废气净化范文

时间:2023-11-10 22:27:45

废气净化

废气净化篇1

关键词:有机废气 双膜理论 生物膜 挂膜过程

中图分类号:X703 文献标识码:A 文章编号:1674-098X(2013)05(b)-0129-01

1 净化过程机理

低浓度有机废气的生物净化法是一项近年来发展起来的废气污染治理新方法,与其相关的理论和应用技术目前仍处在不断改进和完善的过程中。

有机废气的生物净化过程实质上是利用微生物的生命活动将废气中有害物质转变成为简单的无机物及细胞质等的过程。对于生物法净化处理工业废气的机理研究,虽然各国学者已经做了许多工作,但到目前为止还没有统一的理论。一般认为生物法净化有机废气的实质是把废气从气相转移到液相或固相表面的液膜中,然后利用微生物降解液相或固相表面液膜中的污染物。其净化步骤可用荷兰学者Ottengraf依据传统的气体吸收双膜理论提出的生物膜理论来解释,按照该吸收生物膜理论,生物法净化处理有机废气中的污染物一般要经过以下几个步骤:

(1)废气中的有机污染物首先同水接触并溶解于水中(即由气膜扩散到液膜)。

(2)溶解(或混合)于液膜中的有机污染物成份在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收。

(3)进入微生物体内的有机污染物在其自身的代谢过程中被作为能源和营养物质被分解,经生物化学反应最终转化为无害的化合物(如CO2、H2O、N2、S和SO42-等)。

(4)生化反应产物CO2、N2从生物膜表面脱附并反扩散进入气相本体,而S和SO42-随营养液排出。

2 填料上微生物的挂膜

自然界中能够降解硫系恶臭气体的物质并便于工程应用的微生物主要有化能自养菌与化能异养菌。自养菌世代周期长,生长缓慢,在工程应用上,自养菌不易获得大量生物体,难以操控,但自养硫杆菌属对硫系恶臭物质有较高的降解效率。异养菌生长迅速、易于培养与挂膜,对其的操控也要相对容易得多,但其降解的比率(g-S/(细胞・h-1)却远低于硫杆菌属。因此采用自养菌和异养菌组成的复合菌对填料塔进行挂膜,这样既能提高对硫系恶臭的降解效果,又有利于菌群间的生态互补。

将复合菌混合接种至盛有新鲜的循环营养液的容器中,在30 ℃条件下培养24 h,菌液明显混浊,把菌液加入填料塔中浸泡并通入混有臭气的空气进行曝气24~36 h,再将填料塔排空,开启营养液的循环系统,使含有复合菌的循环液在填料塔循环挂膜。循环液每24 h要用新鲜营养液更换约10%~20%。从填料的外部形态观察可将初始挂膜到挂膜成熟大致分为四个阶段。

2.1 吸附阶段

由于填料表面粗糙,比表面积大,有较高的吸附能力,因此可以吸附培养液中的有机物及菌体,为微生物的生长繁殖提供基点和足够的营养物质。此时接种的菌体要调整代谢机制以适应新的环境,大部分微生物处于静止适应期,此时期在填料上用肉眼均未观察到生物膜。

2.2 菌体增殖期阶段

由于循环营养液营养物质丰富,静止适应期很快结束,微生物进入对数增殖期,菌体活力旺盛,开始大量繁殖,消耗大量有机物的同时,生物量大量增加,此时可以观察到循环营养液非常混浊,但絮凝及附着性差,此时可以适量减少循环营养液中的营养物质。以此控制复合菌的生长速度,使之处于递减增殖期,让菌体形成部分絮凝体。絮凝的菌体有利于其在填料上的吸附,此阶段在填料上可以观察到布满了星星点点微生物群。

2.3 膜的初步形成期

循环营养液混浊度开始下降,营养液中的菌体数量减少,但填料上的生物膜开始加速生长,星点状的微生物群开始向四周稳步扩散,此时可以适当增加点营养物质以刺激生物膜的加速形成,当填料的大部为半透明的膜所覆盖,则表明生物膜已初步形成。

2.4 生物膜的成熟期

初步形成的生物膜很脆弱,极易为水流或气流等机械力量所冲刷掉,此阶段要保持水、气流的均匀性和稳定性。与此同时为了保证所需菌种的主导地位及其快速增长,则可以加大硫系恶臭气体在混合气体中的浓度。填料上的生物膜快速增厚,生物膜从透明状态逐渐转变成黄白色的膜状体,当膜的厚度达到200~500 ?m时,生物膜就基本成熟。

3 生物膜形成及结构

通过上述分析发现,生物膜不是填料对悬浮微生物不断吸附所形成的,而是物理、化学和微生物过程综合的结果,有机分子或矿质元素随循环营养液喷淋到填料表面,其中有些被吸附以改良的载体表面;游离的微生物细胞被喷淋到这种改良的载体表面,其中碰撞到表面的微生物一部分可能又被循环液冲刷下来,而另一部分在被表面吸附一段时间后,可能变成了不可解吸的细菌;不可解吸的细菌摄取并消耗来自循环营养液的营养物质以及臭气底物,其数量也不断地繁殖增多,与此同时细菌产生大量具有粘性的胞外聚合物,胞外聚合物中含多种功能团,如羧基、羟基和磷酸基,可将微生物紧紧地结合在一起,附在填料表面,微生物量不断增加,直至填料表面完全被覆盖,随后可以从填料的表面向外,并且随着微生物被分裂成新细胞,逐步覆盖由先前已形成的膜层,形成良好的生物膜。由此,微生物在消耗底物进行新陈代谢同时便使生物膜形成累积。

一些生物膜不再看作是连续的层状结构,而更多地看作是附着在一起由独立的堆体或群落的随机组合,这些堆体周围存在很多通道,水中的营养物质和臭气及氧都可以通过这些通道移动。在孔状介质中生物膜形态也不同于一般的生物膜形态,似乎更象一张蜘蛛网,网上每条带的大小和形状发生变化;生物网表面积大,生物膜厚度小,从而减少了液体和生物膜之间的质量转移阻力;生物膜通过孔影响孔附近质量的传递,也影响层间流动。

生物膜附着强度在其生长阶段初期相对较高,而在后期附着强度随生物膜的厚度急剧地下降。当生物膜达到一定的厚度时,就会妨碍扩散作用的进行,喷淋中的营养物以及混合气中的氧和臭气不能进入到膜的内层(或进入内层发生困难)。当营养供给向内层扩散受到限制时,内层的微生物就开始内呼吸,随后,当生物膜的内层不能支撑其生物群体的时候,生物膜就瓦解脱离,大块的生物膜开始脱落,生物膜脱落后腾出的更新表面,又会形成新生物膜。

废气净化篇2

关键词:低温等离子体;协同作用;大气污染控制

目前,各种有毒有害气体的排放已造成严重的环境污染。低浓度有害气态污染物(如SO2、NOx、VOCs、H2S 等)广泛地产生于能源转化、交通运输、工业生产等过程中。国际条例加强了对这些有害废气的限制。传统的治理方法如液体吸收法、活性炭吸附法、焚烧和催化氧化等已很难达到国际排放标准[1]。

近年来兴起的低温等离子体催化(non-thermal plasma catalysis)技术解决了传统的净化方法所不能解决的问题。用该项技术处理有机废气具有以下优点:①能耗低,可在室温下与催化剂反应,无需加热,极大地节约了能源;②使用便利,设计时可以根据风量变化以及现场条件进行调节;③不产生副产物,催化剂可选择性地降解等离子体反应中所产生的副产物;④不产生放射物;⑤尤其适于处理有气味及低浓度大风量的气体。但以下两方面还有待改进:①对水蒸气比较敏感,当水蒸气含量高于5 %时,处理效率及效果将受到影响;②初始设备投资较高。该项技术在环境污染物处理方面引起了人们的极大关注,被认为是环境污染物处理领域中很有发展前途的高新技术之一。本文将探讨其与污染气体的作用过程及两者协同作用机理,并概述这一技术在废气治理方面的进展。

