低压电缆范文

时间:2023-03-08 20:46:33

低压电缆

低压电缆范文第1篇

关键词:低压电缆、绝缘性、阻燃性、耐火性

1 前言

随着我国经济建设的不断深入和科学技术水平的不断提高,电缆作为主要的电力传输载体已经被广泛的应用人们的日常生活的各个方面,并起到不可替代的作用。电缆属于电工产品,主要功能是进行电力和信息传输,电缆是建设电气化、自动化和现代化的基础生产资料,是制造各种飞行器、电子仪表和高端智能装备必不可少的材料。电缆按照使用电压的情况一般可以分为五类(见表1),弱电电缆、低压电缆、中压电缆、高压电缆和超高压电缆。低压电缆作为建筑工程和电力工程最常用的电缆,其质量和品质关系到整个工程的成败,如何提高低压电缆的品质是一个值得研究的课题[1]。

2 影响低压电缆品质因素

原材料:产品质量的基础,必须把原材料(铜线和胶料)质量关,确保所使用的原材料质量符合要求。可通过自检、委托实验室检验或由供应商提供检验报告由工厂进行验证等方式来实现。

接地:生产过程中,铜线必须接地并与火花机的接地保持一致,以确保火花试验的有效,同时确保生产人员的防触电保护。

可采用放线盘或收线盘来决绝铜线的接地问题。

挤出:关键环节,应根据不同的胶料选择适当的溶化温度,通常挤出机的料嘴温度低,中间各段温度大致一致,机头温度最高。生产过程中应定时对各段温度进行监测并记录,以确保胶料不至于过度或欠熔化。不论是过度熔化还是欠熔化,都将导致电线绝缘性能降低。

火花实验:目前,电线挤出后,工厂都是采用水来对电线进行冷却,因此进行火花实验之前就必须对电线表面的水分进行去除,以避免电线表面的水分导致的闪络现象,可采用风吹等方式出去水分。火花实验是电线生产的一个关键环节,要根据电线的绝缘厚度选择相应的实验电压,过低不能确保电线质量符合要求,太高对电线绝缘性能有伤害。火花试验中,必须确保电线在高压试验区停留的时间不少于0.5s,可通过调整收线速度进行控制。实验过程中,电线表面通常会产生静电,因此火花实验后应立即将电线表面的静电去除,以避免静电对生产人员造成伤害。为确保火花实验有效,火花实验必须定期进行校准检定,进行有效的运行检查并录[2]。

直线性调整:调整各生产设备,保证生产过程中电线处于一条直线上,尤其是机头上导体进出端,应尽量使导体与进出口同心,从而使电线的平均绝缘厚度与最薄点厚度更接近,有利于电线绝缘性能的提高和原料的节省

3 低压电缆品质检测

依据现行的国家标准,电线电缆检测项目主要包括外形尺寸与结构、机械性能、电性能及阻燃耐火特性检测等项目。作为电流传输的主要功能,电性能是检测时的重要指标,试验的主要内容有直流电阻试验、绝缘电阻试验,工频耐压试验等。除了电性能这种关键项目之外,电线电缆的结构尺寸,包装和标志也要进行检测。对于特殊用途或特殊行业使用的电线电缆,如防火电缆和耐火电缆等还要求其阻燃性,低烟、无卤及耐火特性等指标符合国家标准要求[3]。

电线电缆的外观检测,主要指产品表面是否圆整光洁,有无毛刺、裂纹、斑点、油污等缺陷和杂质,另外,其氧化程度和腐蚀度也要符合要求。尺寸检测包括外径、厚度、偏心度、扇形高度、节距、截面和密度等相关检测。取样方法应在至少间隔 1 m 的 3 取 1 段电线试样,然后测量。各种电线的绝缘厚度不应小于相关规定。电线电缆的结构检测可分为断面检测、护层检测、缆芯结构检测和绝缘线芯检测。标志的检查包括标志上是否有电压等级、型号、生产厂家等信息,这些信息是否清晰、是否具有耐擦性能等。

电线电缆机械性能检测主要包括机械强度试验、弯曲性能试验、扭曲性能试验和卷曲性能试验。机械强度要求主要体现为抗拉强度和伸长率。弯曲性能的好坏,取决于产品的弯曲次数,即材料在弯曲试验机上连续、均匀、反复弯曲,直到折断的前一次的总次数。扭曲试验是确定金属线材在扭转作用下的塑性变形和判断金属组织是否均匀和有缺陷的重要手段。

导体的电性能的优劣直接影响到电线电缆的使用。电性能主要包括直流电阻检测、绝缘电阻检测和工频耐压试验。定律进行测试,即 R = ρL/S,其中 ρ 为电阻率,L为导体长度,S 为导体截面积。绝缘电阻是衡量介质绝缘性能好坏的物理量,是电线电缆产品绝缘特性的重要指标,反应了产品承受电击穿或热击穿的能力,同时也反应了绝缘材料在工作状态下的耐损耗的能力。产品的绝缘电阻质量主要取决于所选用的绝缘材料,测定绝缘电阻是检测材料质量的一种方法,其准确与否直接影响电线电缆的质量。常用的测试方法包括直流比较法和电压-电流法,直流比较法的测量范围为 105~2×1015;电线电缆的绝缘强度取决于其绝缘结构与绝缘材料承受电场作用而不发生击穿破坏的能力。为保证电线电缆的安全工作,一般要进行电压试验,最常用的是工频耐压检测。工频耐压检测是对电线电缆产品交流电压的试验,标准规定试验电压为交流,频率为 49~61 Hz,保证交流电压值近似于正弦波[4]。

阻燃特性测试就是对阻燃电缆进行燃烧,测试其在特定条件下延缓和阻止火焰燃烧的能力。根据初燃时间的长短及自行熄灭时间的快慢速度对电缆的阻燃性分 A类、B类、C 类和D 类四类,以评定阻燃性能优劣[5]。

耐火特性是指在试验条件下,试样在 750℃以上的高温火焰中燃烧,在 90 min 内仍能保持正常传输电流的性能。电缆的耐火特性体现在燃烧情况下其在一定时间内仍然能保持正常工作[6]。

4 结束语

低压电线电缆对人民生活安全和国民经济发展有着极其重要的作用。因此,低压电线电缆使用者,产品质量监督者要了解相关的检验标准,根据自身情况和需要,合理确定送检产品和检测项目;适时进行产品检测,保证使用电线电缆的质量,进而保障国家经济建设和用电安全。

参考文献

[1] 赵霞. 我国电力电缆行业现状与产品质量提升.[J]机械工业标准化与质量,2013(02)

[2] 施代. 浅谈电线电缆检测项目及检测方法[J]. 能源与节能, 2013.

