污水除磷的处理方法范文

时间:2023-11-15 17:25:44

污水除磷的处理方法

污水除磷的处理方法篇1

关键词:生物脱氮除磷,城市污水,发展趋势

中图分类号:U664.9+2 文献标识码:A

随着化肥、农药和洗涤剂等的广泛应用,氮磷污染及水体富营养化日趋严重。据近年来环境质量公报的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。环境污染和水体富营养化问题的尖锐化迫使越来越多的国家和地区制定严格的氮磷排放标准,这也使污水脱氮除磷技术一度成为污水处理领域的热点和难点。因此,研究和开发高效、经济的生物脱氮除磷工艺成为当前城市污水处理技术研究的热点。本文致力于研究现阶段新型的脱氮除磷工艺,讨论该类工艺发展的可能性,为实际工程中脱氮除磷工艺的优化提供理论依。

1.城市污水脱氮除磷技术现状

目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法[1]。化学法与物理化学法是最早的脱氮除磷方法,但由于成本高,对环境易造成二次污染。所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。

具体的生物脱氮除磷工艺有:巴颠甫同步脱氮除磷工艺(Bardenpho)、Phoredox同步脱氮除磷工艺、A2/O法同步脱氮除磷工艺、UCT工艺、SBR工艺、氧化沟工艺、A/B法、生物转盘同步脱氮除磷工艺等。

2.污水生物脱氮除磷新技术及其应用

常规的污水生物处理技术主要去除有机物和悬浮固体,对氮和磷的去处效率较低。实际应用中经常出现脱氮效果好时除磷效果较差,而除磷效果好时脱氮效果不佳[2]。因此,常规生物脱氮除磷工艺流程存在着影响该工艺有效运行的相互影响和制约的因素,主要表现为:

①厌氧与缺氧段污泥量的分配比影响磷释放或硝态氮反硝化的效果,厌氧段污泥量比例大则磷释放效果好,但反硝化效果差;反之,则反硝化效果好,而磷释放效果差;

②原污水经厌氧段进入缺氧段,磷释放与硝态氮反硝化争夺碳源,当原水中碳源不足时,磷释放或反硝化不完全;

③硝化菌世代繁殖时间长,要求较长的污泥龄,但磷从系统中被去除主要是通过剩余污泥的排放,因此要提高除磷效率则要求短污泥龄。

这就要求我们在实验研究中结合实践努力尝试新的生物脱氮除磷工艺,有效避免以上因素的影响,已达到更好的脱氮除磷效果。下面就目前现有的新型脱氮除磷技术进行简要说明。

2.1生物膜与活性污泥结合

图1 生物膜与活性污泥结合水处理工艺流程图

常规生物脱氮除磷工艺存在相互影响和制约的因素,因此脱氮和除磷效果难以同时达到最佳。生物膜与活性污泥结合新工艺的特点是缺氧段采用生物膜法,反硝化菌均匀分布在整个缺氧池内,反硝化反应充分;好氧和厌氧段采用悬浮污泥法便于对污泥龄的控制,有利于硝化菌和除磷菌的生长繁殖。生物膜与活性污泥结合工艺将常规工艺中相互影响和制约的因素分解,使不同的菌类生长在各自最佳环境条件下,因而在本工艺中脱氮和除磷效果可以同时达到最佳,而且工艺的可控性增强,图1。

2.2 反硝化除磷工艺

反硝化除磷是一些聚磷菌在缺氧的条件下,以硝酸盐作电子受体,过度摄磷,从而实现反硝化除磷的脱氮除磷过程。

2.2.1 DEPHANOX工艺

该工艺首次采用交替的厌氧和缺氧条件并结合单独的固定生物膜,来实现生物除磷的思想,并将其运用到反硝化除磷工艺中。

它在厌氧池和缺氧池之间增加了沉淀池和固定膜反应池,污水在厌氧池中释磷,在沉淀池中进行泥水分离,含氨较多上清液进入固定膜反应池进行硝化,污泥则跨越固定膜反应池进入缺氧段,完成反硝化除磷。

该工艺具有能耗低,污泥产量低且COD消耗量低的特点。但该工艺中磷的去除效果很大程度上取决于缺氧段硝酸盐的浓度,当缺氧段硝酸盐不充足时,磷的过量摄取受到限制;反之硝酸盐又会随回流污泥进入厌氧段, 干扰磷的释放和聚磷菌体的PHB 的合成[3]。

图2 DEPHANOX工艺流程图

2.2.2 BCFS工艺

图3 BCFS工艺流程图

BCFS工艺较UCT工艺增加了2个反应池,第一个增加的反应池介于厌氧池与缺氧池中间,起到选择器的作用,可以吸附剩余的COD,同时迅速反硝化自回流污泥的硝酸氮,可防止丝状菌的生长; 第二个反应池是混合池(缺氧或好氧) ,介于UCT工艺缺氧池与好氧池之间,目的是形成低氧环境以获得同时硝化与反硝化,从而保证出水含有较低的总氮浓度[4]。

BCFS工艺还增加了2个内循环QB和QC,从好氧池设置内循环QB 到缺氧池十分必要,起辅助回流污泥向缺氧池补充硝酸氮的作用; 内循环QC的设置能在好氧池与混合池间建立循环,以增加硝化或同时硝化反硝化的机会,为获得良好的出水氮浓度创造条件。

3.结语

以上所介绍的工艺,皆是从理论角度出发,对不同处理工艺的机理进行阐述。但在实际工程中,需根据处理水质,地形、经济等限制因素选择处理工艺。脱氮除磷技术没有最好的,只有做适合的,至于对处理工艺的选择,需要在研究工作中慢慢积累经验。

生物除磷脱氮工艺的发展已不仅仅是要求较高的氮磷去除率,而且要求处理效果稳定可靠、工艺控制调节灵活、运行维护管理方便、投资运行费用节省。因此,目前,国内外生物除磷脱氮工艺正是向着这一简洁、高效、经济的方向发展,各类构筑物从工艺到结构都趋向于合建一体化[5]。现如今,污水排放标准的不断严格是目前世界各国普遍发展的趋势,以控制水体富营养化为目的的氮、磷脱除技术开发已成为世界各国主要的奋斗目标。我国对生物脱氮除磷技术的研究起步较晚,投入的资金也十分有限,研究水平仍处于发展阶段。目前我国在生物脱氮除磷技术基础理论没有重大革新之前,充分利用现有的工艺组合,开发技术成熟、经济、高效且符合国情的工艺应是今后我国脱氮除磷工艺发展的主要方向。

参考文献

[1] 刘萍莲,城市污水脱氮除磷技术与展望,山西建筑,2007年第33卷第6期:179

[2] 刘俊新、夏世斌、郑祥,经济高效的污水生物脱氮除磷新技术研究,世界科技研究与发展,2003年第2期:37-40

[3] 尹 军、吴相会,污水生物除磷技术若干研究进展,中国资源综合利用,2009年1月Vol.27 NO.1:24-27

[4] 郝晓地、汪慧贞,可持续除磷脱氮BCFS工艺,给水排水,2002年Vol.27 NO.1:7-9

污水除磷的处理方法篇2

【关键词】城市污水;脱氮;除磷;工艺

0.前言

城市污水的来源包括城市居民生活污水、城市工业废水和降水等,污水中的氮、磷污染物含量很大,如果未经处理或脱氮除磷效果不佳就会造成水体富营养化,从而使水质恶化,水体生态环境被破坏,动物大量死亡等,使水污染和水资源短缺的情况加剧,因此对于城市污水处理厂来说,脱氮除磷已经成为其工作的重点和难点问题。目前对城市污水脱氮除磷的工艺主要包括A/O法、A2/O法、序批式工艺以及氧化沟工艺等,本文对这几种工艺的原理和特点进行简要介绍。