1 低温等离子体技术原理与协同作用机理

1.1 低温等离子体技术原理

等离子体是含有大量电子、离子、分子、中性原子、激发态原子、光子和自由基等组成的物质的第四种形态。其总正负电荷数相等宏观上呈电中性,但具有导电和受电磁影响的性质,表现出很高的化学活性。根据体系能量状态、温度和离子密度,等离子体通常可分为高温等离子体和低温等离子体(包括热等离子体和冷等离子体)。高温等离子体的电离度接近,各种粒子的温度几乎相同,并且体系处于热力学平衡状态,它主要应用于受控热核反应研究方面。低温等离子体则处于热力学非平衡状态,各种粒子温度并不相同。

低温等离子体和催化协同作用处理废气的主要原理如下:等离子体中可源源不断地产生大量极活泼的高活性物种,这在普通的热化学反应中不易得到,这些活性物种 (特别是高能电子)含有巨大的能量,可以引发位于等离子体附近的催化剂,并可降低反应的活化能。同时,催化剂还可选择性地促进等离子体产生的副产物反应, 得到无污染的物质。但是目前国内外在等离子体和催化协同作用机理方面的分析和研究比较少,在这方面的认识还远远不够。

2. 研究进展

欧美和日本等国对低温等离子体催化技术的研究开展得比较早,主要把该技术应

用于脱硫脱硝、消除挥发性有机化合物、净化汽车尾气、治理有毒有害化合物等方面。目前,很多国家的学术机构、政府和商业机构都在积极地开展此类研究。近年来,国内有很多学者在等离子体烟气脱硫脱硝、汽车尾气净化、有机废气处理等方面取得了较多实验结果,在这方面的研究已比较成熟。

3.1 处理VOCs进展

Futamura S等[2]对有害大气污染物(HAP)在低温等离子体化学处理中金属氧化物的催化活性进行了研究,在没有MnO2作催化剂时,苯的摩尔转化率为30%,而在有MnO2作催化剂时,苯的摩尔转化率可以大大提高。Franeke K P等人[3]研究指出,在仅有催化剂时,20%的DCE(二氯乙烯)转化成CO2;仅放电条件下,转化70%的DCE;只有当两者协同作用时,有90%的 DCE被去除,并且CO2为主要氧化产物。

秦张峰等[4]应用低温等离子体催化净化甲苯废气,采用了含CuO、Pd、Pt 等活性组分的催化剂,当反应气流速为50-500 mL/min,甲苯初始浓度为2000-20000 mg/m3时,甲苯去除率为70%-95%,脱除量可达110 mg/h。李锻等[5]将双极性脉冲高压引入介质阻挡反应器对氯苯和甲苯的分解特性进行了实验研究,而以冯春杨[6]、晏乃强[7]和黄立维[8]等人开展了脉冲电晕去除多种有机废气的研究,初始浓度为76.8 mg/m3,苯的去除率达到61.4%,并对比了线—筒式和线—板式二种反应器对甲苯的去除率,在以Mn、Fe等作为催化剂时,可使去除率提高,催化剂活性的排序为Mn>Fe>Co>Ti>Ni>Pd>Cu>V,在去除各种有机废气中,甲醛最易去除,二氯甲烷最难,甲苯、乙醇、丙酮则处于其间。

3.2 处理氮氧化合物进展

Rajanikanth B S等[9]人对模拟气体在等离子体放电催化中NOx的去除进行了实验研究,指出介质填充床的存在可使NO在低电压下有更高的去除效率。实验对三种不同的催化剂(Al2O3、BaTiO3、Al2O3 + Pd)进行了探讨,发现BaTiO3颗粒在气体组成为NO、O2、N2以及NO在N2中时有更高的去除效率。在NO的初始浓度为265 mg/m3时,NO的去除效率几乎达到99%。在模拟汽车尾气(组成为NO∶O2∶CO2∶N2 )中,相比其他介质,涂了Pd的Al2O3催化剂有更高的NO去除效率,在室温下NO去除效率相当于300℃甚至更高温度下尾气在惯常催化剂作用下的效率。

3.3 净化机动车尾气进展

为实现美国环保局(EPA)提出的机动车尾气中NOx必须还原90%以上的目标,等离子体协同的催化体系在治理机动车排气方面有了很大进展。目前,用该项技术NOx的还原效率可达到65%以上,同时,该项技术还可脱除92%~96%的颗粒物,去除甲醛40%以上。

国内学者发明了一种后置式汽车尾气净化器,尾气经锥体分散后进入电场的催化剂中,在低温等离子体和催化剂的协同作用下,尾气净化率大大提高。该净化器一方面可使催化剂活性增加,转化率提高;另一方面可避免催化剂烧结,从而降低汽车尾气中有害气体的排放。与现有技术相比,该净化器具有以下优点:①将低温等离子体技术与催化技术相结合,技术得到升级;②适用于各种车型,不受汽车的原始排放限制,不同于现有的三元催化装置;③没有起燃温度限制,对冷车启动同样有效,且适用范围广;④结构紧凑,设计独特、新颖。

3. 展望

低温等离子体技术应用的可行性和条件试验已较充分,也有了大量理论基础,已为这项工艺简单、适用性强、流程短、能耗低、易于操作和自动化的新技术早日工业化打下了充分的基础。但在低温等离子体技术与催化协同作用方面研究较少,是一项全新的处理技术,二者相结合,等离子体场产生高能量活性粒子,促进催化反应,减少能耗;催化主导反应方向,让反应具有选择性,并能大大减少反应副产物,该技术被认为在处理VOCs、氮氧化物、机动车尾气方面都有着广阔的发展前景,但实际应用还很不成熟,必须投入足够力量进行更加深入的理论和实践研究。

[2] Futamura S, Zhang A H, Einaga H, etal. Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants[J]. Catalysis Today, 2002, 72:259-265.

[3] Francke K P, Miessner H, Rudolph R. Plasmacatalytic processes for environmental problems[J]. Catalysis Today, 2000, 59:411-416.

[5] 李锻, 刘明辉, 吴彦, 等. 双极性脉冲高压介质阻挡放电降解氯苯和甲苯[J]. 中国环境科学 2006,26:23~26.

[6] 冯春杨,赵君科. 脉冲电晕技术在处理挥发性有机化合物中的应用研究[J]. 安全与环境学报, 2004,4(1):59~61.

