲在压机凸轮带动下,向下进入阴模型腔,并对阴模型腔的粉末加压,使粉末压制成具有一定密度和强度的坯件。【2、3】

单向压制的一个循环有以下步骤。

A粉末充填:粉末通过手工或者动送粉器的送粉,利用粉末重力充填在阴模型腔中。

B单向压制:粉末填充完毕后,阴模型腔与下模冲位置固定不变,上模冲在压机凸轮带动下,向下进入阴模型腔,使粉末压制成成具有一定密度和强度的坯件。

C保压:为了使压力得到有效传递,保证坯件密度分布均匀,上模冲应在180度的成型压制位置下保持不动一段时间,使坯件中空气有足够时间逸出。【4】。

D脱模:保压结束后,上模冲由压机凸轮复位带动向上脱离阴模型腔,下模冲则由压机的下气缸的作用力作用下把坯件顶出阴模型腔。

E复位:上模冲退到最高点,送粉器把压制的坯件推出,同时下模冲退回固定位置,同时粉末在重力作用下充填在阴模型腔中。

2.2双向压制

双向压制一般分为阴模浮动式压制和阴模拉下式压制。

2.2.1阴模浮动式压制

阴模浮动式压制工作原理:阴模由弹簧支承,处于浮动状态,下模冲固定不动,上模冲在凸轮带动下向下进入阴模型腔,对粉末施加向下压力。开始加压时,由于粉末与阴模型腔壁间摩擦力小于弹簧支承力,只有上模冲向下移动,随着压力增大,粉末对阴模型腔壁间的摩擦力大于弹簧支承力时,阴模型腔与上模冲一起向下运动,与下模冲间产生相对移动,从而达到双向压制的效果。【2、3】。

阴模浮动式压制的一个循环有以下步骤。

A装料:手工或者由自动送粉器把粉末均匀装入阴模型腔。

B上冲下压:粉末填充完毕后,阴模弹簧支撑,下模冲位置固定不变,上模冲在压机凸轮带动下,向下进入阴模型腔,对阴模型腔中的粉末施加向下压力。

C阴模浮动:随着上模冲施加的压力不断增大,粉末对阴模型腔壁间的摩擦力也不断增大,当此摩擦力大于阴模型腔的弹簧支撑力时,阴模型腔与上模冲一起向下运动,直到坯件成型

D保压:为了使压力得到有效传递,保证坯件密度分布均匀,上模冲和阴模型腔向下运动至坯件成型的位置下保持不动一段时间,使坯件中空气有足够时间逸出。【4】。

E脱模:保压结束后,上模冲由压机凸轮复位带动向上脱离阴模型腔,阴模则由压机下压气缸的向下拉力往下退,直到坯件从阴模型腔脱出。

F复位:上模冲退到最高点,送粉器推出从阴模型腔脱出的坯件,然后阴模由弹簧支撑恢复到粉末充填位置,同时粉末在重力作用下充填在阴模型腔中。

2.2.2阴模拉下式压制

下模冲固定位置不动,上模冲在凸轮的带动下,向下进入阴模型并对型腔中的粉末施加向下压力的同时,阴模型腔也由于受压机下压气缸的向下拉力,使其与上模冲一起向下运动,相对下模冲形成向上运动。从而实现上冲和下冲的双向压制【2、3】。

阴模拉下式压制过程一个循环有以下步骤。

A装料:手工或者由自动送粉器把粉末均匀装入阴模型腔。

B双向压制:粉末填充完毕后,上冲在凸轮的带动下,向下进入阴模型腔并对型腔粉末施加向下压力的同时,阴模也在压机下压气缸的向下拉力作用下一起向下运动,使下模冲相对阴模向上运动。

C保压:为了使压力得到有效传递,保证坯件密度分布均匀,在上、下模冲和阴模型腔相对位置不变的前提下保持不动一段时间,使坯件中空气有足够时间逸出。【4】。

D脱模:保压结束后,上模冲由压机凸轮复位带动向上脱离阴模型腔,阴模则由压机下压气缸的向下拉力往下退,直到坯件从阴模型腔脱出。

E复位:上模冲退到最高点,送粉器推出从阴模型腔脱出的坯件,然后阴模卸去下压气缸压力,恢复到粉末充填位置,同时粉末在重力作用下充填在阴模型腔中。

3压制方式与坯件密度的关系以及它们应用

3.1单向压制坯件与密度关系

单向压制的密度分析:从压制原理可知,单向压制的压力是从上模冲方向向下传递。与上模冲相接触的坯件上层,从横向分析,密度从中心向边缘逐步增大,顶部的边缘部门密度最高,这是由于压制过程在阴模型腔壁会对粉末产生横向反作用力,所以边缘比心部高。从纵向分析,密度从上往下逐渐减少。这时由于压力在密实粉末过程,粉末发生滑移和变形会产生向上的反作用力,随着传递的压力不断减少,粉末更难发生滑移变形,最终导致底部坯件的密度低【5】。由此可知,单压制坯件密度分布从边缘向中心,从上到下逐渐减少。