[3] 闫永泽.低压电缆故障解决方法己见[J].北京电力高等专科学校学报 ( 自然科学版 ),2011(6).

[4] 秦永元.卡尔曼滤波与组合导航原理[M].西北工业大学出版社,1998:25-72

[5] 张英男.浅谈电线电缆的检测项目及检测方法[J].科技促进发展 ,2011(2).

低压电缆范文第2篇

关键词:OPLC ;电力通信 ;光纤复合低压电缆

中图分类号:TM248文献标识码:A 文章编号:

引言

随着电力工业的迅速发展,用户对用电可靠性的要求越来越高,配网自动化成为了我国电力系统自动化领域的新兴热点,是电力行业发展的重要阶段。要实现配电网自动化,关键在于通信。目前配电及用户侧的通信难题一直制约着配电自动化的发展,其中传输通道是关键中的关键。理想的解决了通道的问题,就解决了配网自动化的问题。同时低压集抄的上线率不能满足要求的问题也将得到彻底解决。电能的计量,线损的计算都将能够实现自动化,真正做到线损计算同期。

目前用OPGW、ADSS等特种光缆已建成先进可靠的电力专用光纤通信网络,但配电侧的通信通道一直没有得到很好的解决。总体上呈"骨干网强、接入网弱"、"高(电压)端强,低端弱"的态势,配电/用户接入侧通信差距较大、通信网基础最薄弱。配网自动化,低压集抄一直都面临着难题。目前大量使用低压载波及无线通信技术,由于环境复杂、电磁干扰等因素,实际的应用效果并不理想。

1. 电力对通信技术选择的基本要求

1.1通信的可靠性要求

在电力设备发生故障时,应能抵抗事故所产生的瞬间强电磁干扰,完成故障诊断,故障隔离和恢复非故障区段供电的通信任务。

1.2通信的时延要求

在配电网及低压集抄网,对通信时延的要求也是一个重要指标,应考虑电磁干扰对通信时延的影响。

1.3通信的双向性要求

对主站来说,不仅向终端下发控制命令,也需接收终端上传的数据,各项功能均要求双向通信。因而,系统各层次之间的通信是双向的,通信系统必须具有双向通信的能力。

1.4网络规模广、覆盖面大要求

配电及集抄网是末端网络,直接面对广大的电力用户,因此网络规模巨大,设备数量、种类十分庞大。要解决这样一个巨大的、覆盖面广阔的网络通信问题,对通信网络规模和覆盖的要求很高,数据采集系统的前端服务器负载巨大。

1.5通信建设成本考虑

包括建设投资,运行、维护和使用成本。由于涉及的通信网络规模巨大,网络的建设投资,运行、维护和使用成本都十分可观。成本问题也是目前制约配电及集抄网通信发展的关键问题,也是选择各种通信方案时要考虑的最重要的问题之一。

2. 通常的有线通信应用选择分析

2.1光纤通信技术

光纤通信技术具有带宽大、可靠性高、可扩展性强等优点,是当前及未来十年内主流的通信技术,作为配网自动化通信网络,工业以太网和PON是两种主流的通信技术,是配网自动化等的主要通信方式。

2.2中低压载波

中低压载波技术传输速率低、存在信号衰减大、噪声源多且干扰强、受负载特性影响大等问题,对通信的可靠性形成一定的技术障碍,具体应用时需要软、硬件技术结合完成组网优化,运维较困难。

因此,中低压电力线载波仅适用于电能表位置分散、光纤布线困难、用电负载特性变化较小的台区,例如城乡公变台区供电区域、别墅区、城市公寓小区等。

3. OPLC技术特点

OPLC全称为光纤复合低压电缆,是将光纤复合在低压0.6/1KV及以下配、用电网用中的光纤复合电缆产品,主要用于智能小区或办公楼等配用电网分支,由管道、隧道或直埋等接入光-电分线箱,可垂直或水平布线,引入智能电表和光器件终端。此外,由于接入方式多样性及使用环境的复杂性,光纤复合在低压电缆可根据需求定制,按照电压不同、光纤芯数不同、结构不同进行个性化定制。光纤复合低压电缆最大的特点是融合了光纤通信与电力传输的功能,该产品主要是基于产品的功能以及使用环境等方面考虑进行设计和开发,相比单一功能传输线缆而言,有5个特点。

3.1集光纤和电力输配电缆于一身,避免二次布线,可有效降低施工、网络建设等费用。相比传统的FTTH而言,使用光纤复合低压电缆作为智能电网用户端接入方案,节约大量的金属、管道、塑料等资源,可有效降低进入小区和用户的各项成本,是目前性价比最高的“最后一公里”接入方案。

3.2适用于多种业务类型,适应性强,扩展性强,产品适应面广。使用光纤复合低压电缆,配合相应的设备和器件,由此构建主流的XPON(EPON和GPON)技术,可在一根传输线上实现多种业务,如IPTV、互联网接入、多媒体电话,语音通信,家庭智能电表等业务。

3.3具备较强的机械性能,如抗冲击性能和良好的耐测压性能,环境适应能力强。在研发该产品时,要充分考虑到产品的使用环境的复杂性,宽通研发的光纤复合低压电缆按照GB/T7424中E1、E3、E4进行拉伸、压扁、冲击等试验,均符合并优于标准的要求。