废气净化篇3

摘要:高流量负荷下生物膜填料塔净化低浓度甲苯废气的实验结果表明,当气体流量在0.8m3/h,入口气体甲苯浓度为105mg/m3,停留时间18.3s时,甲苯的净化效率可达到61.9%,出口气体甲苯浓度低于国家对现有企业的排放标准(≤60mg/m3)。适宜的操作温度应控制在20~25℃之间,氮磷营养添加量的配比应控制为C:N:P=200:5:1。依据实验结果数据,对相关的机理问题进行了分析探讨。

关键词:生物膜填料塔 高流量负荷 低浓度甲苯废气 废气净化

近年来,生物法废气净化技术作为一种低浓度工业废气净化处理的新技术,在国内外已受到越来越广泛的关注。相关的研究成果和工业应用实例表明,生物法废气净化技术在净化处理低浓度VOCs废气、恶臭气体等方面确有实效[1-5],首批应用的再生胶脱硫有机废气生物法工业净化装置已于2000年在云南省昆明市及河北省任丘市相继投入运行,并取得预期的处理效果[6]。

低浓度VOCs废气的特点是废气量大、浓度低,按目前工程应用的废气流量负荷运行并达到国家排放标准的要求,工业净化设备体积就显得过于庞大。从进一步减小设备体积、节省投资的需要出发,开展高流量负荷下低浓度VOCs废气的生物法净化处理应用条件研究。 本实验以低浓度甲苯废气(VOCs的代表物)为对象,对生物膜填料塔净化处理高流量负荷下低浓度VOCs废气技术的可行性进行了实验研究,考察了入口气体甲苯浓度、温度和营养物添加量等因素对高流量负荷下低浓度甲苯废气去除效果的影响。

1 实验装置与方法

实验用生物膜填料塔由内径为72mm的有机玻璃管制成,总高度为1.4m,其中填料分为2层,每层高度为500mm,中间间隔100mm。依据经济性及前期对填料特性的研究[7],采用轻质陶块作为填料,其直径为10~15mm,比表面积170~ 200m2/m3,堆积密度约为200kg/m3。

实验均在常温下(7~26℃)进行。生物膜填料塔入口气体甲苯浓度95~320mg/m3,气体高流量负荷196.6m3/(m3h),气体空塔停留时间18.3s,生物膜填料塔的运行阻力降为58.8~215.6Pa。实验装置如图1所示。

图1 生物膜填料塔装置流程示意

1.小气泵 2.纯甲苯瓶 3.风机 4.气体混合瓶 5.生物膜填料塔 6.循环水槽 7.循环水泵 8.高位槽 9.气体流量计 G.气体取样点 L.液体取样点

实验中生物膜填料塔采用逆流操作。低浓度甲苯废气采用动态法配制。甲苯废气浓度采用甲苯检知管法(检测范围50~1000mg/m3),其精确度已在相关的研究中得到了验证[5]。生物膜填料塔的运行阻力降采用U型压力计测定。

2 结果与分析

2.1 生物膜填料塔的挂膜

采用甲苯废气净化专用菌种[8]以及在高气体流量0.8m3/h(比以往实验的高4倍,停留时间缩短3倍)条件下,对生物膜填料塔进行挂膜操作,并同时观察填料表面被生物膜覆盖的情况、运行阻力降以及低浓度甲苯废气净化效率的变化。定时对进出口气体的甲苯浓度进行取样分析,并计算气体中甲苯的净化效率,结果见图2。

循环液体流量、气体流量负荷及甲苯浓度负荷等均会影响生物膜填料塔的挂膜过程。在实验中,当循环液喷淋量为9L/h,气体流量负荷为196.6m3/(m3h),入口气体甲苯浓度为95~ 320mg/m3时,生物膜填料塔的填料生物挂膜过程历时16d完成。在挂膜初期的5~8d,由于填料表面上的生物膜覆盖面不大且作用也不太稳定,净化效率在6.7%~35.7%范围内波动。在随后的6~8d里,随着生物膜的生长逐渐成熟和覆盖范围增加,生物膜填料塔对甲苯的生物净化作用也随之逐步增强,甲苯净化效率迅速上升,最后几天基本稳定在60%左右。

图2 挂膜期间的净化效率与阻力降曲线

——净化效率,——阻力降

气体流量0.8m3/h,入口气体甲苯浓度95-320mg/m3

判断生物膜的生长是否成熟,可以从微观和宏观两个方面加以判定。微观上,当填料表面上的生物膜增长到一定厚度并趋于稳定,从生物膜上脱落和自溶的微生物菌体数量与其附着在生物膜上的菌体数量趋于平衡时,生物膜的生长即已趋向成熟;宏观上,生物膜填料塔在其生物挂膜期间的运行阻力降有一个从上升到逐步趋于稳定的变化,这是生物膜生长趋于成熟的外部表现[9]。因此,可以由生物塔的运行阻力降的变化来判断生物膜的生长是否成熟。由图2可见,在挂膜初期,运行阻力降是上升的,约11d后阻力降趋于稳定,基本保持在167Pa左右,这标志着塔内填料表面的生物膜已基本生长成熟。

2.2 气体流量的影响

由图3可以看出,随着气体流量的增加,生物膜填料塔对甲苯废气的净化效率是下降的。造成这一现象有2个原因,一是由于气体流量的增加使甲苯废气在塔内停留时间减少,不能满足生物膜中微生物菌种对废气中甲苯分子的捕捉、吸收和生化降解的时间要求,许多甲苯分子尚未与塔内的生物膜接触即被排出塔外,从而导致净化效率下降。二是随着气体流量的增加,气相主体对生物膜的切线冲刷力也相应增加,使部分已被生物膜吸附但结合力不是很牢的甲苯分子重新从生物膜上脱附,进入气相主体。这一结果表明,增加气体流量会对生物膜填料塔的处理运行效果产生不良影响。因此,要结合实际情况及要求,以企业的废气排放标准为目标确定生物膜填料塔的适宜气体流量。

图3 气体流量对净化效率及进出口甲苯浓度的影响

——净化效率,——入口甲苯浓度,——出口甲苯浓度

此外,由图3可见,在实验范围内,生物膜填料塔出口气体中甲苯浓度在50~60mg/m3之间,符合国家废气排放标准中对现有企业的要求(≤60mg/m3),基本可实现达标排放。但在高流量负荷下如何进一步提高低浓度甲苯废气的净化效率,还有待于进一步研究。

2.3 入口气体甲苯浓度的影响

生物膜填料塔对甲苯废气的净化效率与入口气体甲苯浓度密切相关。本实验选择气体流量为0.8m3/h(停留时间18.3s)、入口甲苯浓度为95~160mg/m3的条件(比以往实验的浓度低3~5倍、停留时间缩短2~5倍),进行入口气体甲苯浓度的影响考察实验,其结果如图4所示。

由图4可见,随着入口气体甲苯浓度的增加,生物膜填料塔对甲苯废气的净化效率下降。分析认为,在气体流量不变的情况下,对于同一生物膜填料塔,其有效传质面积是一定的,生物膜对甲苯分子的捕捉吸附量(或生物化学去除量)是一定的。生物膜填料塔净化甲苯废气是一个“吸附-生化降解”过程[10],其中的吸附是通过单分子层吸附进行的。当入口甲苯浓度较低时,甲苯分子会以单分子层状态覆盖在生物膜表面,而后被微生物捕获并降解。随着入口气体甲苯浓度的增加,多余的甲苯分子(即大于单分子层吸附量的甲苯分子)未能被直接吸附在生物膜表面上,而是随气相主体排出塔外,因而就出现了在同一气体流量下随甲苯浓度增加其净化效率反而下降的现象。这一结果表明,生物法废气净化技术的适用范围是低浓度的工业废气。要想获得较好的净化效果,就必须适当降低入口气体污染物浓度和增加生物膜填料塔的体积(延长停留时间)。

图4 入口气体甲苯浓度对净化效率的影响

气体流量0.8m3/h,入口气体甲苯浓度95-160mg/m3

2.4 温度的影响

由图5可以看出,在气温低于15℃时,由于微生物的活性受到影响,生物膜填料塔对甲苯废气的净化处理能力也相对比较弱。随着温度的升高,生物膜填料塔对甲苯废气的净化效率呈上升趋势。当气温升至20℃时,净化效率趋于稳定,基本保持在50%左右。因此,在操作生物膜填料塔净化低浓度甲苯废气时,应注意将操作温度控制在20~25℃范围内。

图5 温度对净化效率的影响

气体流量0.8m3/h,入口气体甲苯浓度95-110mg/m3

2.5 营养物的影响

微生物的生长有赖于碳、氮、磷3者保持适当的比例,一般情况下营养物的配比为C:N:P= 200:5:1。由于甲苯本身可以为微生物提供足够的碳源,因此营养液中只需加入适当的氮、磷营养液即可。添加量以气体中甲苯的含碳量作为参考。