3.2双向压制坯件与密度关系

双压制的密度分析:从双向压制原理可知,双向压制的压力是从两端向中心传递。与模冲接触的坯件两端,横向分析,密度同样从中心向边缘逐步增大,理论跟单向压制一致。从纵向分析,由于压力从两端向中心传递,所以坯件两端的粉末能充分发生滑移变形现象,密度高,而随着压力传递减少,心部密度粉末不能充分滑移变形,密度低。由此可知,双向压制坯件密度分布:从边缘向中心逐渐减少,但坯件由于受两端压力压制,降低坯件的高径比,减少压力沿高度而减少的差异,密度分布更均匀。【5】。

4 结语

随着社会科技的不断发展,粉末冶金也发生翻天覆地的变化,各式的成型压制方法不断出现。但无论那种压制方式(摩擦芯棒压制,下模冲浮动压制,组合冲压制,换向压制等)都可以从上述3种压制方法的原理中找到理论基础。因此掌握上述3种方法的原理和应用原则就能为粉末冶金模具设计大打下坚实基础。

【1】 黄培云.粉末冶金原理.[M].北京.冶金工业出版社.1997(2006.1重印).1

【2】 中南矿冶学院粉末冶金教研室,粉末冶金基础,冶金工业出版社,1974

【3】 黄培云.粉末压型问题.(中南矿冶学院).1980

【4】 黄培云.粉末冶金原理.[M].北京.冶金工业出版社.1997(2006.1重印).213

【5】 黄培云.粉末冶金原理.[M].北京.冶金工业出版社.1997(2006.1重印).204

粉末冶金范文第6篇

《粉末冶金工业》(CN:11-3371/TF)是一本有较高学术价值的大型双月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

粉末冶金范文第7篇

关键词:粉末冶金;汽车零件;金属粉末;高性能

粉末冶金材料是指用若干种金属粉末或是金属粉末与非金属粉末作原料, 通过按比例配料、压制成形、烧结等工艺过程而制成的材料。这种生产工艺过程也就是粉末冶金法, 它属于一种不同于熔炼和铸造的方法。由于其生产工艺过程与陶瓷制品工艺极为相似, 所以粉末冶金法又被称为金属陶瓷法。粉末冶金法不仅是制造某些具有特殊性能材料的方法, 同时也是一种无切屑或少切屑的加工方法。它具有生产效率高、材料利用率高、节省机床和生产占地面积等特点。但其也存在一定的缺陷,如金属粉末和模具费用高, 制品大小和形状受到一定限制, 制品的韧性也较差。粉末冶金法常被用于制作硬质合金材料、结构材料、减磨材料、难熔金属材料、摩擦材料、过滤材料、无偏析高速工具钢、金属陶瓷、耐热材料、磁性材料等。

一、粉末冶金技术的含义及其特点

粉末冶金技术附属于材料制备和成形的加工技术,而作为粉末冶金的雏形就是块炼铁技术,块炼铁技术也是人类最初制取铁器的唯一手段,其对人类社会进步作出了巨大贡献。

1、 粉末冶金技术的含义

粉末冶金的方法其实诞生已久。人类早期通过机械粉碎法来制取金、银、铜和青铜的粉末,用来当作陶器等的装饰涂料。早在200年前,一些欧洲国家,如俄、英等国就曾大规模的制取海绵铂粒,并经过热压、锻和模压、烧结等加工工艺来制造钱币和一些贵重器物。1890 年,美国的库利吉发明用粉末冶金方法制造灯泡用钨丝,从而奠定了现代粉末冶金技术的基础。直到1910年左右,人们已经开始用粉末冶金法来大量制造了钨钼合金制品、青铜含油轴承、硬质合金、集电刷、多孔过滤器等,并逐步形成了一整套粉末冶金相关技术。上世纪30年代,旋涡研磨铁粉和碳还原铁粉技术问世后,从而为粉末冶金法制造铁基机械零件较快的发展机遇。从第二次世界大战后,粉末冶金技术得到了较快的发展,新型的生产工艺和技术装备、新的材料和制品不断出现,开拓出一些能制造特殊材料的领域,成为现代工业中的重要组成部分。

2、 粉末冶金技术的主要作用

由于粉末冶金技术的具有特殊优点,使其已成为解决新材料问题的有效途径,而且在新材料的发展中历程中发挥着举足轻重的作用。

粉末冶金技术由于其可以在最大限度地来减少合金成分发生偏聚,消除粗大且不均匀的铸造组织。在制备高性能稀土永磁材料、稀土发光材料、稀土储氢材料、高温超导材料、稀土催化剂、新型金属材料上具有独特的作用。同时还可以制备非晶、纳米晶、准晶、微晶以及超饱和固溶体等一系列高性能非平衡材料,这些材料由于具有优异的电学、光学、磁学和力学性能。因此可以较容易地实现多种功能类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料等。可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。