1.A/O法

A/O(Anoxic/Oxic)工艺是通过将生物厌氧与生物好氧处理串联起来的工艺,是利用缺氧段的厌氧水解作为好氧段活性污泥的前处理,因此也被认为是对活性污泥法的改进。A/O法主要用于有机物的降解,对于脱氮除磷也具有一定的效果。脱氮原理为:在缺氧段废水中的蛋白质、脂肪中含有的氮被异养菌氨化,从而游离出氨(以NH3或NH4+的形式存在),在好氧段在自养菌的硝化作用下氨氮被氧化成NO3-,然后回流到缺氧段,异养菌的反硝化作用将NO3-还原成N2;除磷原理是:聚磷菌吸收废水中的小分子有机物,合成细胞内贮物(PHB),在好氧段摄取磷,从而达到去除的目的。A/O法工艺的脱氮除磷效率相对较低,一般情况下脱氮效率只有70-80%,而除磷效率在20-30%,而且其脱氮除磷效果还受到进水水质的影响,因此稳定性不高,在实际工作中此法更多的是用作废水中有机物的去除,而很少作为脱氮除磷的主要工艺。

2.A2/O法

A2/O法是在传统活性污泥法的基础上,增加一个缺氧段和一个厌氧段的废水处理工艺,是目前用于污水脱氮除磷的流程最为简单、应用最普遍的工艺,根据工艺池的排列顺序不同可分为传统A2/O法和倒置A2/O法。

2.1传统A2/O法

传统的A2/O法也称为厌氧-缺氧-好氧法,运行过程中,污水首先进入厌氧段与回流的污泥混合,污水中的易生物降解的大分子有机物在厌氧发酵菌的作用下转化为小分子有机物,便于聚磷菌吸收后合成细胞内贮物,然后污水在缺氧段反硝化菌的作用下将NO3-进行反硝化,达到脱氮的目的,污水进入好氧段,未被除去的氮在自养菌的消耗作用下被氧化,通过回流到缺氧段反硝化脱氮,同时在好氧段聚磷菌内贮物PHB分解产生能量,供摄取磷的需要,聚磷菌与摄取的磷形成聚磷链的形式经过沉淀后与剩余污泥混合在一起,随污泥排出系统外,达到除磷的目的。传统A2/O法很好地利用了三个反应池的环境特点,提高了聚磷菌摄取磷的能力,并且由于好氧段中有机物浓度较低,利于自氧硝化菌的生长,因此脱氮除磷效率较高。

2.2倒置A2/O法

倒置A2/O法就是将传统A2/O法的厌氧段与缺氧段调换,组成缺氧-厌氧-好氧工艺,实践证明可以达到更好的脱氮除磷效果。这主要是由于缺氧段置于厌氧段之前更有利于反硝化菌的作用和吸磷能力的增强。对于脱氮来说,缺氧段在厌氧段之前可使反硝化菌获得更多的碳源,而对于除磷来说,聚磷菌在缺氧段可吸收大量的小分子有机物,在厌氧段释磷后进入好氧段,使吸磷更加充分,整个工艺过程中的释磷、吸磷过程都有回流污泥的参与,因此使反应更加充分,使得脱氮除磷效率更高,尤其对于总磷的去除效果颇佳。

虽然A2/O法应用普遍,但不论是传统A2/O法还是倒置A2/O法,其脱氮除磷效果都受到厌氧段氮氧化物浓度的影响,在传统A2/O法中,回流污泥中会携带部分氮氧化物,因此如果回流污泥量过多,氮氧化物在厌氧池内的浓度过高,就会对聚磷菌释放磷起到抑制作用,从而影响除磷效果,而如果污泥回流量过少,又会导致厌氧池内聚磷菌过少,导致在好氧段吸磷量的减少,同样影响除磷效果,因此需要通过对污泥回流量的精确控制才能达到预期效果。

3.序批式工艺

3.1传统序批式活性污泥法

传统序批式活性污泥法又称为SBR法,是一种间歇性活性污泥法,由一个或若干个曝气反应构筑物组成,城市污水分批进入反应池,进水经过反应、沉淀后上清液排出即完成一个运行周期,然后再进行下一个周期的处理,整个过程均在一个反应池内进行,因此处理工艺流程简单,构筑物少,只要控制好工艺条件就可以达到很好的脱氮除磷效果。SBR法的脱氮除磷效果与曝气时率息息相关,一般认为曝气时率越大,则脱氮除磷效果越差。SBR法由于分批进水的特点,降低了水质、水量对系统的冲击,所需活性污泥量较少,自动化程度较高,因此理论上是一种较为先进的脱氮除磷工艺,但系统的运行对自动控制和在线监测仪器仪表要求较高,给实际工作带来一定难度。

3.2 CASS工艺

CASS(Cyclic Activated Sludge System)工艺是周期循环活性污泥法的简称,是一种连续进水式的SBR系统,其在SBR工艺的基础上通过隔墙将反应池划分为不同的区域以分别实现不同的功能,在各个被分割的区域中根据其功能特点溶解氧、污泥浓度和有机物含量均不同,且可以实现连续进水和出水,CASS工艺具有传统SBR法的自动化程度高、工艺简单等优点,且相对SBR法而言优势在于处理效率更高,且通过单独设置厌氧区的方式使系统脱氮除磷效果得到进一步提升。

3.3 MSBR工艺

MSBR(Modified Sequencing Batch Reactor)是改良式序列间歇反应器,是传统SBR工艺结合了传统活性污泥法优点的基础上,经过不断的改良发展起来的新型污水处理器。MSBR工艺流程简单,不需初沉池和二沉池等大型构筑物,且不需间断进水,在对城市污水生物脱氮除磷过程中,进水先经过厌氧段,使厌氧反应充分进行,并且独立设置的厌氧段有助于系统承受进水的冲击负荷,整个污水脱氮除磷效果极佳,出水水质稳定,且处理效率高,因此被认为是一种极具前途的城市污水生物脱氮除磷工艺。

4.结束语

综上所述,随着城镇化的大势所趋以及国民工业的飞速发展,我国城市污水的水量也不断增加,对于污水处理厂来说工作负荷进一步加大,因此需要合理选择生物脱氮除磷工艺。当前用于城市污水生物脱氮除磷的工艺有A/O法、A2/O法、序批式工艺等,除此之外,氧化沟工艺也得到了一定程度的应用,在选择生物脱氮除磷工艺时,不但要考虑脱氮除磷效果和工作效率,而且还要考虑技术和经济可行性问题,发展处理效率高、技术可行、经济合理的脱氮除磷方法是未来城市污水处理工艺的发展方向。 [科]

【参考文献】

[1]肖文涛.污水生物脱氮除磷工艺的现状与发展[J].环境保护与循环经济,2010,(11):59-62.