3.4绿色和安全性能优越。主要考虑到光纤复合低压电缆用于用户接入,在产品设计中融入无卤阻燃、耐火等特性思路,使用绿色环保的材料,基于安全的考虑,使用阻燃、耐火材料。宽通的光纤复合低压电缆完全符合GB/T18380.3、GB/T19216.21、GB/T17650、GB/T17651.2等的要求。

3.5光单元与电力电缆长期工作温度相兼容。考虑到光纤复合低压电缆敷设之后,使用年限较长,光单元与电力电缆长期工作温度相兼容性是非常重要的一个问题。因此须按照GB/T7424、YD/T629各项光学性能指标要求,各项性能应符合GB/T12706.1、GB/T5023和JB/87344的要求。

4. OPLC应用建议

4.1OPLC具有很高的性价比

OPLC利用一条光电光电复合缆建设沿电力线路的光缆,比常规的导线+普通光缆,材料成本可节省约10%,还可以节省一次施工费用,既有成本优势,又有施工工程量优势。另外,技术方面, OPLC由于光缆单元与强电单元复合,相对ADSS可以防止光缆被恶意破坏,有绝对的防盗优势,而且对线跨越高度又明显优于ADSS光缆,安全可靠性大大提高,因此,方案二采用OPLC具有相对技术及经济优势,建议在0.6/1kV 及以下电压等级的低压配用电网中敷设光缆优先采用方案二。

4.2OPLC成为电力光纤到表到户的创新解决方案

我国智能电网在接入端光纤化才刚刚起步。国家电网和南方电网的专家指出,智能电网一定需要利用光纤光缆,特种电力光缆和光电复合缆强力支撑。我国利用OPGW、OPPC、ADSS等特种光缆已建成世界上最大的、先进可靠的电力专用光通信网络,其应用水平处于国际先进。总体上呈"骨干网强、接入网弱"、"高(电压) 端强,低端弱"的态势,配电/用户接入侧通信差距较大、通信网基础最薄弱。低压配、用电网通信技术已成为制约智能电网应用的瓶颈。由于传统FTTH方案在用户端改造和铺设的成本过高,目前在用户端接入电网的光纤化率几乎为零,我国智能电网在接入端的光纤化刚刚起步,因此,PFTTH电力光纤到表到户方案采用电力OPLC成为电力光纤到表到户的创新解决方案,主要适用于 0.6/1kV 及以下电压等级,填补了电力光纤到表到户的空白,是解决低压配网、低压集抄及入户通信网所需要的先进、可靠通信介质。

5. 结语

光纤通道是目前最为理想的传输通道,因此积极探索尝试考虑新的技术手段实现以光纤通道作为配电侧的通信通道,从而解决配电侧的通信通道问题就显的十分必要。“光电复合电缆”,具有光电合一的特性,不会给原有线路增加额外负荷,能够节约空间资源。一次施工就能传输电能又能提供光纤通道,又节省了二次施工的费用。还能很好的解决光缆的电腐蚀,光缆的防雷问题。

参考文献:

[1]陆春校;徐眉;魏学志 .光纤复合低压电缆前景展望与工艺结构探讨 [J].电线电缆 .2011,(2): 13-18

[2]黄秋明;李伟豪.佛山市区配电网可靠性分析【J】.佛山科学技术学院学报( 自然科学版).2006,(9):23-25

[3]张刚.电力光纤到户光缆检测系统的设计[J].现代电子技术,2011,04(04):56-59

低压电缆范文第3篇

【关键词】 电力电缆 故障 测距仪 定点仪 低压脉冲法

1 “高压电缆的高阻故障测试仪”测试方法

该仪器测试电缆故障的方法有三个步骤:

(1)先用测距仪测距离。其实,先要判断电缆故障是高阻还是低阻或者是接地,根据这个条件采用不同的测试方法。如果是接地故障,就直接用测距仪的低压脉冲法来测量距离;如果是高阻故障就要采用高压冲击放电的方法来测距离,用高压冲击放电的方法测距离时又要许多的辅助设备:如高压脉冲电容、放电球、限流电阻、电感线圈以及信号取样器等等,操作起来既麻烦又不安全,具有一定的危险性,更为烦琐的是还要分析采样波形,对测试者的知识要求比较高。(2)查找路径(如果路径清楚这一步可以省掉)。在查找路径时,要给电缆加一信号(路径信号发生器),再用接收机接收这个信号,沿着有信号的路径走一遍,就确定了电缆的路径。但是,这个路径的范围大致要在1-2米之间,不是特别准确。(3)根据测出的距离来精确定位。其依据是打火放电产生的声音,当从定点仪的耳机听到声音最大的地方时,也就是找到了故障点的位置。但是,由于是听声音,所以,受环境噪音的影响,找起来相当费时间,有时要等到晚上才可以。当遇到交联电缆时,就更费时间了,因为,交联电缆一般都是内部放电,声音非常小,几乎听不到,最后只有丈量了。

因此上说,用这种方法可以解决大部分的以油侵纸作绝缘材料的电力电缆故障,对于近几年出现的以交联材料和聚乙烯材料作绝缘材料的电缆故障,测试效果不是太理想,原因是打火放电所产生的声音往往很小(电缆外皮没有损伤,只是电缆内部放电),遇到这种情况时,就只有用其它方法来解决了。

2 低压电缆使用特点

在多年的实际工作中,我们发现高压电缆和低压电缆的故障各有许多不同之处,高压电缆故障多以运行故障为主,且大多数是高阻故障,而高阻故障又分泄露和闪络两大类型;而低压电缆故障只有开路、短路和断路三种情况(当然,高压电缆也包括这三种情况)。