二、粉末冶金技术的发展趋势

随着汽车和飞机零件以及切削和成形工具发展的需要,粉末冶金制造零部件的强度和质量都得到了较好的改善和提高。汽车制造业作为粉末冶金零件的最大用户,1996 年汽车行业占有美国粉末治金零件的市场份额的69%,成为美国粉末冶金零件的最大市场。发展粉末冶金需要制取新技术、新工艺及其过程理论。

1 、向全致密化发展

粉末冶金的重点是超细粉末和纳米粉末的相关制备技术,机械合金化技术,快速冷凝制备非晶、微晶和准晶粉末制备技术,粉末粒度、结构、形貌、成分控制技术,自蔓延高温合成技术。粉末冶金技术发展的总趋势是向超细、超纯、粉末特性可控方向发展,从而建立以“净近形成形”技术为中心的各种新型固结技术及其过程模过程理论,如粉末注射成形、挤压成形、喷射成形、温压成形、粉末锻造等。建立以“全致密化”为主要目标的新型固结技术及其过程模拟技术。

2 、向高性能化、集成化和低成本等方向发展

粉末冶金制造零部件相关的新的成形技术层出不穷,如:粉末注射成形、温压成形、流动温压成形、喷射成形、高速压制成形等新技术不断涌现。目前, 粉末冶金技术正向着高致密化、高性能化、集成化和低成本等方向发展。有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展;制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金;用增强致密化过程来制造一般含有混合相组成的特殊合金;制造非均匀材料、非晶态、微晶或者亚稳合金;加工独特的和非一般形态或成分的复合零部件。

3 、粉末冶金产业化发展

由于相邻学科和相关技术的相互渗透和结合.更赋予了粉末冶金新的发展活力。粉末冶金新工艺层出不穷。粉末冶金产业化是指这些技术已比较成熟。甚至在一些国家已有生产规模,但主流还处于研究成果向产业化转化的过程之中。其工艺、设备、市场等已为产业化准备了条件,可以产业化,取得社会效益和经济效益。主要是指该技术实现产业化、集群化、模块化发展。其主要应用领域有汽车用粉末冶金零部件,汽车制造业仍是粉末冶金(PM)发展的牵引力;粉末注射成(PowderInjection Molding(PIM))温压成形技术(Warm Compaction)在众多为提高PM 件密度的生产方法中。温压成形技术被认为是最为经济的一种新工艺。本文将重点介绍以下产业化技术:

① 温压技术

温压技术在上世纪90 年代被誉为粉末冶金技术上重大突破,并于1990年取得了第一项采用一次压制烧结工艺制备高密度铁基(P / M)零件的美国专利。该技术可以使烧结钢中的孔隙度降低到6 %左右,而传统技术的孔隙度为10%以上,产品的密度能达到7.3g/cm3或以上,因此较大程度的拓宽了高密度、高强度烧结钢零件在工业上广泛应用的可能性。

② 模壁

模壁和温压是两个平行的提高铁基结构零件密度的方法。近年来,发展最迅速的是干模壁技术,即采用静电的方法,从而将干剂粉末吸附到模壁上进行,从而很好的避免了湿模壁在制备过程中压坯表面易于粘粉的缺点。

③注射成形

金属注射成形(MIM)是一种将塑料注射成形与粉末冶金技术结合而成的近净成形技术,此技术也是国内外公认的21 世纪粉末冶金的主流技术,被称为“第五代加工技术”。而且该技术也最适于用来大批量生产一些三维复杂形状的零件,同时还可以实现自动化连续作业,从而大大提高生产效率。目前,在一些发达国家,MIM技术已经成为一项最具竞争力的金属成形技术,而且开始大量用于不锈钢粉末冶金生产。

三、粉末冶金机械零件的制造现状与挑战

我国粉末冶金技术起步较晚,自1958年诞生以来,一直是处在蹒跚学步的状态中,而且一直不被人们重视,被当做是一个没有前景的小行业来对待。然而从世界粉末冶金行业发展状况来看,粉末冶金行业却是一个最具市场活力,发展速度极快,同时应用范围也是最广的冶金技术,尤其是日本在粉末冶金技术方面发展飞快,每年生产烧结含油轴承十几亿只。直到上世纪80年年代初,在我国体制改革的大潮中,粉末冶金零件行业正式划归当时的“基础件工业局”进行管理,并结束了粉末冶金零件行业自身自灭的状态,从而得到相应的发展机遇。我国自上世纪90年代至今约20多年间,粉末冶金零件得到迅猛发展,同时也经受住了金融危机的不利影响。

表1是我国自2007-2011年间粉末冶金分会53家会员企业的数据进行统计的结果,虽然我国粉末冶金行业目前显示出盎然生机,但也面临着各方面的挑战。现笔者将自己的针对其中的一些问题以及看法和相应的意见提供给大家参考:

四、粉末冶金机械零件制造技术在汽车行业的应用现状与前景

近年来,由于人们生活观念的改变,同时人们的环保意识也不断提高,因而轻量化的汽车也越来越受人们的亲睐,从而汽车工业也开始大量使用轻质合金材料,如铝合金、镁合金来生产汽车零部件。也正是由于粉末冶金能够很好的避免成分偏析,又可以满足具有各种特定性能的零部件一次性成型的要求。

目前粉末冶金汽车零件主要有两个市场,一个为汽车生产商市场,另一个为汽车维修服务点,即维修配件市场。而汽车生产商市场则是粉末冶金零件的主要市场,通常情况下,汽车生产商会与粉末冶金零件制造企业进行定向合作,从而导致其他零件制造企业难以插足获利。而维修配件市场相对来说则要开放的多,而且需求量也较大,但大多都是存在某些质量问题的货物。从表2可知,我国在汽车制造行业中对粉末冶金技术制造的零件的使用量只有日本的2/3左右,但我国的粉末冶金制造的零件的总量却要比日本的多,可见粉末冶金汽车零件的市场潜力是巨大的。

我国目前汽车行业正处于蓬勃发展期,因此也给我国粉末冶金零件制造企业带来了难得市场机遇。同时根据美国一家信息分析中心预测,2020年我国汽车销量将达到2000万辆,届时中国将超过美国成为全球汽车销量第一的国家。而我国粉末冶金汽车零件的主要制造企业有三十多家,且其主要生产的零部件为汽车所使用的一些轴承或者是小配件,总体呈现出还是处于相对来说较为低端的位置,而关于发动机或调速箱等关键部位的零部件则基本上是整体通过国外进口,同时随着全球经济一体化趋势的不断加速,我国粉末冶金企业毕竟面对国际化市场,这对我们来说既是机遇也是挑战。因此就需要我国粉末冶金企业把握机遇,迎难而上,主动积极的溶于国际化市场当中。

参考文献

[1]韩凤麟.粉末冶金零件与汽车工业[J].新材料产业,2007(11):31-38.

[2]杨伏良,甘卫平,陈招科.粉末粒度对高硅铝合金材料组织及性能的影响[J].材料科学与工艺,2006,14(3):268-271.

[3]印红羽,张华诚.粉末冶金模具设计手册[M].北京:机械工业出版社,2002.

[4]李祖德,李松林,赵慕岳.20世纪中、后期的粉末冶金新技术和新材料(1)――新工艺开发的回顾[J].粉末冶金材料科学与工程,2006,11(5):315-322.

[5]刘文海.铝合金新材料的发展动向[J].机械工业杂志,2007,291:160-162.

[6]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.

[7]赵玉谦,方世杰.粉末冶金高强铝合金在汽车工业中的应用[J].汽车工艺与材料,2004(9):1-5.

粉末冶金范文第8篇

关键词:粉末 冶金材料 温压成型

中图分类号:TF124.3 文献标识码:A 文章编号:1674-098X(2017)02(a)-0057-02

粉末冶金成型技术主要含有温压技术、流动性的温压技术以及模壁技术、高速压制技术等新技术。通过对粉末冶金新技术的利用以及该项工艺在现今得到的发展,可以帮助我国的高技术工业获得新的发展。就目前来看,我国的粉末冶金技术为了适应社会发展的需求,也在进行新的改革。现今,该项技术主要向着低成本、高致密化以及高收入、强性能的方向进行新一轮的发展。我国的粉末冶金零件成型技术已经发展了近10年,可以对现今的粉末冶金技术进行全面提高。随着现今我国工业化的发展迅速,工业上对粉末成型制品的需求量也得到提高,对其质量也产生了更高要求[1]。现今,对粉末成型工业的发展产生制约的因素主要有粉末材料以及粉末成型所使用的专用压制设备。由于在粉末成型的零件中高强度、精度以及形状较为复杂的零件占有的比重越来越大,且有占据主要地位的趋势,对粉末成型压机的性能以及精度也提出了更为严格的要求。随着粉末成型技术的日益发展以及市场上产生的新需求,多台面的复杂零件在其中占据的比例也将不断扩大。粉末压机在实际生产的过程中,压制设备对于粉末压制零件的成型精度也将会起到新的作用。

1 粉末成型技术的原理分析

粉末成型技术是对计算机的辅助设计进行利用或利用实体反求的方式对相关信息以及零件所需的几何形状、材料、结构信息进行采集,从而在计算机中建立数字化的模型。将所得到的信息输入到计算机进行控制的机电集成系统中后,再逐点逐面进行所需材料的三维成型工作。对其经过必要的处理之后,使其外观、性能以及强度都达到设计要求,从而对原型进行快速准确的制造,并对零部件进行制造的现代化方式[2]。现今,所使用到的快速原型制造技术所采用的原理都是对分层叠加法进行利用,也就是对计算机辅助设计文件以及进行的分层切片进行分层分步骤处理,对计算机控制的成型机进行利用,从而完成材料的形体制造工作。快速原型制造技术现今在模具、汽车以及航空航天、医疗器具等方面都得到了相应的应用,按照快速原型制造技术产品功能,可以将应用分为原型、零部件、模具等方面。