实验表明,在氮、磷补充过量时,生物膜上微生物过量地生长繁殖,并由此造成运行阻力降显著上升,填料塔出现堵塞现象。因此,要注意适当控制氮、磷的添加量,使微生物始终处于一个良好的分解代谢环境中,并保持较高的净化效率。

对于已因微生物的生长过量而造成生物膜填料塔出现堵塞的情况,可减少氮、磷的添加量,使微生物处于一个内源呼吸环境,来抑制其快速繁殖。可以增加喷淋液冲洗的次数,促进生物膜表层的快速更新,以使堵塞问题得到缓解。

3 结论

3.1 在高气体流量负荷下,可以采用甲苯废气净化专用菌种对生物膜填料塔进行接种挂膜。该技术适用于高气体流量负荷下的低浓度甲苯废气的净化处理。

3.2 在高流量负荷条件下,气体流量和入口气体甲苯浓度对生物膜填料塔的甲苯净化效率有较大的影响。当气体流量为0.8m3/h,入口气体甲苯浓度为105mg/m3,停留时间为18.3s时,甲苯的净化效率可达到61.9%,与国外同类应用研究结果基本相当。使出口气体甲苯浓度低于国家对现有企业的排放标准(≤60mg/m3)。同时,适宜地控制操作温度(20~25℃)和氮、磷营养物添加配比(C:N:P=200:5:1),将有助于提高生物膜填料塔的净化性能。

参考文献:

[1] 陆继来,孙?石。低浓度工业废气生物净化技术 [J]。 环境工程,2002,20(增刊):133-137。

[2] 王家德,陈建孟,唐翔宇。有机废气的生物处理概述 [J]。 上海环境科学,1998,17(4):21-24。

[3] 李 琳,刘俊新。挥发性有机污染物与恶臭的生物处理技术及其工艺选择 [J]。 环境污染治理技术与设备,2001,2(5):41-47。

[4] 杨义飞,姜安玺。生物脱臭技术研究进展 [J]。环境保护科学,2001,27(6):3-6。

[5] 孙?石。生物化学法净化低浓度有机废气技术的工业应用研究[R]。昆明:昆明理工大学,1999。

[6] 孙?石。生物化学法净化低浓度有机废气研究 [D]。昆明:昆明理工大学,2000。

[7] 孙?石,黄 兵,黄若华,等。生物膜填料塔净化工业废气用填料的研究[J]。 化工环保,2002,22(4):195-198。

[8] 孙?石,黄 兵,黄若华,等。生物法废气净化专用微生物菌种及其作用[J]。 中国环境科学,2002,22(1):28-31。

[9] 邹华生,陈焕钦。生物填料塔降解低浓度苯废气传质-反应特征[J]。 广东化工,2000,(2):17-20。

废气净化篇4

关键词:生物净化;气态污染物;废水处理

〖KH2*1〗

城市排污主要的问题是对废弃和废水的处理,生物技术可以将废气废水通过降解处理,处理成无害的资源,甚至生成二次资源,提升资源的利用率的同时减轻城市排污的压力。

一、城市污染状况分析

近些年城市污染现象极为的严重,继酸雨现象之后城市变暖、雾霾现象也持续的在发生着,最大的问题就是城市在发展的过程中对环境进行透支,科学技术是一把双刃剑,为人们带来了生活的便利,为了城市建设提供技术支持,但是也带来了更多的污染和危害。种种现象警醒人们必须对环境问题做出相应的处理,加大对环境问题的重视程度。

利用生物技术改善环境,处理城市生活生产废气物的方式最早可以追溯到20世纪中期,最先出现在处理空气中的臭味物质,一定程度上降低对空气质量的污染,但是那一时期技术并没有达到很高的水平,城市建设环境还相应没有现在如此的恶劣。第一个利用微生物处理废气的专利于1957年出现在美国,但到1970年后才引起各国重视。到1980年,德国、日本、荷兰等国家已有相当数量工业规模的各类生物处理废气装置投入运行,对混合有机废气的去除率一般在95%以上。各国家对于环境问题都予以重视,渐渐开始利用科学技术来改善城市环境。

二、生物净化技术的基本应用

城市生活主要垃圾废物来源主要是废水和废气的处理。生物净化技术是将废弃的资源通过处理转换成无害物质或者二次利用的物质。从污水处理方面来说,水资源本身有自我净化的能力,在干净的水资源中,存在着大量的微生物群,通过依附其他有机生物或者沉积等途径实现自身的转换和循环。它们在与水中有机物接触的过程中,利用自身的新陈代谢功能,在有溶解氧的条件下,使在水体中呈溶解和胶体状态的有机污染物被降解并转化为无机物,如水、二氧化碳和硝酸盐等,从而使水体得到净化,而在受到污染的水体中,由于分解过程中无法满足相应的条件,导致水中的微生物自我净化的能力下降,甚至于重度污染失去净化的能力,生物净化技术的基本原理就是充分利用天然水体的自净功能,通过科学的手段营造有利于微生物生存和发展的环境,通过提升微生物净化的能力保持水体的纯净。生物净化技术带来的是方便快捷的有效方式,在很大程度上降低了能源的消耗、资金的投入。

而对于城市废气的处理主要是利用微生物的转化功能,在微生物的生命活动过程中,进行生物转化,把空气中的有毒气体和污染源转化为可利用的简单无机物,如水、氧气、二氧化碳等利用程度比较高的成分。这种方式最大的好处就是产生的气体不会造成污染,并且可以充分的被利用。在适当的环境下,生物净化技术将生物的繁殖能力提升了,作用的多种微生物在相同的条件下可以大量的进行繁殖和扩散。微生物的作用是巨大的并且能够通过外部的需求提升很优化繁殖的能力。

三、生物净化技术应用的意义

正对与城市废水和废气的两个方面的大量污染,通过生物净化技术进行环境的改善是具有很重要的意义的,生物净化技术在很多的领域当中的作用也将会日益的凸显出来。

首先,生物净化技术能改善城市环境,提升资源的利用程度。生物净化技术旨在发掘废弃的水资源和气体资源中的再生能力和可利用价值,通过将废水废气通过优化和转换实现对资源的最大程度的利用。不对黄精造成任何的生态威胁,从生态文明建设的角度来说,生物净化技术无疑是城市建设的重要手段之一,改善我们的生存环境,提升城乡总体的生态建设水平和城乡风貌。所以,对于未来生物净化技术有着很长远的发展的前景。城市发展所带来的环境污染是不容忽视的,发展的同时一定要先治理,保障良好的生存环境才能提升总体的经济建设的水平。

其次,生物净化技术能够带动能源开发,提升创新科研的能力。目前生物净化技术的应用还没有实现大范围内的应用,虽然生物净化技术所带来的作用是非常明显和巨大的,但是生物净化技术还是存在着一定的问题的,比如很有可能打破原有生态循环系统的承载功能和原有的使用功能。而且,生物净化技术需要大量的资金的投入和研发的投入,技术的应用需要消耗大量的资金和时间的投入。所以,生物净化技术想要有更加长远的市场前景就必须不断的进行研发和实践,提升科研能力,扩大生物净化技术的长远发展,巩固生物净化技术在环境改善方面的地位和作用。

最后,生物净化技术将会带动相关产业的发展,提升经济实力。经济的发展和技术的应用是分不开的,技术应用为经济建设带来了巨大的利益。生物净化技术就拥有着广泛是市场前景,近几年来城市建设所透支的环境代价是显而易见的,将生物净化技术作为一项产业,不仅仅和促进城市和乡村的健康发展,同时也能够带来相应的经济效益,可以形成双赢的效果。相关产业在生物净化产业的带动下也能够实现更好的发展,有强有力的支撑和保障。(作者单位:沈阳师范大学化学与生命科学学院)

参考文献:

[1]李捍东,王庆生,优势复合菌群用于城市生活污水净化新技术的研究,环境科学研究[J],2000(16).