污水除磷的处理方法篇3

【关键词】:磷化废水;磷酸盐;化学沉淀

[ Abstract ] : the processing of iron and steel parts surface is the most commonly used is the process of phosphating treatment, and the waste water amount is relatively high. This paper introduces a Qingdao Phosphating Wastewater Treatment Project, the project uses RP reactor ( reaction and precipitation in one equipment ) + treatment of a sand filter process. The RP reactor COD removal and removal of heavy metals and phosphate removal and running effect of the overall analysis, when the RP reactor retention time was 15min, the residence time of precipitation was 1H, the removal rate of COD can reach more than 80%, heavy metal removal rate can reach above 90%, the effluent COD is less than 500mg\/L, the effluent to meet the " pollutant comprehensive discharge standard " ( GB ) in the three standards. The processing technology has made better economic and environmental benefits, and can be populari

[ keyword ]: Phosphating Wastewater; phosphate; chemical precipitation

中图分类号:X703文献标识码:A

磷化处理主要指的是在含有磷酸、磷酸二氢盐、其他化学助剂的酸性溶液中,使其金属表面转变为不溶性的、稳定的磷酸盐膜层的一种工艺[1]。它是金属抗蚀性能提高的有效方法。由于在进行磷化处理时,需要水洗、烘干,会产生大量的废水,而含量严重超标的是磷酸盐、COD及Zn2+等,如果将其直接排放,水体环境会受到严重污染,所以研究去除磷化废水中的酸盐、COD等污染物有重要的现实意义。

一 磷化废水中的成分

磷化处理在机械制造业中,通常的工艺流程的顺序是:除油、水洗、除锈、中和、调整表面、磷化、水洗、封闭表面、水洗、干燥[2]。产和珠磷化废水中,含量比较高的有磷酸盐、Zn2+、COD等,有较强的酸性。

产生污染物的原因是:①在进行磷化时,所使用的磷化液中有磷酸根、有机物、Zn2+等;②在加工零件时,所使用的抛光剂、防锈油,增加了石油类的含量;③在进行水洗时,所使用的清洗剂中含有表面活性剂,增加了有机物的含量;④磷化后的废水常混合于酸洗废水,使得磷化废水的pH值为2~4,为酸性。

二 处理磷化废水的方法

处理磷化废水的方法有很多,如化学方法、物理化学方法、生物方法等。物理化学法主要包括混凝沉淀、吸附法、反渗透等。生物法包括有活性污泥法等,其主要是通过微生物的生理活动,进行除磷的处理。但所有的方法在除磷时,均是把废水中的磷离子变为固体成份进行实现[3]。其固体成份主要有活性污泥中的微生物质、不易溶的金属盐沉淀等。这些固体与水体最终的分离还要经过沉淀、过滤、排泥等分离手段,这样才能从污水中将磷除去[4]。

三 磷化废水处理工程实例

1 分析原水水质与水量

本污水处理站设计的流量为38m3/mon。主要的废水有磷化清洗废水、脱脂清洗废水等,其污染的主要因子包括SS、CODcr、石油类、硫化物、磷酸盐、锌等。其进水水质见表1。

表1 进水水质

3 工艺流程

1 污水处理的工艺流程

本污水处理工程采用的是“混凝沉淀+砂滤器+活性炭过滤器”的物化处理工艺。其污水处理工艺的流程图见下图1。

图1 污水处理工艺流程方框图

2 处理工艺流程简介

(1)水量调节

由于生产污水量较小,每月仅为38吨,每天处理约1.3吨。所以,在车间内排水渠边设一集水坑,设提升泵将坑内收集的污水随时提升至调节罐内,定期分批处理。

(2)化学处理

调节罐内污水由水泵提升至混凝反应沉淀器内,向混凝反应沉淀器内投加石灰乳调节PH至9~10,形成反应的最优条件;然后依次投加PFS和PAM,使生产污水中污染物与药剂发生絮凝反应,形成比重较大的絮状体沉降至沉淀器的底部。污水中的磷、COD和重金属以污泥的形式从水中分离出去,污水得以净化。

(3)沉淀

沉淀出水中还存在一些SS和残余磷,结合颗粒滤料过滤,SS和磷可达到很高的去除率,残余磷可在0.1~0.2mg/L。因此混凝反应沉淀器出水设置快滤池进一步去除水中的SS和残余磷,从而保证出水磷的含量在0.5mg/l以下。

(4)砂滤+活性碳过滤器

砂滤器和活性炭过滤器采用清水箱中的处理水进行反冲洗,反冲洗产生的污水回流到调节罐进行再处理。

活性炭过滤器作为本方案的保安措施。当来水水质过差,混凝过滤系统不能处理达标时,处理水进入活性碳过滤器,进一步去除水中残余的COD和磷等污染物,确保污水经处理后达标排放。

混凝反应沉淀器排放的污泥采用污泥干化场脱水,减少污泥体积,降低污泥外运的成本。干污泥交由专业公司定期外运处置。

四 主要的设计技术参数

1 格栅

倾角取60度,栅间隙3mm,采用Φ8的不锈钢圆钢制作。尺寸30cm×100cm,框架采用L30不锈钢角钢δ=3mm。栅隙总宽65mm。

2 絮凝反应沉淀器

采用碳钢内衬玻璃钢普通级防腐,形式:上部为圆筒形尺寸Φ1.0×1.5,钢板壁厚4mm,外设加强筋。下部为倒圆锥形倾角65度,尺寸Φ1.0×0.75,斜高约826.83mm,钢板壁厚4mm,外设加强筋。设备总高=1.5+0.75+1.25=3.50米。设钢制爬梯便于检修。超高0.5m,反应区容积0.785m3。泥斗容积0.27m3。并设进料口,排泥口,排泥冲洗管。

设置板框式搅拌机,设置就地控制。搅拌机转速85R/MIN。电机功率暂定2.2KW。搅拌以满足石灰乳和聚铁反应需要为主。

3 调节罐

调节罐采用PE材质每个容积3立方,共设置两个总容积6立方。罐体颜色采用白色或黄色。设置浮球开关高位时开泵,低位时停泵。在强腐蚀环境下使用寿命不小于5年。两个罐均设置放空管。

两罐串联连接,可通过连接管改为并联,方便检修。泵设回流管,以方便均化水质。

罐体要求:顶部进水,如为封闭水箱预留进水孔DN50 1个,设置水箱接头。罐底设放空管DN25 1个,设置水箱接头;人应可以进入箱体,当为封闭罐体应在罐体设检修人孔DN6001个,带盲板;

3 砂滤器

采用碳钢制作,抗压不小于0.6MPa。内壁环氧煤沥青防腐1层铁红2层煤沥青。D80=1.0mm。过滤面积0.1256平方;过滤流速小于8~15M/H,反洗强度12~15L/(m2×s)=5.43~6.78 m3/ h,按冲洗15分钟考虑,需用水量1.35~1.7 m3。填砂高度1.0米,填砂量0.1256立方。反冲周期不大于30天。

罐体尺寸:Φ400×1.6

4 活性碳过滤器

采用碳钢制作,抗压不小于0.6MPa。内壁环氧煤沥青防腐1层铁红2层煤沥青。过滤面积0.196平方;过滤流速8~15M/H,反洗强度8~12L/(m2×s)=5.6~8.5 m3/ h.,按冲洗15分钟考虑,需用水量1.4~2.13 m3。填料高度1.0米,填料量0.2352立方。反冲周期不大于30天。

罐体尺寸:Φ500×1.8

5

5 运行的效果

当RP反应器的反应停留时间为15min,沉淀的停留时间为1h时,COD去除率可达80%以上,重金属的去除率可达90%以上,出水COD小于500mg/L,出水能够满足《污染物综合排放标准》(GB)中的三级标准。

结语

通过这种处理方法,不但污水处理的效果达到了国家的三级排放标准,且运行的成本也不高,可积极推广。

参考文献:

[1]张磊,孙力平,王少坡,刘艳辉.化学混凝法处理酸洗磷化综合废水的研究[J]. 工业用水与废水. 2010(02):175-177.

[2]谭婧,丁丽丽,赵明宇,任洪强.锌对磷酸铵镁和磷酸钙结晶回收磷的影响[J]. 环境科学与技术. 2010(03):63-65.

[3]曾德芳,徐保林.沉淀-絮凝结合法处理磷化废水的研究[J]. 环境工程学报. 2009(05):77-79.