3 DW型低压电缆故障测试定位系统

针对低压电缆的以上特点和广大用户提出的建议以及我们对各个地方的实际使用情况等等因素的综合考虑,研究人员开发出DW型低压电缆故障测试定位系统:该系统包括测距仪和定位仪两部分。DW型系统的测距仪是完全智能化、人性化的设计,它自动完成电缆故障点的测试,无须人工分析故障波形,直接报出故障点距离和故障性质。采用电池供电,方便野外工作,体积小,重量轻,携带方便,无须任何辅助设备。DW型系统的电缆故障定位仪是针对直埋低压电缆的埋设路径,埋深及故障点位置进行同步定位测试的仪器。因为,它是采用电磁感应和跨步电压原理设计的低压电缆故障定位系统,不需要升压设备,从而保障了电缆、电器设备及测试人员的人身安全。同时对电缆路径、故障点位置及埋设深度同步测试。不同于以往采用加高压迫使故障点放电,根据声音大小进行故障定位的方法,使本来烦琐复杂的故障定点工作变的十分轻松简单。它基本上满足了低压电缆故障测试的全部条件。

4 低压电缆故障类型

我们知道低压电缆绝缘要求较低,同时运行过程中电流较大,出现故障后有明显的特征,具体归类如下:

第一类故障:整条电缆被烧断或某一相被烧断,此类故障造成配电柜上的电流继电器动作,电缆在故障处损坏相当严重。

第二类故障:电缆各相都短路,同样,此类故障造成配电柜上的电流继电器和电压继电器都动作,电缆在故障点损坏也很严重(可能是受外力引起的)。

第三类故障:电缆只有一相断路,电流继电器动作,故障点损伤较轻但表露较明显。可能是该相电流太大或者是由电缆质量造成。

第四类故障:电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。

5 DW型低压电缆故障测试

DW型低压电缆故障定位系统中的测距仪和定位仪结合使用能非常方便地完成测试。同时针对不同故障特征及电缆长度也可独立完成测试。具体如下:

低压电缆范文第4篇

关键词:电力电缆故障解决方法在我国电力电缆较普遍使用是上世纪60年代以后,等级有限,使用范围较窄,当时为解决电缆故障,科研人员研制生产出了以“冲闪法”为原理的电缆故障测试仪。该仪器测试电缆故障的方法有三个步骤:

第一步先用测距仪测距离。其实,先要判断电缆故障是高阻还是低阻或者是接地,根据这个条件采用不同的测试方法。如果是接地故障,就直接用测距仪的低压脉冲法来测量距离;如果是高阻故障就要采用高压冲击放电的方法来测距离,用高压冲击放电的方法测距离时又要许多的辅助设备:如高压脉冲电容、放电球、限流电阻、电感线圈以及信号取样器等等,操作起来既麻烦又不安全,具有一定的危险性,更为烦琐的是还要分析采样波形,对测试者的知识要求比较高。

第二步是查找路径(如果路径清楚这一步可以省掉)。在查找路径时,要给电缆加一信号(路径信号发生器),再用接收机接收这个信号,沿着有信号的路径走一遍,就确定了电缆的路径。但是,这个路径的范围大致要在1-2米之间,不是特别准确。

第三步是根据测出的距离来精确定位。其依据是打火放电产生的声音,当从定点仪的耳机听到声音最大的地方时,也就是找到了故障点的位置。但是,由于是听声音,所以,受环境噪音的影响,找起来相当费时间,有时要等到晚上才可以。当遇到交联电缆时,就更费时间了,因为,交联电缆一般都是内部放电,声音非常小,几乎听不到,最后只有丈量了。

因此上说,用这种方法可以解决大部分的以油侵纸作绝缘材料的电力电缆故障,对于近几年出现的以交联材料和聚乙烯材料作绝缘材料的电缆故障,测试效果不是太理想,原因是打火放电所产生的声音往往很小(电缆外皮没有损伤,只是电缆内部放电),遇到这种情况时,就只有用其它方法来解决了。

虽然有这样的不足之处,但以“冲闪法”原理设计成的电缆故障测试仪在很长一段时间内为企业解决了不少电缆故障,大家基本上是认可的,其贡献有口皆碑。目前已广泛运用到各个行业,随着各行各业的快速发展,电缆的用途越来越广泛,电缆的种类也不断增多,这样电缆故障不断发生就是一种必然。我们知道,各行业对所用电缆的等级、使用的环境、接线配电的方式、绝缘要求各不相同,不同电缆的电缆故障特征也有很大的不同之处,原因是使电缆发生故障的因素有许多方面,可目前人们由于以前养成的习惯,总想以一种方式解决所有的电缆故障,所以现在市场上还是以“冲闪法”为原理设计的电缆故障测试仪占主导地位。然而,在有些行业用“冲闪法”去解决电缆故障,根本就测不出故障,而且很有可能会产生严重后果,如路灯用的电缆和矿山用的井下电缆就不能直接用“冲闪法”去测试故障。同样其它行业用的电缆都有各自的特点,在此我们不能详细介绍。但是,随着科学技术的不断发展,我们应该能够找到更加简便的测试方法,把电缆故障进行分类,对症下药,具体问题具体分析,这样我们就会发现实际有些电缆的故障无须“冲闪法”的原理,解决起来也十分方便快捷。

在多年的实际工作中,我们发现高压电缆和低压电缆的故障各有许多不同之处,高压电缆故障多以运行故障为主,且大多数是高阻故障,而高阻故障又分泄露和闪络两大类型;而低压电缆故障只有开路、短路和断路三种情况(当然,高压电缆也包括这三种情况)。

另外,低压电缆在实际使用过程中还有以下特点:

⒈敷设的随意性比较大,路径不是很明白。

⒉敷设时不像高压电缆那样填沙加砖后深埋,相反埋深较浅,易受外力损伤而出现故障。

⒊电缆一般较短,几十米到几百米不等,不像高压电缆往往在几百米到几公里。

⒋绝缘强度要求低,处理故障做接头时,工艺较简单。

⒌绝大多数电缆在故障点处都有十分明显的烧焦损坏现象。故障点在电缆外皮没有留下痕迹的情况,十分罕见。

⒍所带负载变化较大,而且往往相间不平衡,容易发热,由此引发的故障多为常见。

针对低压电缆的以上特点和广大用户提出的建议以及我们对各个地方的实际使用情况等等因素的综合考虑,我科宇公司的研究人员又成功开发出了DW型低压电缆故障测试定位系统:该系统包括测距仪和定位仪两部分。DW型系统的测距仪是完全智能化、人性化的设计,它自动完成电缆故障点的测试,无须人工分析故障波形,直接报出故障点距离和故障性质。采用电池供电,方便野外工作,体积小,重量轻,携带方便,无须任何辅助设备。DW型系统的电缆故障定位仪是针对直埋低压电缆的埋设路径,埋深及故障点位置进行同步定位测试的仪器。因为,它是采用电磁感应和跨步电压原理设计的低压电缆故障定位系统,它基本上满足了低压电缆故障测试的全部条件。这种测试系统比起以“冲闪法”为原理的电缆故障测试仪来说有许多优点:

⒈多种测试方法集于一身,相互验证结果,以确定故障点的唯一性。

⒉体积小、重量轻、单人轻松操作,没有辅助设备。

⒊采用电池供电,适宜野外工作,不用打火放电。

⒋电缆的路径查找(可以确定在30公分之间)、埋深探测、故障点定位同步完成,效率高。

⒌对故障点的确定,仪器有直观显示,不需要作波形分析。

⒍不受地下情况(如电缆的分叉、打捆、接头扭曲等)影响,像探地雷一样,点对点去查找故障点,定位误差在十几公分以内,相当准确。

⒎不受路面情况影响,如:地砖、绿化带、水泥路面等。

⒏测试现场安全,对测试者没有危险,对电缆没有二次损坏。

⒐价格低廉,一般用户都能接受。

我们知道低压电缆绝缘要求较低,同时运行过程中电流较大,出现故障后有明显的特征,具体归类如下:

第一类故障:整条电缆被烧断或某一相被烧断,此类故障造成配电柜上的电流继电器动作,电缆在故障处损坏相当严重。

第二类故障:电缆各相都短路,同样,此类故障造成配电柜上的电流继电器和电压继电器都动作,电缆在故障点损坏也很严重(可能是受外力引起的)。

第三类故障:电缆只有一相断路,电流继电器动作,故障点损伤较轻但表露较明显。可能是该相电流太大或者是由电缆质量造成。

第四类故障:电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。

DW型低压电缆故障定位系统中的测距仪和定位仪结合使用能非常方便地完成测试。同时针对不同故障特征及电缆长度也可独立完成测试。具体如下:

第一类故障和第二类故障如果电缆较短时(小于500米)可直接使用故障定位仪进行故障定位,无须测距仪配合。只需手持接收机沿路径(路径可边走边测)走上一遍,即可确定故障点。

第三类故障:由于电缆在故障点处损坏较轻,发射机发出的信号在此泄漏较少,用定位仪故障定位时,指示范围较窄,这时可先用测距仪测出故障点大概距离,再用定位仪定位也很方便。

第四类故障:此类故障是目前所有电缆故障中最难测的一种故障,此时可用测距仪分别在电缆两头对电缆进行测试,再拿测试结果和实际长度相比较,就可将故障点确定在一个很小的范围内(1-3米),此时将电缆挖开后再找出可疑点,或干脆将这一段电缆锯掉(因为低压电缆很便宜,绝缘要求低,接头好做),或用定位仪,在这一段范围采用音频定位,也可确定故障点。

目前,广大的电力电缆故障测试仪的用户所使用的以“冲闪法”为基础的电缆故障测试仪,在解决低压电缆的低阻故障和死接地故障时,一般都能用测距仪较方便地粗测出故障点的距离(此类故障点的距离测试是无须高压放电设备的,用的是低压脉冲法),但故障点定位还是要用打火、放电、听声音这一方法,同时该类仪器的路径仪和定点仪是分开的,这就造成了找准路径时无法同步定点,而定点时又往往走偏路径,而且该类仪器的路径仪由于原理所限,找电缆路径时,很难找到电缆的准确路径,一般是在1-2米的宽度之间。

DW型电缆故障定位仪从实用性出发,恰好弥补了上述使用缺陷,它可对电缆的“故障点定位、埋深、路径”同步进行测试。仪器对故障、路径、埋深的指示非常直观,不需要做技术分析,也完全不依赖操作者的经验。使本来繁琐的故障测试工作变成一件轻松有趣的事,所以广大的“冲闪法”电缆仪用户,如果再拥有一台DW型电缆故障定位仪,加上原有的测距仪,就可组成一套较完美的低压电缆故障测试仪。同时对高压电缆的低阻、断路故障也可快速定点,提高工效数倍。

低压电缆范文第5篇

关键词:光纤复合低压电缆;结构设计;光单元;电力电缆

中图分类号:TM247 文献标识码:A 文章编号:1009-2374(2013)10-0013-02

1 概述

光纤复合低压电缆(OpticalFiberCompositeLow-VoltageCable,简称OPLC)是一种同时具有电能传输与光通信传输的复合电缆,通过电缆绝缘单线与光单元的不同组合,实现了智能电表到户,配合无源光网络技术,承载用电信息采集、智能用电双向交互、多网融合等业务。

随着国家电网“三网融合”工程项目的不断推进。将通过实施电力光纤等智能电网工程,使电网与电信网、广播电视网、互联网等进行有机融合。

2 光纤复合低压电缆的主要特性和用途

2.1 产品特点

OPLC是将电力电缆和光缆通过工艺的手段结合在一起,其最大的特点是融合了光纤通信和电力传输的功能,速度快、传输容量大、衰减小,具有优良的传输性能、优异的机械性能和电气性能。

OPLC是在通信接入网中将光纤随低压电力线进行集成敷设,融合了光纤通信与电力传输的功能,集光纤和电力输配电缆于一身,避免二次布线,节约大量的金属、管道、塑料等资源,可有效降低施工、网络建设等费用,是目前性价比最高的“最后一公里”接入方案。

OPLC产品具有多路光纤,除了电网光通信自身需求外,还能分别为电信和广电运营商提供用户通路,相互独立、互不干扰。其衰减系数在使用波长为1310nm时,衰减系数不大于0.36dB/km;使用波长为1550nm时,衰减系数不大于0.22dB/km。