[2]李正魁,濮培民,辐射聚合固定化反硝化菌去除污水中硝酸盐,江苏农业学报[J],2000(16).

[3]李云路,李建军,孙国萍,微生物学通报,2005,32(2).

废气净化篇5

关键词洗涤预处理微波紫外光催化氧化苯乙烯VOCs有机废气治理

中图分类号:F407.63 文献标识码:A 文章编号:

前言

电子电器厂浸漆车间主要废气来源为浸漆机在给变压器浸漆过程中使用大量的绝缘漆挥发的有机废气(绝缘漆主要成分为:不饱和聚酯30—50%;二氧化硅20—40%;苯乙烯:20—40%),这些溶剂在生产过程中大量挥发,扩散在整个车间,在整个车间均能闻到刺激性的味道,资料表明,苯乙烯、VOCs等有机废气对人体的危害很大。因此必须对苯乙烯、VOCs等有机废气进行治理,改善厂内及厂外周围空气环境。

表11#、2#浸漆机主要废气成分及浓度

表2大气污染物排放限值DB44/27-2001

浸漆车间有机废气的浓度

广东某电子电器厂浸漆车间现有2台浸漆机,分别为1#、2#浸漆机,本次治理方案主要治理1#、2#浸漆机排出的苯乙烯、VOCs等有机废气,通过对原排气口的监测,车间内主要废气成分及浓度见表1,现我国新的排放标准,严格规定了VOCs的排放标准,见表2,根据表2可知,浸漆车间的有机废气严重超过了所引用的国家标准。

有机废气治理

风量确定

根据浸漆车间在生产过程中的通风要求,确定各浸漆机的处理风量,1#、2#浸漆机处理风量均为20000m3/h。

净化工艺的比较和选择

(1)吸附+催化燃烧法优缺点

优点:吸附法可以达到较高的处理效率;排放浓度低,可达到很低的值。

缺点:工艺较复杂,需要二次处理;电加热再生时吸附床容易产生高温热点,存在安全隐患;废气中的苯乙烯类组份易使活性炭失活,活性炭失活后抛弃存在二次污染问题。

(2)直接燃烧法优缺点

优点:可以处理多种混合气体;基本上不会造成二次污染;见效快,简便易行。

缺点:适用于浓度高的气体;不能够回收热值;浓度低时,需要补充燃料;浸漆过程产生废气苯乙烯浓度低,需要补充大量燃料,运行成本过高。

(3)微波紫外光催化氧化技术优缺点

优点:系统规模小;使用寿命长;运行费用低;可常温运行看,操作简单;处理有机废气效果好,设计合理去除率可达到80%;投资小。

缺点:正常情况下,去除率能够保持在80%左右,提高浓度,则需要增加投资。

经过以上比较,选择微波紫外光催化氧化综合处理工艺处理车间废气,并在此工艺加洗涤预处理工艺。

工艺流程与工艺原理介绍

图1 废气净化系统工艺流程图

管道收集装置将废气送入洗涤净化设备,洗涤液由雾化喷洒装置与气流反向喷洒到洗涤填料表面,气流与洗涤液在穿过洗涤填料层的过程中完成的气液扩散,通过在洗涤液中投加相应的表面活性剂,使废气体中的油性、疏水性微小颗粒物质的被洗涤液捕获,从气相转移到液相,经洗涤净化设备处理后可去除废气中大部分的含颗粒物和油性成分,大大降低后续处理设备的负担。

经洗涤净化设备处理后的气体经气液分离器进行汽水分离,然后再送入微波紫外光催化净化装置中,废气中的苯、甲苯、二甲苯以及苯乙烯成分,经微波紫外光催化净化处理后气体经20米排气筒高空达标排放。

技术原理

光触媒[Photocatalyst]是光[Photo=Light]+触媒(催化剂)[catalyst]的合成词。光触媒是一种以纳米级二氧化钛TiO2为代表的具有光催化功能的光半导体材料的总称,是当前国际上治理环境污染的最理想材料。

光触媒在光的照射下,其表面会释放出活性极强的空穴/电子对,并使之和空气中的有机物及各种细菌发生降解反应,从而达到净化空气、抗菌防霉、净化异味等功能。TiO2本身近于天然物质,无毒无害,其本身不参与反应,只是提供反应的场所与条件,因此具有永久性,被认为是当前治理室内空气污染的理想材料。

氧化钛所产生的氢氧自由基会先行破坏有机气体分子的能量键,使有机气体成为单一的气体分子,加快有机物质、气体的分解,将空气中的甲醛、苯等各种有机物、氮氧化物、硫氧化物以及氨等氧化,还原成为无害物质。它可将人体臭、动物臭及烟味去除,净化空气。光触媒氧化钛在接触光时,能发挥消臭、抗菌、防污等优良性能。

光触媒的反应机理:

当纳米级二氧化钛超微粒子接受波长为388nm以下的紫外线照射时,其内部由于吸收光能而激发产生电子·空穴对,即光生载流子,然后迅速迁移到其表面并激活被吸附的氧和水分,产生活性自由氢氧基(·OH)和活性氧(·O),当污染物以及细菌吸附其表面时,就会发生链式降解反应。

设计参数

表3微波紫外光催化氧化系统设计参数

表41#、2#浸漆机治理后废气成分及浓度

治理效果

所用的2套Gelor型微波紫外光催化氧化从2011年开始投入使用,使用3个多月后,对废气净化治理效果进行测量,连续测量三天,由表4(处理后监测的浓度值)对比表2《大气污染物排放限值》(DB44/27-2001),处理的气体均达第二时段二级最高允许排放限值。

结语

采用洗涤预处理加Gelor型微波紫外光催化氧化装置为对电子电器厂的浸漆车间的有机废气进行治理,经过检验检测证明, Gelor型微波紫外光催化氧化装置对浸漆车间的苯乙烯等有机废气的治理达到了国家允许的排放标准,且微波紫外光催化氧化装置具有占地面积小、使用寿命长、能耗低、运行费用低、无二次污染等优点。

参考文献

朱天乐主编.室内空气污染控制.北京:化学工业出版社,2003.01.21.

杨强.微波技术在环境保护中的应用[J];环境保护;2001年01期

韩丽,韩永忠,张金龙,张全兴;微波技术在污染控制领域的应用[J];四川环境;2005年03期

废气净化篇6

关键词:电解铝;环境污染;生产系统;治理措施

目前,我国电解铝年产量已经突破2400万吨,居世界首位,且电解铝年产量仍以10%的速度递增[1]。在电解过程中,多种氟化盐在高温作用下熔融为电解质,氧化铝与电解质在电流作用下析出金属铝,而电解质中的氟化盐发生化学反应生成氟化氢,氟化碳和氟化硅等氟化物气体,这些气体氟化物是电解铝生产过程中的特征污染物,若不加以控制和净化会对空气造成严重的污染[2-3]。同时,在电解过程中会造成部分氟化物粉尘飞扬,这些氟化物随烟气排放一定程度地污染周围环境。另外,电解铝企业在生产过程中会产生大量的固体废弃物,如废槽衬、碳渣、生活垃圾等,这些固体废弃物对于企业周围环境污染也起着促进作用。鉴于此,作者根据多年工作经验对电解铝企业污染源进行分析,并给出有针对性的治理措施。