污水除磷的处理方法篇4

关键词:污水处理厂 处理厂设计 技术要点

建设咸阳路污水处理厂是海河流域天津污水治理项目的重点工程.对于改善天津市西部地区和大沽口渤海海域的环境质量,对于开发利用污水资源,促进工、农、渔业的健康发展,具有重要作用,将会产生显著的社会效益和经济效益。

工程的内容包括厂内和厂外两部分。厂内工程的主体是规模为45万T/d的二级污水处理厂,配套一座720m3/d的污泥填埋厂;厂外工程包括雨污水管道21km和两座2.0T/S的污水泵站。工程估算12亿人民币,部分建设资金利用日本政府贷款。

进水水质指标,根据多年监测资料综合分析定为:

CODCr:400mg/l

BOD5:220mg/l

SS:220mg/l

NH3-N:40mg/l

TP:3.5mg/l

出水水质标准,根据出水满足农灌水质指标和排入渤海口达到三类海域的要求,执行国标〈污水综合排放标准〉中二级水质的规定。即:

CODCr:120mg/l

BOD5:30mg/l

SS:30mg/l

NH3-N:25mg/l

磷酸盐(以P计):1mg/l

1 污水处理工艺方案的选择

目前城市污水生化处理技术发展很快,工艺类型较多。除广泛采用的传统活性污泥法外,近年来国内外应用较多的有氧化沟法、A/A/O法、A/O法、A-B法、SBR法等。为了使咸阳路污水处理厂能够选择到最合适的处理工艺,按照因地制宜的原则,先排除不适用的处理工艺后,再对可以采取的处理工艺方案进行对比和优选。。

咸阳路污水处理厂具有处理规模大,地处天津市西郊区冬季气温低,且收水范围是已建成区,水量和水质比较稳定,冲击负荷不大的特点,按照各种处理工艺的适用条件,可以将SBR法、氧化沟法和A-B法排除,从而拟定出三个处理工艺方案。

第一方案:采用“以传统活性污泥法为基础的生物硝化方法,降解有机物和NH3-N,同时采用以化学法除磷”的综合处理工艺方案,简称“传统法”或“生物硝化法”。

生物硝化的工艺流程与传统活性污泥工艺流程一样,只是以去除BOD5为主的传统活性污泥工艺是中等负荷,而生物硝化工艺系低负荷或超低负荷。在曝气池内,BOD5被分解转化,有机氮同时被氨化成NH3-N,再与进水原有的NH3-N一起被硝化成NO3-N。

同步的化学沉淀法除磷,是在含磷污水中投加溶解度大、渣物少、易于控制的硫酸铁作为混凝剂,使正磷酸盐被置换成难溶的磷酸铁盐,沉淀后随剩余污泥排出,反应方程如下:

Fe(SO4)3+2PO3-42FePO4+3SO42-

化学法除磷运转控制灵活,可根据污水中磷的超标程度随时调整铁盐投加量,从而既保证出水中磷的含量达标也能节约污水厂运行成本。工程中一般按去除lg磷投加12g硫酸铁控制。

第二方案:生物除磷脱氮工艺(A2/O工艺)

以厌氧/缺氧/好氧即A/A/O系统为特征的生物除磷脱氮工艺。其中除磷是通过磷的厌氧释放和好氧吸附两个过程完成的,脱氮是通过好氧硝化和缺氧反硝化两个过程完成的,有机物的降解是在好氧曝气阶段完成的。

A/A/O工艺具有处理效率高,污泥沉降性能好,可以不设沉淀池和污泥消化池等优点。

第三方案;"A/O生物法除磷、生物硝化法脱氨、化学法降解滤液与上清液余磷"的处理工艺,简称A/O法。

表1 三个方案主要设计参数对照表 参数 方案 第一方案 第二方案 第三方案 污泥负荷(kgBOD/kgMLSS.d) 0.14 0.105 0.18 泥龄(d) 12 28 10 回流比 75% 100%(内回流比300%) 75% 水力停留时间(h) 6.6 14 7.5 MLSS(mg/L ) 3.0 4.0 3.0

以上三种工艺方案均能满足处理达标的要求,都是可靠的。剖析三种方案的机理,有机物的降解都是在好氧曝气阶段完成。污染因子氮的降解,在第一和第三方案中是通过生物硝化反应,利用它能自养微生物将污水中氨氮氧化成硝酸盐的过程。在天津东郊污水处理厂已经多次试验证明,在曝气池中只要污泥负荷降到0.2kg BOD/kg MLSS.D以下,曝气时间延长到4.5h以上,有机氮和氨氮氧成化NO3-N的效率可以达到50%~60%以上;第二方案则是在硝化作用的基础上增加了反硝化的生化过程,利用缺氧池将硝态氮还原成氮气溢出,使得生物脱氮反应进行得更加彻底;另一个污染因子磷的去除,在第一方案是采用化学法,利用投加硫酸铁等混凝剂,将污水中正磷酸盐置换成难溶解的磷酸铁,随即在二沉池通过剩余污泥排除;而第二和第三方案则是以生物法为主,设置厌氧池,先使混合液中的聚磷菌处于压抑状态,释放细胞内的聚磷而蓄存能量,再在后续的好氧池中通过聚磷菌贮存的能量大量吸收污水中的磷,并在细胞内将磷转化为聚磷酸盐,最后以剩余污泥的形式从污水中排出,从而完成除磷过程。在污泥处理过程中产生的含磷滤液与上清液则通过化学法进行再处理。

脱氮工艺的选择是只依靠硝化作用还是后加反硝化作用来完成,除磷工艺的选择是依靠化学法还是生物法来完成,两者各有利弊。根据天津市已建污水处理厂的运行经验,必须把降低运行管理费用作为污水处理方案选择的主要因素,因此推荐第三方案。采用生物硝化脱氮,既可以不设缺氧池,减少占地和工程造价,又能节省提升回流液的设备和能耗,出水也能达标;采用以生物法为主除磷,可以节省能源,节省投药量,减少运行费用。在投产以后,还应该根据不同情况及时调整运行工况,如出水用于农灌时,对氮磷的指标可以放宽,有进一步降低运行成本的余地。第三方案污水处理流程如下图。

2 污泥处理和处置工艺方案的选择

污水处理过程中产生的大量活性污泥必须通过适当的工艺措施,降低其有机物含量及含水率,减少污泥体积,同时杀灭大部分致病菌和寄生虫卵,达到化学性质稳定和卫生防疫无害化,避免形成二次污染,保证污水处理厂的正常运行。污泥处理方案流程如下图。

污水处理厂建成投入正常运行后,每天要产生相当数量的剩余污泥,从目前东郊和纪庄子污水处理厂的情况看,传统的用作农肥的处置方法,已无可靠出路,所以污泥的最终处置也成为国内多数污水处理厂的重大难题。处置是否妥当直接关系污水处理厂能否生存的问题。矛盾相当突出。综合国内外情况,采用污泥填埋手段处置市政污泥,在国外已得到较为广泛的应用,但在我国还没有起步。设计中经过对污泥处置的各种方案,包括堆肥、焚烧、填埋进行反复比较后,决定了采取卫生填埋的方案,填补国内空白。为此随咸阳路污水处理厂工程同时建设市政污泥填埋厂一座,日处理规模720T,计划连同扩建后的纪庄子污水处理厂及拟建的北仓污水处理厂的污泥一并在此进行填埋处置。

转贴于 3 工艺处理设计的技术措施

为了使咸阳路污水处理厂建成后能具有二十世纪现代化的水平达到国内一流,国际先进的标准。除了精心设计,精心施工,精心管理外,还要在设计中采取一系列先进技术措施。

1、进水泵房及回流污泥泵房,采用变速拖动技术,既能适应进厂污水量和回流污泥量不时变化的特定条件,保持前池水位的稳定,同时水泵维持在最高效率区工作,实现最大限度的节能运行。