2.2 主要用途

本产品适用于额定电压0.6/1kV及以下线路中,供输配电能与光通信之用,可以广泛应用在智能社区、智能建筑、智能交通、智能家庭等各个领域。

3 光纤复合低压电缆的结构与设计

OPLC是将光单元和电力电缆绝缘线芯通过工艺的手段绞合成缆在一起的过程,电缆的导体和绝缘的优劣等对性能的影响是很严重的,而光单元的传输特性主要是衰减特性,它直接影响光单元的中继距离和传输容量,光单元的使用寿命与其机械性能密切相关。光单元的衰减包括弯曲损耗,微弯损耗和吸收损耗所产生的衰减。弯曲损耗是因为光纤弯曲产生的损耗,光纤的弯曲曲率半径小到一定程度时纤芯内光射线不能满足全内反射条件,使光功率由传输模式转为辐射模式而造成损耗;而微弯损耗是在光纤复合低压电缆成缆过程中,光单元中的轴线发生随机的微小变化,由此而引起的损耗称之为微弯损耗;光纤的衰减是衰减系数来表示的。另外,温度对光单元的衰减有一定的影响。

目前,OPLC电缆结构形式主要有三大类:

一类是光单元位于绝缘单线中心,并进行成缆绞合绕包,这时,光单元位置于多个绝缘单线的中间,优点是节省了成缆时的光纤冗长,缺点是在产品敷设运行过程中,不利于光单元的散热和弯曲,影响光单元的使用寿命和增大了光单元衰减性能。

另一类是光单元位于绝缘单线的外侧,优点是光单元散热性能好,节约了部分填充材料,并且在弯曲的过程中,光纤衰减系数最小。

最后一类是光单元位于护套的内侧,优点是散热性能优越,但易影响成品的外观与不圆度。产品表示过程中,主要是绝缘材料、护套材料选用不用,而表示类型不同,适用的场合也不相同。

光单元的组合结构形式主要有五种:非金属层绞全干式、非金属中心管全干式、非金属层绞油膏填充式、非金属中心管油膏填充式和蝶形光单元。目前,由于受到加工技术、生产设备的限制,在实际应用中光纤复合低压电缆的光纤单元形式主要是其中的两种:非金属中心管全干式光单元和非金属中心管油膏填充式光单元。

我公司生产的光纤复合低压电缆,采用的结构形式为光单元位于绝缘单线的外侧,然后进行成缆绕包。在低压电网中,一般采用三相四线制进行输电传送,其产品结构设计已申报两项国家专利,专利分别为ZL-201020571319.7《光纤复合低压电缆》、ZL-201020571316.3《预制光纤复合低压电缆》。

4 产品制造过程中主要工艺探讨

OPLC电缆的制造工艺与常规硅烷交联聚乙烯电缆相同,并无特殊之处,具体过程不再赘述。但对光纤复合低压电缆来讲,制造过程中关键工序为:成缆绕包工序,如果生产过程中,控制不当,极易影响光单元的质量与性能。成缆绕包过程即是电力电缆和光缆通过工艺的手段将二者组合在一起的过程,生产过程中需要注意并解决以下两点问题:

4.1 避免光纤受压拉伸问题

光单元的主要材料是石英玻璃,在生产过程中如果受到较大的压力和拉力将会严重影响对光纤的性能。我公司主要是通过生产工艺技术控制与设备局部进行改造两个途径来解决光缆在成缆过程中受压和拉伸的问题,确保了产品的质量。

4.1.1 对光单元的结构进行了设计规定,减少了生产过程中光单元的各种损耗。

4.1.2 为了防止光纤单元在生产过程中受到较大的牵引拉力,我公司对成缆设备中的放线架进行了局部改进,将被动放线改为主动放线,并增加了2台11kW小型电动机。改进后放线装置主要组成部分:放线张力控制器(用于放线盘的驱动)、导辊支架、夹紧放松电机。在实际生产过程中,让光纤单元放线盘以适当的速度向前运动或放线架伴随着放线速度进行旋转,较好地解决了光单元受拉伸这一技术问题。

4.1.3 为了防止光纤单元在成缆绞合过程中受到较大的压力,通过对成缆压模内径的合理设计以及生产过程运用工艺技术手段严格控制电缆绝缘线芯和光缆的外径,较好地避免了光纤单元在成缆过程中引起的光纤衰减。

4.2 光单元和电力电缆的温度相兼容问题

光纤复合低压电缆敷设运行之后,一般使用年限均在30年以上,光单元与电力电缆长期工作温度相兼容性是非常重要的问题,因此,在成缆过程中选用散热性能好的非吸湿性填充物填充,并将光纤单元放置在绝缘单线的周边,减少对电缆绝缘线芯的接触,从而减少了温度对光纤的影响。

通过以上方法与措施,可有效避免光纤单元在生产过程中因受挤压、拉伸变形等因素所引发的附加衰减。

5 结语

本文主要对光纤复合低压电缆的结构、工艺以及实际制造过程关键点控制进行了探讨,由于电力电缆与光纤单元结构的多样性、复杂性。因此,在产品结构设计、光单元类型的选择、成缆过程中工艺技术的控制都需要进行适当的调整与改进,以便生产出性能优异的光纤复合低压电缆产品。

参考文献

[1] 接入网用光电混合缆(YD/T2159-2010)[S].

[2] 胡东升,陈晓燕.新型光纤组件——复合松套管[J].光纤光缆传输技术,1999,(4).

[3] 中心管式通信用室外光缆(YD/T769-2003)[S].

[4] 层绞式通信用室外光缆(YD/T901-2009)[S].

[5] 室内光缆系列(YD/T1258-2006)[S].

[6] 刘恒,刘伟平,黄红斌.一种新型光电复合缆在接入网中的应用[J].光纤与电缆及其应用技术,2005,(1).