2 温压技术

温压技术主要指的是在粉末冶金领域得到全新技术。利用该项技术可以生产出密度、强度较高且质量优质的零件,因此,在实际应用的范围也是较大的。温压技术主要就是利用特殊的粉末,并将其进行高温、输送以及模具加热灯系统,在其中加入具有特色的剂制成的预合金粉末以及将其中所用到的模具加热到140 ℃左右。需要注意的是,应该将温度的波动控制在12.5 ℃之内,之后再和常规的粉末冶金技术进行统一,开展压制以及烧结工作,最终就可得到粉末冶金的零件。这项技术就被称为温压技术。该项技术的关键点在于温压粉末制备以及温压系统。由于使用到了粉末冶金零件以及温压技术,就可对生产的综合成本得到有效降低。

3 流动温压技术

流动温压技术是对粉末进行一定的温压以及压制,在这过程中,对金属粉末注射成型工艺中存在的特点进行相应的提炼,从而形成的一种全新性冶金零部件形成技术。该项技术主要是对混合粉末流动性以及填充的成形性进行一定的提高,使其可在80 ℃或130 ℃下,对传统压机上可精密成型的几何外形零件进行利用。流动温压技术可对传统粉末冶金技术在成型上的不稳定性进行克服,也可防止在金属注射成形的过程中产生的高成本技术。这样的技术既是一种新的技术,也具有十分广阔的发展前景。流动温压技术是一种新的粉末冶金部件成型技术,主要特点在于可利用相关设备形成十分复杂的几何形状零件。压坯具有密度高,且均匀性较高的特点,对于各种材料的适用性较高。另外,该项技术的工艺十分简单,所需要花费的成本较低。就目前来看,流动温压技术在现今的使用也还是属于开始阶段,主要是因为关键性的制造技术以及致密化机理研究没有得到全面的应用。

4 模壁技术

传统的粉末零件在进行成型的r候,为了使得粉末颗粒之间以及与模壁之间的摩擦减少,在进行粉末混合的时候就应该添加不定量的剂。但是,由于混进的剂密度较低,因此,在制成规格较高的粉末冶金零件的时候将产生不利影响。另外,剂在烧结过程中也会对环境产生严重影响,导致烧结炉的使用时间以及生产产品的主要性能也得到降低。模壁的技术在实际的应用过程中可以将这样的情况进行有效规避,近年来,利用技术已经成为在研究粉末成型技术中的热点问题[3]。现今,要想实现模壁主要有两种方式:首先是对模冲复位时与芯杆以及阴膜进行有机配合,在间隙的过程中可以对毛细作用进行利用,从而将液相剂带入到阴膜的表面。其次,是对喷枪进行利用,将其中带有的一种固态剂粉末直接在压膜型腔中进行喷射。也就是将装有粉靴的前部装有剂装置。利用这两种方式,可以进行常规的压制成膜工作。

5 高速压制技术

高速压制技术主要是国外推行的一项新技术,可以将生产零件的过程与传统进行的压制工序保持一致。混合粉进入材料之后,粉末也可通过送粉靴自动将混合粉填充模腔进行压制成形,在此之后,再将零件顶出,并且可将其转入到烧结的工序之中。与该项技术存在差异的是压制的速度与传统压制工艺速度还存在一定的不同。相比较而言,传统的压制工艺要比该项技术压制速度低500~1 000倍。其中压机锤头的速度在运行的时候可高达2~30 m/s,液压驱动的锤头速度也可达到5~1 200 kg左右。粉末在运行的时候,在0.02 s就可对高能量的冲击进行利用从而产生压制。在压制过程中,也可产生一种较为强烈的冲击波。通过附加的时间间隔,形成多种冲击,就可到达一种更高密度上。该项技术在应用上的生产率、性能以及密度等都较高,且生产的成本较低,可在制造一些难度较低的阀门、主轴以及齿轮时应用。

6 结语

粉末冶金技术属于一项应用十分广泛的零件成型技术,在粉末的冶金技术以及工艺得到迅速发展的今天,可对高技术的发展产生全面推动,也可为材料技术以及材料工程带来新的发展。现今,从我国粉末冶金技术的整体行业发展来看,其发展的技术水平还较低,各项工业设备也较为落后,与国外的相关技术相比,发展的差距较大。因此,需要对粉末冶金技术进行研究开发,可将我国的技术发展水平与国外的差距进行有效缩短,促使粉末冶金技术满足社会发展所产生的新需求。

参考文献

[1] 蔺绍江,熊惟皓,黄玉柱,等.温压成型和微波烧结TiC/316L复合材料的摩擦磨损特性[J].摩擦学学报,2011(5):467-472.