2、沉砂池在总结天津东郊和纪庄子两座污水处理厂现有沉砂池使用经验的基础上,咸阳路采用了具有简单、可靠、管理方便的旋流沉砂池。通过自动沉砂、吹砂、洗砂、提砂、输砂以达到既能高效率除砂,同时也能够彻底分离砂粒上的有机物送至后续处理的效果。但是如此大型处理厂采用旋流沉砂的方法,国内没有先例。经过精心设计,将六旋流沉砂池精巧紧凑地布置成梅花形:配水井置于中央,保证进出水顺畅、配水均匀。

3、为了保证厌氧/好氧工艺的除磷效果,吸收国外先进经验采取了活性污泥分段回流的崭新工艺。即:约25~30%回流污泥可回流到厌氧池,以保持池内理想的厌氧工况,提高除磷效果,其余回流污泥回流到曝气池,同时提高生物硝化处理效果。目前这种工艺在国内还只处在起步阶段。

4、由于市政污水的水量和水质具有不稳定的特点,设计的处理工艺流程也具有相应的可调整性,以便同来水的变化相适应。当来水有机物指标偏低时,为保证除磷脱氮效果可以超越初沉池;当初期雨水量偏大时,部分来水可以超越二级处理设施;当受纳污水河道在枯水季节时,可以超越二级泵房自流排出厂外。

5、由于天津市是严重缺水的城市,污水回用势在必行。厂内经二级处理的出水,除大量用于农业灌溉外,还设置规模2万T/d的深度处理设施,计划采用先进的流动性砂过滤器,达到市政杂用水以上的标准,为市政和工业用水提供水源。

6、随着咸阳路污水处理厂工程的建设,将建成国内第一座市政污泥填埋场。污泥填埋的操作需要在实践中逐步规范化。目前已经注意到污泥填埋技术的关键是保证污泥有足够的含固率。根据国外资料介绍污泥含固率必须在30%以上、有机成份应该尽量降低、污泥抗剪强度应≥25KN/m2才适合于填埋。所以填埋的污泥需要经过良好的污泥消化,使用高干度的机械脱水,必要时还得添加石灰进行卫生处理。为了保证污泥填埋场能够正常工作,先期将进行试验研究。

7、为了探讨采用填埋以外的其他办法处置污泥,也为了延长污泥填埋场的使用年限,并且给污泥资源化奠定基础,将对100T/d的污泥采用干燥方法处置,将经过消化、机械脱水后的污泥在多重盘式干燥炉中干化后,使含固率达90%以上,可以用作装袋的高级农肥,也可以作为建筑材料的辅料利用。

8、充分利用消化池产生的沼气能源,配置闭路的沼气搅拌、沼气锅炉、污泥热交换器和沼气驱动鼓风机。使沼气能源的综合利用率达80%以上。根据沼气发电时能源利用回收率低、发电并网困难的经验,暂不采取沼气发电的方法。

9、各主要的处理单元作到准确、可靠的闭路自控。包括沉砂池与砂水分离机自动按程序操作;鼓风机根据各曝气池内工况变化、自动调节供风量,保证曝气池稳定的溶解氧值。以及消化池的污泥搅拌、加热系统的全自动控制。

10、中央控制室采用模拟屏和投影仪相配合的显视设备,达到静态与动态的有机结合;自动控制系统采用总线型拓朴结构,提高布线和扩展的灵活性。

11、污水处理设备的选型是污水处理厂能否实现科学经济运行的关键问题,也是污水处理厂技术水平是否先进的重要标誌。设备选型将遵循"先国内,后国外"的要求。将进口设备压缩到最低限度。但是处理厂的关键设备,国内制造技术尚不过关的设备必须进口。进口设备选择的原则是用超前的标准,精心挑选具有技术含量高、有创造性、有特点、并且在使用中证明效果可靠的,属于世界一流水平的设备,再通过竞标决定。一定要把住技术关,为污水处理厂建成投产后保持国内前沿水平奠定基础。初步拟定进口设备包括:泵、鼓风机、细格栅、旋流沉砂机、曝气器、污水回用、污泥消化、沼气利用、污泥干化及仪表自控等方面的设备。个别设备也将采取引进国外先进技和主机,在国完成配套的方法,如刮泥机等。

污水除磷的处理方法篇5

[关键词]污水处理厂 工艺流程 处理技术

[中图分类号] TU992.3 [文献码] B [文章编号] 1000-405X(2013)-9-198-1

1案例工程

A污水处理厂不同的污水处理项目,污水浓度和去除率情况为:CODcr进250mg/L、出水100mg/L、去除率60.0%;BODs进水150mg/L、出水30mg/L、去除率80.0%;SS进水150mg/L、出水70mg/L、去除率53.4%;T-N进水30mg/L、出水10mg/L、去除率66.7%;T-P进水4mg/L、出水0.5mg/L、去除率87.5%。以上的处理项目,规模达到了43万m3/d,为进一步提高处理工艺的合理性,并节省基建费用和便于管理,我们有必要对其污水处理工艺流程进行分析和选择,形成污水处理的优化方案。其中污水处理工艺的基本要求为:

(1)实用性。基于污水处理厂的建设,工程需要尽量减少占地,以及降低工程费用,譬如电耗,可通过设置合理的经济指标,分析工程方案的可行性,从而确定合理的处理标准。

(2)先进性。要求污水处理能够全面提高氮和磷等营养物质的去除效率,并有效保护水资源和再生利用污水,使得处理水质指标符合国家标准规定。

(3)易于管理。由于污水处理工艺流程的复杂性,因此工程所选用的设备应该便于操作和维护,譬如自动化技术,并注重水质变化的适应性和处理出水的稳定性。

(4)二次污染少。由于在处理污水的时候,会产生大量的淤泥,并产生泡沫和臭味,为避免新的污染源形成,处理工艺要尽量控制污泥产生量,避免造成二次污染。

2污水处理工艺的分析

A污水处理厂综合《室外排水设计规范》的基本要求,二级处理CODcr、BODs、SS、T-N、T-P项目,去除率均能符合要求。污水处理厂已经建设了暖气池,重点分析污水脱氮的方法和污水处磷的方法:

2.1污水脱氮的方法

污水脱氮非为生物脱氮和非生物脱氮两种,前者将污水置于好氧的环境当中,借助硝化菌氧化污水的氨氮,将所形成的NaNO2和HNO3置于缺氧的环境中,在反硝化菌的作用之下,HNO3就会还原成为分子氮并逸入空气,实现污水的脱氮。后者进行离子交换、吹脱、加氮,需要结合曝气池法,才能够降低工程的成本。污水处理厂决定采用生物脱氮的方法,并开发了A/O法脱氮系统,该系统在曝气池的前端设置厌氧区和缺氧区,并利用进水中的BOD作为碳源,有效氧化分解污水的有机物。A/O法脱氮系统的脱氮率与回流比R有关,具体如公式:脱氮率=R/(R+1),可见只要回流比R适当,就能够满足脱氮的需求。

2.2污水除磷的方法

案例工程待处理污水的含磷量为4mg/L,适合采用生物除磷的方法。这种方法采用A/O系统,将混合液置于系统前端的厌氧区,迫使聚磷菌受到抑制,从而释放出来菌体内部的HNO3,借助释放产生的能量,降解和溶解污水中的CH3OH、CH3COOH和其他葡萄糖类的有机物,并经过细胞合成和磷吸收,使得污水中有机物量迅速降解和溶解,形成高含磷的污泥,通过污泥的排除而去除磷。工程监测资料显示,出水进入接触池后,需要加投氮降低污水中磷的浓度。因此污水出磷除了以生物除磷为主,还需要以化学法辅助补充,以提高工程的经济性和可靠性。除此之外,由于污水浓缩池存在厌氧状态,为避免含有大量磷直接排入污水处理系统,需要将FeO3投到除磷池,避免污泥浓缩脱水。