1 电解铝污染物分析

1.1 电解铝生产系统

在电解铝生产过程中,以碳素体和铝液分别作为阳极和阴极,在直流电和950℃~970℃作用下,碳素阳极与氧发生反应生产一氧化碳和二氧化碳而不断消耗,故需要对碳

素阳极进行定期补充;阴极产物为铝液,铝液从电解槽内通过出铝抬包抽出进入混合炉和铸造机制成铝锭。在电解过程中,电解槽中会溢出大量的氟化物气体、氟化物粉尘、二氧化硫和其他粉尘颗粒,这些产物是电解铝企业主要污染物。资料显示,电解铝企业氟化物污染物产率为20~35kg/t-Al,且电解铝企业中的99%以上的污染物均在电解铝过程中产生。电解铝生产系统流程和污染物产生过程见图1所示。

1.2 污染物分析

(1)有害气体污染,电解铝企业环境污染最主要的因素便是电解铝生产过程中产生的有害气体。当前,国内外铝炼冶多采用冰晶石和氧化铝熔融电解法来获得单质铝,在电解过程中因物质分解、挥发等过程产出大量的有害气体和有害粉尘,具体为:电解原料中的冰晶石和氧化铝中含有大量的氟化物,在电解槽高温和电流作用下氟化物发生化学反应生成氟化氢,氟化碳和氟化硅等氟化物气体;在电解槽内,部分含氟颗粒随电解质挥发和氟化物升华而散出,这部分含氟颗粒形成粉尘散布于生产车间直至随空气排出;以游离态存在的氟离子与阳极碳结合生成的氟化物气体也会对环境造成污染;阳极糊中含有的沥青在电解过程中会产生少量的二氧化硫、硫化氢气体和苯并花等物质;另外,在电解过程中,游离氧与阳极碳素相结合生成二氧化碳和一氧化碳气体,二氧化碳是重要的温室气体,一氧化碳是剧毒物质。电解铝企业在生产过程中会产生氟化氢,氟化碳、二氧化硫、硫化氢等多种有害气体和含氟颗粒,这些污染物若不加以控制势必对周围环境造成严重的污染。(2)固体废弃物污染,在电解过程中,高温电解质会不断渗入电解槽内衬并与内衬组成发生化学反应,生成的新型化合物填充在槽内衬内造成内衬结构破坏,根据电解铝生产实践,电解槽平均3~4年就需要进行一次大修,大修时必须更换槽内衬和槽体耐火材料,废弃的槽内衬含有大量的氟化物和其他有毒物质,耐火材料含氟量较低,故废槽内衬属于高危废物,有关资料显示,电解铝废槽衬、耐火材料等固体废弃物产率为10~40kg/t-Al,若废槽衬处理不当还会造成二次污染,如堆放在露天场地的槽内衬和耐火材料会因雨雪的侵蚀造成氟化物渗入地下造成土壤和地下水污染,在大气侵蚀作用下致使废弃物表面风化产生有毒粉尘污染大气,故废槽内衬和其他废弃固体处理一直是电解铝企业着重解决的固体污染源。(3)水污染,电解铝企业生产废水含有少量的氟化物和氰化物,若不经过净化处理直接排放则会直接影响地下水体水质;另外,企业生产和生活过程中产生的冷却水和生活污水也是电解铝企业周边污染的重要源泉。

2 环境污染应对措施

2.1 气体污染治理

电解过程中产生的氟化物、硫化物和粉尘等环境污染物一般可经过“干法”净化系统进行处理,“干法”净化法的优点是无水化学反应,且产生二次污染可能性较小。“干法”净化法是通过电解铝生产所用氧化铝作为吸附剂吸附烟气中的氟化氢等有害污染气体来完成污染气体的净化,净化系统工艺流程主要包括电解槽集气、吸附反应过程、气固分离过程、氧化铝输送和机械排风等系统。实践证明,“干法”净化已经成为了电解铝企业处理有害烟气的最为有效的方法。

2.2 固体废弃物处理

鉴于槽内衬和耐烧材料属于电解铝企业高危废弃物,应严格按照《危险废物贮存污染控制标准》相关要求进行贮存和管理。生产过程中产生的碳渣可经阳极组装车间进行处理后再利用,残阳极可进行返修再利用;生活废弃物进行统一分类后交由环卫部门进行处理;其他固体废弃物堆放和处理应按照相关要求进行处理。

2.3 水污染处理

对于含有氟化物和氰化物等污染物的水体必须经过净化装置进行净化后方可排放;对于冷却水需建立循环利用系统进行处理,即电解车间、煅烧、生阳极系统等生成的冷却水需经冷却水塔进行处理,铸造车间产生的冷却水经除油、冷却系统进行处理,冷却水经处理后进入循环系统直接利用;生活污水进入污水处理厂进行净化。

3 结束语

电解铝生产过程中产生的废气、固体废弃物等若不加以控制则会对空气、土壤和水体造成污染。加强有害气体、污水和固体废弃物处治理,严格控制污染物排放总量是当前国家对于电解铝企业的硬性要求,同时也是电解铝行业提升自身形象的重要途径。在处理电解铝废弃物处理时,应有选择、有重点地制定治理方案,尽可能地使废弃物回收利用,这样不仅有助于环境保护,也有利于降低企业经营成本。另外,应加强电解铝生产工艺的优化和环保设备的投入,从根源上控制污染物的排放,这也是发展环保型电解铝行业的必经途径。

参考文献

[1]张西林,马超,熊如意,等.对电解铝厂周围氟污染的环境影响评价[J].中国环保产业,2012(10):41-44.

[2]谢静.电解铝废槽衬环境污染分析及对策[J].河南林业科技,2008,28(2):63-64.

[3]萧筱瑜,张静.电解铝生产污染防治措施分析[J].广州化工,2013, 41(20):123-124.

废气净化篇7

关键词:挥发性;有机化合物;污染净化

环保已经成为社会生产生活发展需要注意的要点问题,尤其是挥发性有机化合物,作为大气污染的重要组成部分,需要根据其具有的性质来采取对应的技术进行治理,降低对环境的影响。就现在工业生产现状来看,涉及到挥发性有机物排放的行业众多,具有浓度高、排放强度大、污染种类多以及持续时间长等特点,对局部空气质量影响严重。对于挥发性有机化合物污染净化技术来说,常见的如催化加氢脱氮、光催化氧化法、催化水蒸气重整以及催化燃烧法等。

一、挥发性有机化合物特点

挥发性有机化合物对环境存在严重的污染,且对人体健康有着较大的影响,生产排放后,经常会伴有刺激性味道散发在空气中,对人眼、鼻、呼吸道产生刺激,情况严重的还会造成心、肝、肺等内脏与神经系统的危害,还会产生癌变。另外,因为具有高挥发性,可以与大气内NO2产生反应生成O3,随着大气环境中O3含量的增加,会形成光化学烟雾,对人体健康和农作物生长产生影响。常见的挥发性有机化合物如脂肪类碳氢化合物、芳香类碳氢化合物、酮、醛、醇、酯酸类化合物以及胺腈类化合物等。产生挥发性有机化合物固定来源包括石油化工、农药、制药、工业溶剂生产等;而移动源包括内燃机排放尾气;室内源包括旅馆、饮食业、室内装修以及家庭烹饪排放的油烟[1]。

二、挥发性有机化合物污染净化技术分析

1.吸收法

应用吸收法对挥发性有机化合物污染进行净化,主要是利用挥发性化合物具有的物理和化学性质,通过水或者化学吸收液完成吸收。现在常见的吸收装置如填充塔、喷淋塔、气泡塔、洗涤器等。为提高污染净化效果,保证较高的吸收效率,往往需要根据设备自身阻力和操作难易程度,选择最为合适的吸收塔类型,可以根据是需要选择一种或者多种联合作业[2]。其中,要重点分析不会产生二次污染和废弃物在处理问题,降低作业实施难度。