低压电缆范文第6篇

关键词:低压电缆;故障测距;路径查找;故障判据;电缆识别

DOI:10.16640/ki.37-1222/t.2017.04.254

0 引言

我国铁路事业的高速发展,铁路自动化监控设备的应用越来越广泛,对电力电缆的依赖性越来越高;同时由于高速铁路引入既有站施工的增多,涉及对既有电缆的改造项目也显著增多;既有电缆在施工工艺、材质上存在的问题,出现故障在所难免,本文根据铁路电缆日常维护经验,同时查看相关资料,探讨如何快速准确的查找和处理电缆故障的方法。

1 电缆故障的类型和成因

电缆故障大致表现为导线连续性故障和绝缘性故障。低压电缆出现故障的成因很复杂,电缆的生产质量、施工工艺不规范、运行维护等任何环节出现疏漏,都会埋下故障隐患,随着电缆使用年限的增加,受潮和材料老化会造成电缆绝缘性能进一步劣化,此外电缆负载过大、日常检修不到位、外部环境的影响也是电缆发生故障的重要原因。

电缆的故障可以分为串联故障和并联故障。串联故障是电缆中的一个或多个导体在中途发生断开,通常这种情况发生在供电侧电源开关没有跳闸,一路或几路用电设备发生失电的时候。并联故障表现为导线对地或导线之间的绝缘电阻显著下降,在雨雪等湿度比较大的情况下发生漏电或击穿,不能承受正常工作电压而引起跳闸。随着近些年来电缆故障研究的不断发展,相关理论和技术不断成熟,逐渐形成了一套科学规范的电缆故障解决方案。

2 低压电缆故障信息获取

电缆故障信息的获取对选择故障查找方案至关重要,目前主要是由有经验的专业技术人员指导并根据现场采集到的信息后判定,受现场操作人员的人为因素影响比较大。本文首先从信息获取层面进行分类,探讨如何获取完整的电缆故障判据,指导接下来的故障点查找和修复。

(1)电缆型号:电力电缆的基本结构分为导电体、绝缘层、保护层三个部分。电缆的线芯、绝缘层决定电源的耐压等级,保护层则保护电缆在铺设和运行过程中免受机械损伤和外部环境的侵袭。

(2)电缆工作条件:平时检修中要不断完善电缆技术资料,包括电缆路径、供电侧的空开位置和保护定值、用电侧的设备工作电流和峰值电流等信息。当发生故障后可以根据这些信息缩小故障范围,及时排除用电设备和变电设备故障。

(3)电缆安装方式:电缆按安装方式分为地埋和架空两种,有些电缆涉及到下穿铁路、公路河流及其它高震动、高落差等复杂环境的铺设,综合考虑这些因素可以明显加快故障处理进度。此外电缆铺设的深度和路径也会影响到电缆路径信息的获取。

(4)故障特征:电缆故障处理建立在准确的电缆故障特征判断基础上,而前面所讲的外部环境等只是判断电缆故障的辅助信息。

(5)信息有效性、完整性鉴别:电缆故障分析很重要的工作是对信息的有效性进行鉴别,分清楚那些对故障诊断起到积极的作用,哪些信息跟已知的有效信息相矛盾或只是起到辅助作用。当我们获得的有效信息足够我们查找并修复故障则称为我们已经掌握了完整故障信息。

(6)故障特征获取:故障特征信息主要是电缆各相的绝缘电阻,绝缘电阻是判断电缆绝缘性能的最重要的指标。测量绝缘电阻要在电缆两端开路的条件下进行,测量前应确认电缆上没有连接负载,防止测量用的高电压烧坏用电器。

绝缘电阻测量通过外接电压测试电缆的相对地和两相间的绝缘电阻,常用的测量仪器是兆欧表。在选用兆欧表时应注意额定电压在500V以下的电缆选用500V或1000V的兆欧表,额定电压越大的兆欧表的分辨率越差,我们选用欧姆表的最小度数要大于被测电缆的电阻。

需要注意的是测量时欧姆表指数为零并不代表被测电阻为零,此时我们可以通过万用表辅助测量,但必须对两种电阻值加以区分。此外也可以用高压发生器对电缆有故障的相进行耐压试验,这个方法可以比较直观地判断故障性质。

3 低压电缆故障查找方法

判断出电缆的故障性质后,接下来的步骤主要分为故障距离初测、电缆路径调查与识别、故障精确定点、故障修复。故障测距是通过在电缆线芯上外接信号源并接受相应的反射信号,利用信号源和特征信号源之间的时间差估算故障到信号源之间的距离。故障测距是通过接收器接收目标电缆上的矢量电场判断电缆的走向埋深等相关信息。故障定点是在故障测距的基础上进一步精确定位故障点以便后期施工修复故障。

技术人员应根据故障性质合理选用故障测距和定点的仪器和方法。下面结合我段常用的巴测T-30故障识别仪器和T5000电缆路径仪介绍铁路低压电缆故障查找的一般方法。

3.1 故障测距

电缆的测距方法主要有阻抗法和行波法两种。阻抗法由于受故障点过渡电阻影响,测量精度不高。现代行波法是利用向故障电缆发射高频脉冲信号,在电缆的故障点、中间接头、终端头等位置由于波阻抗发生改变使信号产生反射,反射波被TDR分析仪接收,通过计算发射脉冲和反射脉冲的时g差可以计算出故障点的距离。影响行波法测量精度的因素主要有电波在电缆中传播速度的选择和分析仪的时域采样精度。

波阻抗变化越大,脉冲反射回的能量越大。也就是说反射回发射端的脉冲能量越大,而传播到远端的能量就越小。最极端的故障是开路(断线)或死接地故障(金属性短路),这两种故障会引起全反射。反射脉冲的极性能够反映出故障性质是开路还是短路。正极性的反射脉冲(反射脉冲向上)表明是开路(断线)故障或电缆终端;负极性的反射脉冲(脉冲向下)表明是短路故障。

对于绝缘电阻在1000Ω以下的故障电缆可以采用发射几十伏的高频脉冲即可收到理想的波形,其波形如图1所示。

对于绝缘电阻在1000欧姆以上或是闪络型的故障,低频脉冲在故障点不能产生很好的反射,从而无法判断故障距离。这时可以采用ARM弧反射法,它是将上文的低压脉冲反射跟高压电磁冲击法相融合的一种方法,该方法的波形简单、容易识别、易于掌握、测试精度高,因而被广泛采用。