3污水处理工艺的选择

案例工程的处理工艺分析结果显示,工程需要构建A/O法曝气池或者氧化沟。其中构建A/O法曝气池的目的是降解COD、BOD,以及除磷和脱氮。工程污水的浓度不高,为了保持曝气池里面活性污泥量,并提高除磷的效果,不适合设置初沉池,以免减少了曝气池的总容积和缩短水力停留时间。而氧气沟属于延时限气池,保持氧气沟的厌氧状态,逐步降解污水里面的有机污染物,同时借助氧气沟的水流推动曝气充氧设备,以保持MLSS氧气沟内的悬浮流动状态和不间断回流状态,只要将回流比R值保持在20以上,就能够提供除磷和脱氮的有利条件。污水处理工程的氧气沟常见的有T型和O型两种,前者是三沟交替模式的氧气沟,在每条沟内都安装单速和双速转刷的曝气器,以及安装治氧探头,能够满足工程所有除磷、脱氮、有机物污染降解、无机物去除等要求。而后者在每条沟的安装了溶解氧自动测定仪和自动控制设备,可以实现污水处理的自动控制和监测,但对设备的要求比较高。因此可判断T型氧气沟与案例工程较为匹配。笔者认为,在选择污水处理工艺的时候,应该根据原来水质的情况、出水要求和处置方法,以及综合温度、地质、电价等方面的因素,分析处理方法的优缺点,具体的判断标准为:技术合理,能够适应不同的水质,而且具有稳定的出水达标率,同时容易处理污泥;经济节约,在耗电、造价、占地等方面费用少,而且方便操作设备;因地制宜,与当地环境容量相匹配,能够与城市规划良好衔接。根据这些判断标准,我们可以判断A/O法、氧气沟法均适合案例工程的污水处理,但具体选择,需要根据实际情况而定。

4结束语

综上所述,污水处理工艺流程基本要求为实用性、先进性、易于管理、二次污染少,需要结合《室外排水设计规范》的基本要求,进行污水处理工艺的选择,本文选择的污水处理工艺为污水脱氮的方法和污水除磷的方法,显示A/O法脱氮系统的脱氮率与回流比R有关,只要回流比R适当,就能够满足脱氮的需求,并注重水质变化的适应性和处理出水的稳定性,为避免新的污染源形成,处理工艺还要尽量控制污泥产生量,避免造成二次污染。

参考文献

[1]连长福.筒述污水处理工艺的优选与比较[J].科技创新与应用,2013,(25):153.

[2]徐冉,迟成龙,陈书怡.污水处理工艺的技术经济综合评价方法[J].同济大学学报:自然科学版,2013,(6):869-874.

[3]葛艳,周骥平,高龙琴等.高效污水处理工艺智能化控制系统的设计[J].机械制造与自动化,2013,(3):195-198.

污水除磷的处理方法篇6

[关键词]磷污染 氧化物 固体废弃物 离子交换

一、引言

伴随着我国化工行业的高速 发展 ,近二十年来,我国磷化工得到了迅速的发展,并取得了令人鼓舞的成绩。但是,伴随着磷化工的发展而产生的环境污染状况也日趋严重。因此,防治磷化工污染,保护生态环境,合理利用不可再生的有限资源,是我国磷化工健康发展所面临的一项迫切任务和重要课题,认识磷污染的危害和研究除磷的方法具有重大的现实意义。

二、磷化工污染的危害

我国现有磷化工生产 企业 300家左右,从业人数十余万人,已形成固定资产约60亿元,约占全国化工固定资产总额的20%左右。主要产品有磷矿石、硫酸、普通过磷酸钙、钙镁磷肥、重过磷酸钙、黄磷、赤磷、磷酸(包括 工业 级和食品级)、三聚磷酸钠、磷酸氢钙(包括饲料级和牙膏级)、三氯化磷、五硫化二磷、磷酸三钠、磷化锌、磷化铝、含磷农药、有机磷水质稳定剂、金属磷化剂等。我国磷化工行业给社会提供了大量的物资财富,同时也伴随着产生了大量的污染物,主要是废气和粉尘、废水、固体废物(简称“三废”)。WWw.133229.cOm这些污染物中含有许多有毒有害的物质进入了大气,江河湖海和陆地成为我国环境污染最主要的来源之一。

1.废气和粉尘。磷化工在生产过程中产生的废气主要有一氧化碳、二氧化硫、二氧化碳、氟化氢、四氟化硅、磷化氢、硫化氢等,还会产生一些粉尘。

一氧化碳(co)是一种无色无味具有可燃性的有毒气体。黄磷尾气是产生co的主要来源。因此,防止co2气体造成的全球变暖危害到了刻不容缓的严峻时刻。

二氧化硫(so2)是一种无色而略有臭味的窒息性气体,也是污染大气的主要物质之一。

2.废水。磷化工在加工生产中都要产生大量的含有磷、氟、硫、氯、砷、碱、铀等有毒有害物质的废水。黄磷生产中要产生黄磷污水,其黄磷污水中含有50~390 mg/l浓度的黄磷,黄磷是一种剧毒物质,进入人体对肝脏等器官危害极大。长期饮用含磷的水可使人的骨质疏松,发生下颌骨坏死等病变。黄磷污水中还含有68~270 mg/l的氟化物,经过处理后可降至15~40 mg/l,但仍高于国家规定的10 mg/l的排放标准。

3.固体废弃物。磷化工生产中产生的固体废物主要有矿山尾矿、废石;黄磷生产排出的磷渣、碎矿、粉矿、磷泥、磷铁;湿法磷酸生产中产生的磷石膏;硫酸生产中排出的硫铁矿渣、钙镁磷肥高炉灰渣等。这些固体废物在厂区内长期堆积,不仅占用大量土地,而且对周围环境造成了较严重的污染。因此这些固体废物的处理和利用是当前磷化工行业必须解决的实际问题。

三、国内外常用除磷方法

1.化学沉淀法。该方法是通过投加化学沉淀剂与废水中的磷酸盐生成难溶沉淀物,可把磷分离出去,同时形成的絮凝体对磷也有吸附去除作用。常用的混凝沉淀剂有石灰、明矾、氯化铁、石灰与氯化铁的混合物等。为了降低废水的处理成本,提高处理效果,学者们在研制开发新型廉价高效化学沉淀剂方面做了大量工作。研究发现,原水含磷 10mg/l时,投加 300mg/l的a12(s04)3或 90mg/l的fecl3,可除磷70%左右,而在初沉时加入过量石灰,一般总磷可去除80%左右。他根据化学凝聚能增加可沉淀物质的沉降速度,投加新型净水剂碱式氯化铝,沉降效果达80%~85%,很好地解决了生产用水的磷污染。该方法具有简便易行,处理效果好的优点。但是长期的运行结果表明,化学沉淀剂的投加会引起废水ph值上升,在池子及水管中形成坚硬的垢片,还会产生一定量的污泥。

2.生物法。20世纪70年代美国的spector发现,微生物在好氧状态下能摄取磷,而在有机物存在的厌氧状态下放出磷。含磷废水的生物处理方法便是在此基础上逐步形成和完善起来的。目前,国外常用的生物脱磷技术主要有3种:第一,向曝气贮水池中添加混凝剂脱磷;第二,利用土壤处理,正磷酸根离子会与土壤中的fe和al的氧化物反应或与粘土中的oh-或sio32-进行置换,生成难溶性磷酸化合物;第三种方法是活性污泥法,这是目前国内外应用最为广泛的一类生物脱磷技术。生物除磷法具有良好的处理效果,没有化学沉淀法污泥难处理的缺点,且不需投加沉淀剂。但要求管理较严格,成本较高。

3.离子交换法。该方法是利用强碱性阴离子交换树脂,与废水中的磷酸根阴离子进行交换反应,将磷酸根阴离子置换到交换剂上予以除去的方法。离子交换树脂脱除po43-户的交换容量比较稳定,其再生后交换容量也比较稳定。但离子交换树脂的价格较高,树脂再生时需用酸、碱或食盐,运行费用较高