[2] 柯美元,成伟华,陈学锋.剂对不锈钢粉末温压成型工艺的影响[J].新技术新工艺,2014(7):112-114.

粉末冶金范文第9篇

【关键词】:粉末冶金;材料;分类;应用

0.引言

所谓的粉末冶金材料指的是用几种金属粉末或者金属与非金属粉末为原料,通过配比、压制成型以及烧结等特殊工艺制成的各类材料的总称,而这种与熔炼和铸造明显不同的工艺也被统称为粉末冶金法。因其生产流程与陶瓷制品比较类似,所以又被称为金属陶瓷法。就目前而言,粉末冶金法不单是用来制取某些特殊材料的方法,也是一种优质的少切屑或者无切屑方法,且其具有材料利用率高、生产效率高,节省占地面积及机床等优点。然而粉末冶金法也并非万能之法,其无论是金属粉末还是模具都有着较高的成本,且制品的形状和大小都受到一定的限制。

1.粉末冶金材料的主要分类

1.1传统的粉末冶金材料

第一,铁基粉末冶金材料。作为最传统也是最基本的粉末冶金材料,其在汽车制造行业的应用最为普遍,并随着经济的迅猛发展,汽车工业的不断扩大,铁基粉末冶金材料的应用范围也就变得越来越广阔,因此其需求量也越来越大。与此同时,铁基粉末冶金材料对其他行业来说也非常重要。

第二,铜基粉末冶金材料。众所周知,经过烧结铜基制作的零件抗腐蚀性相对来说比较好,且其表面光滑没有磁性干扰。用来做铜基粉末冶金材料的主要材料有:烧结的青铜材质、黄铜材质以及铜镍合金材料等,此外还有少量的具有弥散性的强化铜等材质。在现代,铜基粉末冶金材料主要备用到电工器件、机械设备零件等各个制造类领域中,同时也对过滤器、催化剂以及电刷等有一定的作用。

第三,难熔金属材料。因这类材料的熔点、硬度、强度都比较高,因此其主要成分为难熔性的金属及金属合金复合材料,主要被应用国防、航空航天以及和研究领域等。

第四,硬质合金材料。所谓合金材料指的是由一种或者几种难熔性的金属经过碳化之后形成的硬质材料的总称。其主要是由金属粘结剂进行粘合之后,再用粉末冶金技术制作而成。因这类硬质合金材料具有高熔点、高硬度、高强度,所以常被用到切削领域。

第五,粉末冶金电工材料。在现代工业中,这种材料主要应用于仪表和电气领域,尤其是各类分断和接通电路重点额电接触元件和电阻焊用的电极上。近几年,随着国内无线电技术的迅速发展,电阻器件的应用范围也越来越广泛,其主要材质就是这类材料。此外,粉末冶金电动材料对真空技术领域中的电力管阴极和电加热元件也有着重要的作用。

第六,摩擦材料。顾名思义,这类材料具有很强的摩擦磨损性能,可以用于制造摩擦离合器以及制动器的摩擦部分。利用其摩擦磨损性较强的特点,有效实现各个元件之间动力的阻断性和传递性,以此实现运动物体的及时减速和停止运动等。

第七,减摩材料。与摩擦材料相反,这类材料则具有较低的摩擦系数以及较高的耐磨性,其可以是金属材质也可以是由非金属材质构成。通常情况下,建模材料主要是由教导强度的金属基体和具有减摩成分的剂构成。因粉末冶金法在一定程度上能够对金属材料的基体和减摩成分进行有效调整和控制,此外,这类减摩材料还具有较强的自性能,这就使得其在金属铸造领域和塑料减摩材料领域中发挥着重要作用。

1.2现代先进粉末冶金材料

第一,信息领域中的粉末冶金材料。在这里主要指的是软磁材料,通常情况下,其又可以分为铁氧体软磁材料和金属软磁材料两种,最大区别是前者出现较早,且只能通过粉末冶金烧结法获取。因其在烧结过程中,软磁材料有着较强的饱和磁化性能和较高的导磁率,所以被各个磁行业广泛应用。

第二,能源领域中的粉末冶金材料。顾名思义,这种能源材料指的是在不断的发展过程中,能够对促进新能源建立和发展具有重要作用的材料,其能够满足各种新能源的不同需求。能源领域中的粉末冶金材料不仅仅是当今社会新能源发展的关键组成部分,还是新能源材料发展的重要前提和基础。就目前而言,电池、氢能、太阳能等方面成为新能源材料发展的主要方向,并随着技术的不断进步,这类材料的应用范围也变得越来越广阔。

第三,生物领域中的粉末冶金材料。最近几年以来,国内的生物研究领域取得了较大的进步,生物研究逐渐对我国的经济发展及产业结构调整有着越来越重要的影响,为此国家对于生物研究领域所取得的重大突破也给予了高度关注,特别是生物材料研究方面。在医学领域中,生物材料能够有效改善人们的健康状况,大大提高了人们的生活质量。