2.活性炭吸附法

在应用此种方法进行污染精华时,需要从挥发性有机化合物特点出发,保证所选活性炭具有较高的吸附能力,尤其是对于低浓度区域,更要保证良好的吸附效果,减小阻力产生的影响。同时,还要具有良好的再生能力,且再生后具有良好的表面活性。为提高污染物净化效果,所选活性炭应易获取,且成本合适。在实际作业中,吸附装置内能够满足不同方式接触传质,且可以根据作业要求,选择固定吸附床、流动床或者移动床,相比较而言,移动床和流动床具有更好的传质效果,可用于大气污染净化。另外,还要将吸附温度控制在合理范围内,应从吸附理论出发,即降低温度可以提高吸附效果,总结经验来看,最佳吸附温度不超过40℃。在固体表面吸附气体与蒸汽时会放热,该热量为吸附热,其与气体性质相关,通过不断释放吸附热来提高吸附床温度,部分情况下床温短时间内急剧上升,如果不采取措施处理,甚至会出现着火或者爆炸情况[3]。因此,为提高吸附净化过程的有效性和安全性,应将吸附热控制在爆炸下限的1/2以内。

3.吸附-解吸-催化燃烧法

在应用此种方法进行污染净化时,技术原理即将低浓度、大气量含挥发性有机化合物废气输入到回转式高效吸附区,有机物被吸附且完成净化后,将气体排出。在这个过程中,转动的吸附床还要经过一段小区进行热解吸,解吸释放高浓度VOCs废气送往催化器催化燃烧,在燃烧时产生的热量,一部分对小区进行预热然后继续解吸,另一部分则对解吸后的高浓度挥发性有机化合物废气进行加热。

4.催化燃烧法

在选择用催化燃烧法净化时,需要应用适当的催化剂,使得挥发性有机化合物在较低温度下,进行深度催化氧化为CO2和H2O。与其他净化方法相比,催化燃烧法在实际应用中,废气去除率更高,基本上均可以达到90%以上,且在处理过程中不会产生二次污染物。

5.生物过滤器法

应用生物过滤器对挥发性有机化合物废气进行净化处理,本质上就是将有机化合物组分作为微生物生命繁殖的能源和养分,经过代谢降解处理,使废气转化为无毒CO、H2O以及细胞组成物质。含有CO2和H2O废气生物处理装置构成包括生物洗涤塔、生物滴池、生物过滤池等,废气去除率可以达到90%~95%。

三、优势菌生物滴滤塔净化二甲苯废气试验分析

1.试验装置

1.1筛选优势菌

主要仪器有恒温生物摇床、立式电加热高压蒸汽灭菌锅、LRH-150B、恒温电烘箱、XYJ-2台式高速离心机以及超声振荡器和接种划线工具。主要培养基包括筛选驯化培养基、分离保存培养基以及活化富集培养基。选择污水处理厂活性污泥混合液充分曝气活化24h后,利用超声振荡器处理20min使其污泥絮体均匀分散,然后将5L处理好的污泥混合液加入到筛选驯化培养基内,通过摇床试验对微生物进行好氧振荡培养[4]。其中,摇床温度控制为28℃,转速为110r/min。待每个驯化周期结束后,取5mL培养液移至新鲜培养基内,观察其生长状况。多次移种后无菌操作和平板划线分离,放置培养箱内48h,挑取单一群落在牛肉膏斜面上接种,继续培养一段时间后放置冰箱内保存,将其作为后续试验的菌种来源。最后通过对均匀形态、细菌个体观察,生理化试验、乙酰甲基甲醇试验和葡萄糖氧化发酵测定等环节,完成优势菌种的鉴定。

1.2滤塔挂膜

将筛选出的优势菌种接种在活化富集培养基内,好氧震荡48h后,放置高速离心机内离心10min,用磷酸盐缓冲液清洗,再次离心10min,将得到的菌体制成菌悬液[5]。滤塔挂膜即将制备的菌悬液滴入滤塔填料内,并向滤塔内通入含有二甲苯的气体,菌悬液内细菌会附着在填料表面生长繁殖逐渐形成生物膜。

1.3二甲苯废气净化

在微生物接种后,同时向滤塔内通入喷淋液和含有二甲苯的气体,设定喷淋液流量为25mL/h,气体流量为0.2m3/h。滤塔在该气量下具有一定去除能力后,便可缩短气体在滤塔内停留的时间,直到气体流量升高到1.0m3/h。如果气体停留时间比较长时,应降低喷淋流量,可以更好的达到配方标准。

结束语:

挥发性有机化合物污染物,为降低其对大气环境和人体健康的影响,需要根据其所具有的特点,来选择最为合适的净化处理技术,控制好净化处理技术要点,降低外部各因素的影响,提高净化处理效果。

参考文献:

[1] 沈迪新,胡成南.挥发性有机化合物污染的净化技术[J].中国环保产业,2002,12:30-32.

[2] 张则菊.气相色谱―质谱联用法测定食品中塑化剂与水中挥发性有机化合物[D].辽宁师范大学,2013.

[3] 戴宇.锰基催化剂上含氯挥发性有机化合物的催化燃烧[D].华东理工大学,2012.

[4] 王震文.膜生物过滤技术净化工业废气中挥发性有机化合物性能研究[D].华东理工大学,2014.

废气净化篇8

1水生高等植物对废水的净化机制探讨

1.1香蒲植物净化铅/锌矿废水实例研究

宽叶香蒲属单子叶多年生挺水植物,具根状茎,以其他下茎不断延伸而迅速发展成群体,能形成水生植物净化塘中占绝对优势的种群。中山大学环科所和韶关凡口铅/锌矿环保监测站针对凡口尾矿废水排放量大且重金属含量大的污染状况,设计和利用当地的废矿石和沙砾建造了一个香蒲净化塘。根据实验结果 分析 ,未处理的铅/锌矿废水含pb、zn、cd、总悬浮物含量均超标,但经过净化塘后,ss去除率达99%,pb、zn、cd去除率达84%~90%,各项指标达到 工业 排放标准。黑灰色废水被香蒲群落变成清澈的出水,香蒲植物也能茂盛生长,塘内还出现了多种藻类、鱼类和茳芏植物。

1.2红树林植物净化含油废水和城市污水实例研究

红树林属于热带海岸特有的湿地生态系统,包括陆生生态系统和水生生态系统,具有防风浪,保护农田的生态功能,且因其生物资源丰富、景色美观,具有较高的 经济 价值和观赏价值。对于污水处理,红树林也有独特作用。

李玫等用秋茄人工模拟湿地进行了为期一年的含油废水净化试验,发现随含油废水处理浓度升高,植物对油的相对净化率是:50mg/l组为75.76%,100mg/l组为67.55%,而800mg/l组为42.94%,可见净化效率随浓度的增大而增大。含油量大小为根>叶>茎>枝。实验还表明:秋茄净化含油废水的适宜浓度应不大于200mg/l.