4.吸附法。20世纪80年代,多孔隙物质作为吸附剂和离子交换剂就已应用在水的净化和控制污染方面。黄巍等以粉煤灰作为吸附剂,对含磷50~120mg/l模拟废水脱磷的 规律 特征进行了研究。研究表明粉煤灰中含有较多的活性氧化铝和氧化硅等,具有相当强的吸附作用,粉煤灰对无机磷酸根不是单纯吸附,其中cao、feo、a12o3等可以和磷酸根生成不溶或直溶性沉淀,因而在废水处理方面具有广阔的应用前景。吸附法由于占地面积小、工艺简单、操作方便、无二次污染,特别适用于低浓度废水的处理而倍受关注。在吸附法研究中,寻找新的吸附剂是开发新的除磷工艺的关键所在,因此 自然 界广泛存在的天然粘土矿物是人们研究的热点。

5.膜分离方法。液膜分离法是一种新型的、类似溶剂萃取的膜分离技术。液膜法通常是将按一定比例配制的有机溶剂(有机相)同膜内试剂混合制成乳液微滴,微滴表面形成一层极薄的(l~10μm)液膜,膜内为内相试剂。在混合柱内,将此表面积极大的乳液微滴与废水接触,水中待除的金属离子便通过选择性渗透、萃取、吸附等穿过液膜,进入内相试剂进行化学反应,废水中的金属离子因而得到分离去除。

四、结语

人与自然的和谐 发展 是21世界 工业 发展的主旋律,在发展工业的同时,尽量较少对环境的污染已经已经成为世界各个国家的共识。

参考 文献 :

[1]崔砺金,章苒.触目惊心与无可奈何——化工污染重灾区实录[j].记者观察, 2003,(07).

[2]董慧,安俊菁.黄磷行业的清洁生产[j].云南环境 科学 , 2005.

污水除磷的处理方法篇7

关键词 AAO法;氮磷;城市污水处理

中图分类号X7 文献标识码A 文章编号 1674-6708(2013)101-0126-02

随着中国城镇化进程的快速发展,人民生活水平的不断提高,城市的规模也越来越大。伴随着城市人口的快速增长,在让更多人享受改革开放带来的巨大生活改善的同时,环境污染,道路拥挤,自然资源的快速消耗等问题也随之而来。环境污染按环境要素又可以细分为大气污染、水体污染、土壤污染,其中水体污染由于其与人类社会生活的密切相关得到了国家的高度重视。现代水污染主要来源于工业废水,农业污水以及城市生活污水。其中城市生活污水中含氮、磷、硫多,致病细菌多,这些城市生活污水如果不进行任何处理直接排放,会导致水体的富营养化,影响其正常的使用,同时也会严重威胁人类的健康。针对城市生活污水中氮、磷含量较高的特点,本文就AAO法处理污水的机制和实际处理效果进行简要探讨。

1 AAO综合法处理城市污水的机制原理及过程

AAO法又称A2O法,是城市污水处理的一种常见方法,该法能有效针对城市生活污水中氮、磷含量较高的特点,使经处理后的污水达到国家一级A标。现结合实际工作经验,浅析此法的机制原理及实际处理效果,简要的原理示意如图1所示。

城市生活污水中90%以上成分为水,其余为固体废弃物等,所以污水进水时要首先经过沉淀池,去除体积较大的固体废弃物,随后污水进入粗格栅和细格栅等物理设备去除污水中的直径较小的固体废弃物及不可溶性沉淀物,此步骤有助于提高后续处理流程的效率及延长设备使用期限。经过该步骤后,污水被注入氧化沟。氧化沟是AAO法的核心组成部分,氧化沟又分为三个部分,分别为厌氧段,缺氧段和耗氧段。此步骤需要使用生物活性污泥,生物活性污泥的培养及使用方法可参照已有的文献[1]。污水首先流入厌氧段,该段反应器主要功能是释放磷,同时对一小部分有机物进行氨化。在厌氧段中,主要采用聚磷菌释放磷,且兼具有吸收低级脂肪酸低级醇等易降解的有机物。由于聚磷菌释放磷,该段中TP浓度逐渐升高,至缺氧段升至最高,在实际生产中需检测该段中TP浓度,以检测设备是否运行正常。此段中大量产生的磷在随后的好氧段中会被聚磷菌大量吸收,再通过二沉池将剩余的污泥去除,从而达到处理污水中磷的目的。厌氧段需要严格控制溶解氧(DO)在0.2mg/L以下。关于氧化沟三个主要部分的DO控制值以及异常情况及解决方案可参照已有文献。[2]经过厌氧段处理的污水随后流入缺氧段,缺氧段首要的功能就是脱氮,具体说来,就是通过反硝化细菌的反硝化作用,将由原污水中及随后由好氧段中内回流而来的硝态氮通过生物反硝化作用转变成氮气,排放到空气中,从而达到脱氮的目的。所以虽说BOD的去除在氧化沟的三个部分都有进行,但是最主要还是在该段中进行。缺氧段的最核心部分就是反硝化细菌的反硝化作用,控制好影响反硝化细菌的工作条件直接关系到反硝化的效率,如反硝化细菌最适宜的PH范围是6.5~8.0, 当pH

2 AAO综合法处理城市污水的实际应用及效果分析

现以昆山经济技术开发区水务公司精密产业园污水处理分公司的AAO设备为实验仪器,从2013年7月1日至2013年7月30日随机抽取五日的各主要指标的进出水数据,分析并统计经AAO综合法处理前后的效果。

图2中为随机抽取五日各主要污染物的进出水数据。图2中可以看出污水处理前后除pH值变化不大外,其数值都有变化,为了进一步分析数据,采用graphpad prism 5.0软件进行分析,从图3中的分析结果可以看出,进水与出水的各主要数据(包括COD,NH3-N,TP,SS,TN)均有显著性差异,p值均小于0.0001,且均符合国家一级A标。PH值在处理前后没有显著性差异,但是符合国家污水排放PH值6~9的标准。由此得出结论,AAO综合法在针对城市生活污水中氮磷含量较高的处理方面是有效的。

3 AAO法处理污水的最新研究进展及展望

正是由于AAO法在处理城市污水中具有良好的脱氮去磷能力,在我国该方法也得到较大规模的应用。但AAO法存在流程长,单元构筑物多,反应池容积大,回流系统多,故其占地面积大,管理较复杂,基建费用和运行管理费用较高等缺点,国内国际相关专家学者经过改进并提出时序AAO法,倒置AAO法,同步AAO法等新方法,节约了成本提高了效率[4]。相信通过对AAO法的不断改进,该方法定能对我国的社会经济发展做出更大贡献。

参考文献

[1]陈新.AAO法污水处理运行浅谈[J].燃料与化工,2007,6:50-52.

[2]孟永进.污水处理厂A—A—O生物脱氮除磷工艺简介[J].硅谷,2009,15:7.

[3]闫志谦等.AAO工艺反硝化生物滤池中氨氮去除的影响因素研究[J].安徽农业科学,2011,30:18613-18615.