2.粉末冶金材料的应用研究

2.1在机械合金方面的应用

机械合金主要应用的是粉末冶金技术中的高性能球磨技术。其应用原理为:在高能球磨的基础之上,有效利用了金属粉末混合物的变形和易断裂特性,逐步调整金属粉末原子之间的距离,并最终形成合金粉末。所谓机械合金指的就是在固态形式下进行的固态反应,从而科学实现了合金化,而在这种状态下形成的合金不会收到物质熔点及蒸汽压力等因素的影响,进而表现出较强的稳定性。

2.2在干燥喷雾方面的应用

所谓的烦躁喷雾指的是运用雾化器将呈现出一定浓度的原料液转变成一种具有喷射性能的雾状液滴的形式,之后再经过一系列的接触热空气程序将雾状液滴迅速转化成干燥剂,这就是粉粒状干燥喷雾的制作过程。通常情况下,制作干燥喷雾需要经过四个基本阶段,依次是料液雾化、热干燥、蒸发干燥、分离四个流程。更为重要的是,在粉末的制作过程中,还可以依据不同的需求对粉粒形状、大小进行相应的规定。

3.结语

上文系统的总结了粉末冶金材料的种类,并对其应用领域进行了分析研究。从中不难看出,相对普通材料来说粉末冶金材料无论是从性能上还是获取上,都有着无法比拟的强大优势,这也是目前这类材料应用广泛的原因之一。未来,随着经济的发展及科技的进步,粉末冶金材料将会发挥出越来越重要的作用。

【参考文献】

[1]张宪铭,张江峰.标准:粉末冶金材料的分类和牌号[J].世界有色金属,2009(05).

[2]韩凤麟,陈大侠.粉末冶金汽车零件最新进展(下篇:其他零件部分)[J].现代零部件,2010(05).

粉末冶金范文第10篇

【关键词】粉末冶金材料 热处理 密度 强度 淬透性 碳氮共渗

中图分类号:J523 文献标识码:A 文章编号:1009-914X(2013)35-079-01

一. 前言

粉末冶金材料在现代工业中的应用越来越广泛,特别是汽车工业、生活用品、机械设备等的应用中,粉末冶金材料已经占有很大的比重。它们在取代低密度、低硬度和强度的铸铁材料方面已经具有明显优势,在高硬度、高精度和强度的精密复杂零件的应用中也在逐渐推广,这要归功于粉末冶金技术的快速发展。全致密钢的热处理工艺已经取得了成功,但是粉末冶金材料的热处理,由于粉末冶金材料的物理性能差异和热处理工艺的差异,还存在着一些缺陷。各铸造冶炼企业在粉末冶金材料的技术研究中,热锻、粉末注射成型、热等静压、液相烧结、组合烧结等热处理和后续处理工艺,在粉末冶金材料的物理性能与力学性能缺陷的改善中,取得了一定效果,提高了粉末冶金材料的强度和耐磨性,将大大扩展粉末冶金的应用范围。

二. 粉末冶金材料的热处理工艺

粉末冶金材料的热处理要根据其化学成分和晶粒度确定,其中的孔隙存在是一个重要因素,粉末冶金材料在压制和烧结过程中,形成的孔隙贯穿整个零件中,孔隙的存在影响热处理的方式和效果。粉末冶金材料的热处理有淬火、化学热处理、蒸汽处理和特殊热处理几种形式:

1.淬火热处理工艺

粉末冶金材料由于孔隙的存在,在传热速度方面要低于致密材料,因此在淬火时,淬透性相对较差。另外淬火时,粉末材料的烧结密度和材料的导热性是成正比关系的;粉末冶金材料因为烧结工艺与致密材料的差异,内部组织均匀性要优于致密材料,但存在较小的微观区域的不均匀性,所以,完全奥氏体化时间比相应锻件长50%,在添加合金元素时,完全奥氏体化温度会更高、时间会更长。比如,以不同化合碳含量的烧结碳钢为例,淬火温度如表1所示,

在粉末冶金材料的热处理中,为了提高淬透性,通常加入一些合金元素如:镍、钼、锰、铬、钒等,它们的作用跟在致密材料中的作用机理相同,可明显细化晶粒,当其溶于奥氏体后会增加过冷奥氏体的稳定性,保证淬火时的奥氏体转变,使淬火后材料的表面硬度增加,淬硬深度也增加。另外,粉末冶金材料淬火后都要进行回火处理,回火处理的温度控制对粉末冶金材料的的性能影响较大,因此要根据不同材料的特性确定回火温度,降低回火脆性的影响,一般的材料可在175-250℃下空气或油中回火0.5-1.0h。

2.化学热处理工艺

化学热处理一般都包括分解、吸收、扩散三个基本过程,比如,渗碳热处理的反应如下:

2CO≒[C]+CO2 (放热反应)