白骨壤也是一种多年生的红树植物。同样将正常、5倍、10倍浓度的人工合成污水排放到白骨壤人工模拟湿地中,一年的实验证明:白骨壤模拟湿地对污水中重金属净化率均在88%以上,其中pb净化率达97.91%,zn净化率为89.47%;n净化率为88.04%。因n、pb、zn被白骨壤吸收作为植物体的架构元素,吸收量较大,故而净化同一种人工污水时与桐花树(净化率n:60.58%,pb:93.62%)、秋茄(净化率n:60.58%,pb:93.44%)相比,净化率最大。可见,白骨壤对含有重金属的污水有很强的适应性和耐受性。

1.3草本植物净化造纸废水实例研究

郝登峰等选用7种水生植物:水葫芦、水花生、大漂、浮萍、风车草、宽叶香薄及茭白,建立植物处理系统处理造纸废水,将废混合制成3个浓度级废水注入植物系统里。通过实验,7种植物对废水中悬浮物去除率均在70%以上,其中水葫芦、水花生、风车草为84%以上;对tn、tp的去除能力大小为:水葫芦>大漂>水花生>浮萍,风车草>宽叶香蒲>茭白。但是codcr和bod5去除率均不到50%。废水色度也只有水花生、水葫芦去除效果明显,水花生9天后去除率可达73.33%,水葫芦可达54.67%,使得发黑发臭的水处理得比较清澈。

1.4净化机理探讨

1.4.1植物自身的性状和抗性能力

水生植物由于长期生活在一种缺氧、弱光的环境中,本身的形态解剖结构上形成特殊性状。根、茎、叶形成完整的通气组织,保证器官和组织对o2的需要;叶片呈肉质,如香蒲表皮有厚角质层,栅栏组织发达,污染点处的根、茎、叶表皮细胞排列紧密等结构能抵抗因污染受害而引起的同化功能下降、水分过分蒸腾,增强了香蒲植物的耐污性和抵抗力。

1.4.2植物的吸收、富集作用

水生植物根系发达,利于吸收水中物质。如凤眼莲长年过程需要大量的n、p营养物,它吸收后生长迅速,对于净化富营养化水体效果明显;香蒲植物吸收废水中的重金属时,吸收能力大小依次是根>地下茎>叶,并且按照一定的比例从生境中吸取各种元素,形成新的动态平衡,防止对某元素吸收过多而引起毒害。植物吸收污染物后,尤其是重金属离子、农药和其他人工合成有机物等,便富集、固定在体内或土壤中,减少水体中污染物量。研究表明,pb、zn进入香蒲体内,主要积聚在皮层细胞中的细胞壁上,只有少量进入原生质,可见细胞壁对重金属有较高的亲和力。

1.4.3净化塘的沉降、吸附和过滤作用

净化塘里水生植物生长旺盛,根系发达,与水体接触面积大,形成密集的过滤层。如香蒲,它的地下茎和根形成纵横交错的地下茎网,水流缓慢时重金属和悬浮颗粒被阻隔而沉降,防止其随水流失。同时又在其表面进行离子交换、螯合、吸附、沉淀等,不溶性胶体为根系黏附和吸附,凝集的菌胶团把悬浮性的有机物和新陈代谢产物沉降下来。

1.4.4生化作用

植物净化污水的过程中生化作用也起到很大作用,这方面已有大量的 研究 。光合作用产生的o2和大气中的o2直接输送到植株各处,并向水中扩散,一方面根系通过释放o2,氧化分解根系周围的沉降物;另一方面使水体底部和基质土壤形成许多厌氧和好氧小区,为微生物活动创造条件,进而形成“根际区”。这样,植物代谢产物和残体及溶解的有机碳给湿地中的菌落提供食物源;同时,大量微生物在基质表面形成灰色生物膜,增加了微生物的数量和分解代谢的面积,使植物根部的污染物(富集或沉降下来的)被微生物分解利用或经生物代谢降解过程而去除。富营养化水体中,也可依靠水生植物根茎上的微生物使反硝化菌、氨化菌等加速nh3-n向no2-n和no3-n的转化过程,便于水生植物的吸收与利用,减少底泥向水体中的营养盐释放。

1.4.5对浮游藻类的竞争抑制作用

富营养化严重的水体中,藻类疯长,水质恶化。栽种水生植物后,同浮游藻竞争营养物质以及所需的光热条件,同时分泌出抑藻物质,破坏藻类正常的生理代谢功能,迫使藻类死亡,以防止其带来的毒素。这样可以提高水体透明度,改善水中的do含量,促进沉水植物与共生菌的生长,进一步净化水质。

1.5植物净化效应的 影响 因素

1.5.1净化植物的选择

净化污水的高等植物有许多,常见的有凤眼莲、水花生、香蒲等,但考虑到具有较高的净化率、低成本、耐冲击负荷等因素时,需选择出理想的净化物种来。华南环科所进行了2年的实验,对华南地区11种高等水生植物从净化能力、抗逆性、管理难易、综合利用价值和美化景观等5项方面综合评价,筛选出黑藻和假马齿苋为较优净化物种。因此可见,植物净化能力大小关系到净化效率的高低。

1.5.2废水ph值的大小

ph值不同,废水能植物的生长状况影响不同,进而影响其净化效率。用水葫芦、水花生等7种草本植物净化酸性造纸废水结果表明,废水的ph值最低不能低于5.84,否则植物的生理机制受损,净化功能下降,导致植物不能很好地吸收重金属。

1.5.3废水的性质

废水中有机污染物浓度高低、n和p含量大小以及污染物是否易降解等性质,对植物净化效率而言很重要。如凤莲处理炼油废水实施运行最佳条件为:65mg/l<cod<130mg/l,临界有效点为cod=262.6mg/l13.一旦超过临界点,植物受伤程度越大,净化作用就越小。同样,n、p营养物质是植物生长所必需的,但高浓度反而有害。对水葫芦而言,造纸废水中n、p浓度为15mg/l~20mg/l左右净化最好。

1.5.4净化时间

净化时间的长短及季节变化对植物净化效率的影响也不容忽视。水生植物凤莲净化富营养化湖水滞留时间≤2d时,净化结果不明显;延至7d时,净化效率提高50%~80%。同时,植物在温度变化不大的气候下正常发挥其功能,但严寒天气就会使一些植物冻坏,生理代谢受阻,不能很好地净化污水。如华南地区气温下降至4摄氏度时,静态培养的凤眼莲就会发生冻害,难以越冬。

当然,植物抗病虫害能力、废水流量及流速、废水中溶解氧的大小等因素同样制约着水生高等植物的净化能力。

2植物净化的利用与 发展

2.1水生高等植物净化技术的优势

水生高等植物治理污水是一种新兴的生物工程技术,有以下4个优点:①成本低,对环境扰动小;②有利于保护和改善原有环境,有较高的美化环境价值;③治理污染时可以收获植物和生物能源,获得 经济 效益,如水葫芦净化塘,每年每公顷可产沼气58400m3,折合节约标准煤46.72t;④操作简单,投资少,其基建投资、运转费用和能耗均为常规二级处理 方法 的1/3~1/5.

2.2现状 问题

目前 水生高等植物净化污水还存在着一些问题。首先,管理上控制不当,未能及时打捞过剩的或干枯的植物残体,就会致使二次污染的产生(如富营养化、有毒物质的释放)。其次,一种植物一般只能吸收降解一种或有限的几种环境污染物,而对其他浓度高的污染物可能会中毒,因此对于推广作用有局限性。再次,水生植物自身在污水生长,极易在水面屏蔽产生自屏蔽效应,会压迫环境;同时,密度过大也会滋生蚊虫细菌。第四,不能 科学 地筛选出抗性大的植物,并且净化的系统工艺设计也未考虑最优化配置和后处理问题,导致净化效果不明显,效率不高。

2.3今后的发展方向

⑴可继续采用水生植物多种组合建配置或多级水生植物串联塘,形成一定的净化层次,这样有利于生长期和净化功能的季节性交替互补。

⑵对于冬季低温期处理污水,要对其中不耐寒的植物采取覆膜或改变生态位的越冬措施。

⑶可与其他工程技术结合,建成复合污水处理工艺。如有学者采用煤灰吸附和植物氧化塘复合处理废水,分为三个系统:混合吸附快速沉降水葫芦氧化塘自净系统,去除cod为80%以上,水也可以供生产循环使用。

⑷可将分子生物学和基因工程技术 应用 于治污的高等植物,推广超累积植物,通过改进、改变使其生长周期缩短,生长速率加快,提高净化能力。

上一篇:室内空气净化范文 下一篇:手术室净化范文