污水除磷的处理方法篇8

关键词:城市污水处理厂;低负荷;除磷剂;曝气量

中图分类号:X131.2 文献标识码:A 文章编号:1005-569X(2009)01-0036-04

1 引 言

污水处理厂作为环境保护的重要市政设施,在污染治理、保护环境中发挥了巨大的作用。自上世纪80 年代以来,随着水污染问题的日趋严重,城市污水处理厂的建设有了较快发展。然而已建成的城市污水处理厂在实际投产运营过程中仍然存在问题。本文以某污水处理厂为例,总结了该厂工艺运行过程中遇到的一些常见问题并提出了相应的对策。

2 重庆市永川区污水处理厂工艺介绍

重庆市永川区污水厂采用A2O一体化氧化沟工艺,设计处理量为60000吨/天,整个处理系统由两组独立的A2O一体化氧化沟组成。A2O一体化氧化沟工艺有明显的厌氧、缺氧、好氧工艺段,是80年代在传统活性污泥法基础上发展的先进处理方法。它利用厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量,形成ADP,即:

ATP+H2OADP+H3PO4+能量

这样,有助于聚磷菌在耗氧条件下过剩摄取H3PO4。缺氧条件下硝酸氮(NO3-N)和亚硝酸氮(NO2-N)在反硝化菌的作用下,被还原为氮气(N2)和成为细胞的组成部分,得以去除。好氧条件下,一方面水中的有机氮和氨态氮在O2的作用下转化为硝酸氮和成为细胞的组成部分,得以去除,另一方面聚磷菌进行有氧呼吸,不断地氧化分解其体内储存的有机物,同时不断地通过主动运输的方式,从外部环境向其体内摄取有机物,由于氧化分解,又不断地放出能量,能量为ADP所收获,并结合H3PO4而合成ATP(三磷酸腺苷),即:

ADP+H3PO4+能量ATP+H2O

除一小部分是聚磷菌分解其体内聚磷菌盐而取得的外,大部分是聚磷菌利用能量,在透膜酶的催化作用下,通过主动运输的方式从外部将环境中的H3PO4摄入体内的,摄入的H3PO4一部分用于合成ATP,另一部分则用于合成聚磷酸盐,完成磷的过剩摄取,去除水中总磷。[1]它具有处理效果稳定,节约能源和运行费用低等优点。缺点是处理过程较复杂、处理构筑物种类多;工程调整不方便。[2]

3 存在问题及对策

3.1 低温运行

温度对微生物的生物活性有着决定性的影响,污水处理中的微生物绝大部分适宜生长在20~35℃的环境中。在适宜的温度范围内,温度越高,微生物的活性越强,处理效果也越好;反之,温度越低,生物活性就越差。因此生物处理系统夏季较冬季的处理效率要高[3]。如表1所示,为某污水处理厂在不同季节的水处理效果。

由表1可知,温度对各项指标的去除效果有一定的影响。其中温度对TN的去除影响最大,因为TN主要是靠微生物的反硝化去除。调试运行中,调整曝气,控制曝气池中溶解氧在1.0左右;提高混合液(MLSS)浓度有效的提高了指标的去除率。另外,延长反硝化时间将会提高TN的去除率[4]。适当的增加化学除磷剂投放量,可以提高TP的去除率[5]。

3.2 低负荷运行

调试过程中遇到污泥负荷过低的情况,体现在进水BOD5值低,微生物生长缺乏炭源,C:N、C:P比值不合理,造成出水水质不达标。解决方案:调节进水流量,增长水力停留时间;减少沉砂池运行时间,提高生物池进水BOD5值;控制曝气量,因为低负荷下曝气过量会导致聚磷菌细胞内的聚β- 羟基丁酸(PHB)含量下降,导致磷的吸收速率和吸磷量下降[6];保证进水连续,避免微生物在听进水后厌氧分解,损耗有机物。

3.3 低水量运行

污水处理厂在建设投产后因为配套管网建设不合理等因素造成进水水量偏低或间歇进水,低水量运行对污水处理厂运行造成严重的影响:一方面延长污水在生物池的水力停留时间,导致曝气过量,污泥结构松散,影响出水水质;另一方面增长污水在二沉池的水力停留时间,由于二沉池有大量活性污泥,耗氧速度快,二沉池很快进入厌氧环境,大量的PO盐释放进入水体,从而失去除磷效果。

图2为出水在投加除磷剂后TP随时间的变化。可以看出水中TP的浓度在0.5小时后与时间成正比的。这可以证明如果二沉池污泥停留时间过长会影响工艺除磷效果。

解决方案:加大管网维护力度,加快次级管网建设,增大污水的收集率,保证进水水量符合工艺设计要求;控制污泥回流,缩短污泥在二层池的停留时间。

3.4 除磷剂的使用

污水处理厂在运行过程中,进水呈现低碳、高氮磷的特性,传统的活性污泥法往往无法同时兼顾脱氮和除磷。如果要维持高效脱氮,则不能达到高效除磷的目的,而且磷的去除效果受碳源、污泥龄、污泥回流比、回流污泥中溶解氧浓度等因素制约。运行过程中,为了兼顾脱氮除磷,会辅以化学除磷剂,使出水氮磷均达标排放[7,8]。但是,现在多数污水处理厂忽视了化学除磷对脱氮效果的影响。经试验,在化学除磷剂投加量不合理的情况下,会影响微生物的反硝化脱氮。图3、图4反应了添加除磷剂,对除水中TN含量的影响(图4中的脱氮速率值是对图3中的多项式对应点求导数得出)。

分析得出,化学除磷剂会影响微生物的活性,在运行过程中不能为了去除TP而盲目的投加化学除磷剂,要解决这个问题,应在工艺调试过程中进行小试,以得出最佳的化学除磷剂投加量。[9]

3.5 曝气量的控制

曝气供氧是活性污泥法处理污水过程中最关键的一个步骤,氧气在气水界面的传递受污水水质、水温、氧分压等因素影响。在污水处理厂运行时,供氧量应严格控制,供氧过低会对微生物的生理活性产生影响,使微好氧菌异常,导致污泥膨胀,影响出水水质;二曝气过量会导致有机污染物分解过快,从而是微生物缺乏营养,活性污泥易于老化,结构松散,同样影响出水水质。而且供氧过高还会造成能源的浪费,提高污水处理成本。解决这个问题应分析多个方面因素,通过计算得出适合每座污水处理厂自己的曝气供氧方案。现在已有改良实例,通过改变传统工艺的传统曝气方式,以达到达标排放,节约能源[10,11]。

4 小 结

A2O工艺是污水处理工艺中较成熟的工艺,但也会受多方面条件影响和制约,包括水温、水量等客观因素,也包括自身管理等主观原因。只有在实际运行中总结和分析自身的情况,才会使工艺运行正常,实现达标排放。

参考文献:

[1] 于玲红,陈岩峰,武海云,殷震育.北方中小城市污水处理厂工艺选择.内蒙古农业大学学报,2002,23(3):93~97.

[2] 张自杰.排水工程-下册(第四版).中国建筑工业出版社,2000,6:306~309,315~320 .

[3] 王洪臣.城市污水处理厂运行控制与维护管理.科学出版社,1997.

[4] 孙亚男,彭永臻,王伟.低DO下曝气方式对分段进水脱氮工艺的影响.中国给水排水,2008,24(1):9~12.

[5] 段瑞文.化学辅助除磷在改良A2O工艺中的应用.中国给水排水,2005,20087,94~96.

[6] 毕学军,张波,丁曰堂,高廷耀.长期低负荷运行对污水生物除磷的影响,中国给水排水,2002,18(7):83~85.

[7] 陈乐荣,吴雪莉,陈粉珠.城市污水处理厂化学法辅助除磷的试验研究.《环境技术》,2004,(4):35~38.

[8] 侯宏娟,王洪洋,周琪.低碳,高氮磷城市污水的化学辅助除磷研究.中国给水排水,2007,(23)6:24~27.

[9] 边兴玉,王文超,张志斌,张华,陶俊杰,康兴生,郝春红,张健.化学辅助除磷工艺药剂投加量的优化研究.山东建筑大学学报,2007,(6):515~520.

[10] 张永.Carrousel氧化沟周琪曝气法的生产性试验研究.给水排水,2007,33(2):55~57.

上一篇:石材雕刻技术范文 下一篇:行为科学研究法范文