CH4≒[C]+2H2 (吸热反应)

碳分解出后被金属表面吸收并逐渐向内部扩散,在材料的表面获得足够的碳浓度后再进行淬火和回火处理,会提高粉末冶金材料的表面硬度和淬硬深度。由于粉末冶金材料的孔隙存在,使得活性炭原子从表面渗入内部,完成化学热处理的过程。但是,材料密度越高,孔隙效应就越弱,化学热处理的效果就越不明显,因此,要采用碳势较高的还原性气氛保护。根据粉末冶金材料的孔隙特点,其加热和冷却速度要低于致密材料,所以加热时要延长保温时间,提高加热温度。

粉末冶金材料的化学热处理包括渗碳、渗氮、渗硫和多元共渗等几种形式,在化学热处理中,淬硬深度主要与材料的密度有关。因此,可以在热处理工艺上采取相应措施,比如:渗碳时,在材料密度大于7g/cm3时适当延长时间。通过化学热处理可提高材料的耐磨性,粉末冶金材料的不均匀奥氏体渗碳工艺,使处理后的材料渗层表面的含碳量可达2%以上,碳化物均匀分布于渗层表面,能够很好地提高硬度和耐磨性能。

3.蒸汽处理

蒸汽处理是把材料通过加热蒸汽使其表面氧化,在材料表层形成氧化膜,从而改善粉末冶金材料的性能。特别是对于粉末冶金材料的表面的防腐,其有效期比发蓝处理效果明显,处理后的材料硬度和耐磨性明显增加。

4.特殊热处理工艺

特殊热处理工艺是近些年来科技发展的产物,包括感应加热淬火、激光表面硬化等。感应加热淬火是在高频电磁感应涡流的影响下,加热温度提升快,对于表面硬度的增加有显著效果,但是容易出现软点,一般可以采取间断加热法延长奥氏体化时间;激光表面硬化工艺是以激光为热源使金属表面快速升温和冷却,使奥氏体晶粒内部的亚结构来不及回复再结晶而获得超细结构。

三. 粉末冶金材料热处理的影响因素分析

粉末冶金材料在烧结过程中生成的孔隙是其固有特点,也给热处理带来了很大影响,特别是孔隙率的变化与热处理的关系,为了改善致密性和晶粒度,加入的合金元素也对热处理有一定影响:

1.孔隙对热处理过程的影响

粉末冶金材料在热处理时,通过快速冷却抑制奥氏体扩散转变成其他组织,从而获得马氏体,而孔隙的存在对材料的散热性影响较大。通过导热率公式:

导热率=金属理论导热率×(1-2×孔隙率)/100

可以看出,淬透性随着孔隙率的增加而下降。另一方面,孔隙还影响材料的密度,对材料热处理后表面硬度和淬硬深度的效果又因密度影响而有关联,降低了材料表面硬度。而且,因为孔隙的存在,淬火时不能用盐水作为介质,以免因盐分残留造成腐蚀,所以,一般热处理是在真空或气体介质中进行的。

2.孔隙率对热处理时表面淬硬深度的影响

粉末冶金材料的热处理效果与材料的密度、渗(淬)透性、导热性和电阻性有关,孔隙率是造成这些因素的最大原因,孔隙率超过8%时,气体就会通过空隙迅速渗透,在进行渗碳硬化时,增加渗碳深度,表面硬化的效果就会降低。而且,如果渗碳气体渗入速度过快,在淬火中会产生软点,降低表面硬度,使材料脆变和变形。

3.合金含量和类型对粉末冶金热处理的影响

合金元素中常见的是铜和镍,它们的含量与类型都会对热处理效果产生影响。热处理硬化深度随铜含量、碳含量的增加而逐渐增高达到一定含量时又逐渐降低;镍合金的刚度要大于铜合金,但是镍含量的不均匀性会导致奥氏体组织不均匀;

4.高温烧结的影响

高温烧结虽然可以获得最佳的合金化效果和促进致密化,但是,烧结温度的不同,特别是温度较低时,会导致热处理的敏感性下降(固溶体中的合金减少)和机械性能下降。因此,采用高温烧结,辅助以充分的还原气氛,可以获得较好的热处理效果。

四、结语

粉末冶金材料的热处理工艺是一个复杂的过程,它与孔隙率、合金类型、合金元素含量、烧结温度有关系,同致密材料相比,内部的均匀性较差,要想获得较高的淬透性,要提高完全奥氏体化温度并延长时间,不均匀奥氏体渗碳可得到不受奥氏体饱和碳浓度限制的高碳浓度。另外,加入合金元素也可提高淬透性。蒸汽处理可显著提高其防腐性能和表面硬度。

参考文献:

[1]曹放,粉末冶金材料的热处理工艺试验,粉末冶金技术,1993,11

[2]刘传习,周作平,解子章等,粉末冶金工艺学,科学普及出版社,1987,27

上一篇:泄漏电缆范文 下一篇:冶金工程专业范文