ARM弧反射法首先对电缆施加高压脉冲使故障点发生有效击穿,击穿电弧维持时间可以长达几十毫秒,电弧使故障点瞬时导通,高阻故障变为低阻故障。在击穿同时通过信号耦合电路向电缆施加低压脉冲信号,通过采集低压脉冲信号的输入输出波形即可准确判断故障点位置。

ARM弧反射法的典型波形如图2所示,深色曲线是单独用低压脉冲时产生的,作为参考波形,浅色曲线是ARM击穿后的波形,两条线开始分开的地方表示高阻故障的位置。需要注意的是我们我们选用高压击穿脉冲幅值时不得超过电缆的最大耐受电压,同时反射法的测量精度主要受电波在电缆中传播的速度设定值影响,因此在测试前要先校准电缆的波速度。

3.2 电缆路径查找和电缆识别

测出电缆故障距离之后需要沿着电缆的路径找到对应的故障距离标定点,铁路两侧的低压电缆通常采用电缆沟或者直接埋设,无法直接看到,因此探明电缆路径的工作必不可少。我们主要进行德国巴测公司的T5000电缆路径识别仪器。它的主要原理是通过信号发生器在电缆上形成一个有方向固定频率的电场,通过信号接收器上方向不同的线圈感应出的对应频率的信号的幅值来判断电缆的走向。

图3,4,5是信号发生器直连法的接线方式,这种信号准确度最高。在接线时要注意两点,一是信号发生器的信号源不得接到连接多条电缆的母线排上,信号源的接地级必须远离附近电缆的铠装层接地处以免把信号输出到多个导体上;二是被引入信号的导体远端必须接地且中途无断点,形成良好的信号回路。

直连法不仅适用于停电的线路,借助于专用的信号耦合器也可以将信号加到带电的导体上,信号接收器利用先进的数字滤波器可以滤掉工频信号及其它非目标频率信号的干扰,如图它还可以提供信号电缆的走向、埋深等其它参数。

铁路上往往是多条低压电缆同沟铺设,在对故障电缆进行割据改造操作前必须准确识别目标电缆。使用LCI和CI电缆识别仪可以分别对带电和停电的电缆进行识别。电缆识别仪信号引入的方式跟路径识别仪相似,其接收机器类似钳形电流表,利用数字正交电流的原理可以准确识别信号电流及其方向。将接收器夹在一条电缆上,如果接收器既检测到周期性的目标信号又检测到电流方向跟电缆方向一致,则说明被测电缆是目标电缆。我们做电缆识别时要能准确掌握电缆的方向,中途有无分叉,电缆末端是否由端子排根别的电缆连接等信息,并对所有可疑电缆进行逐个识别,才能得出准确的结论。

3.3 故障的精确定点

目前流行的电缆故障精确定位的方法主要有音频感应法、声磁定位法、电势差法。前两种方法要求故障点在高压脉冲下产生明显的击穿声音;低压电缆由于绝缘电阻比高压电缆低得多,高阻故障相对容易发生击穿,但是低阻和断路故障却很难发出明显的声音。电势差法适用于电缆发生对地泄流的情况,在土地上形成均匀的电场,铁路低压电缆往往采用电缆槽道铺设,很难在大地形成均匀的电场,因此也不适用。我们在实际工作中形成了声磁同步法、感应电压法和改进的二分法相结合的故障处理方法。

如果判断电缆发生高阻故障,根据电缆的耐压等级选择合适的击穿电压,一般1000V的电缆施加直流脉冲不得大于4kv。当高压脉冲使故障点发生击穿时,巨大的电流在故障点产生巨大的电磁信号和声音信号。已知声音在介质中的传播速度比电磁信号慢很多,利用仪器接受到两者信息的时间差可以判断故障点到仪器的距离,声磁信号到达时间相隔最短和声音最大的位置即是故障点位置。

如果判断电缆是断路故障,我们可以在故障相上施加正常220V工作电压,用非接触式测电笔对电缆故标前后进行测试,找出电缆带点情况发生突变的位置,该处就是断路点。这种方法必须要在识别目标电缆后进行,并且对有些屏蔽层良好的电缆和铺设情况复杂的情况不是特别有效。

低压电缆由于其成本和割接技术要求低的特点也可以给我们提供了一种类似于传统二分法的故障排除方法。首先我们在电缆的一端测出故障距离,接下来在故障定标附近切断电缆,用兆欧表分别测量两侧的绝缘电阻,在有故障的一端再次进行故障测距作业,再次切开测量两端故障,以此类推,不断地缩小故障范围直到切除故障部分。实际工作中我们需要灵活考虑电缆布线和埋设情况,采用最合理快捷的割接方案。

⒖嘉南祝

[1]于景丰,赵锋.电力电缆实用技术[J].北京:中国水利水电出版社,2003(01).

[2]崔江静,梁芝培,孙廷玺.电力电缆故障测试技术及其应用的概述[J].高电压技术,2001,27(104):40-43.

[3]杨孝志,陆巍,吴少雷等.电力电缆故障定位技术与方法[J].电力设备,2007,8(11):22-24.

低压电缆范文第7篇

【关键词】电缆制造商;生产成本分析

0 引言

中、低压电力电缆是电力建设工程中的一类主要物资。也是相关建设、需求单位物资采购工作的重要内容,其采购发生频次高、涉及金额大。中、低压电力电缆(以下简称电缆)采购供应工作的完成质量,将直接影响到工程质量、工程进度以及项目建成以后的安全运行。

在当前的市场经济条件下,电缆制造商数量众多,规模参差不齐,个体差异性较大,市场竞争激烈。电缆采购需求单位在采购中,如一味追求低价,在采购价格低于国标电缆成本价的情况下,供应商必然难以保证提供国标产品;如采购价过高,则又将影响建设需求单位自身的成本。因此,研究并掌握电缆制造商的生产经营成本,在保证采购需求单位、电缆制造商和电力用户等相关各方合法利益的前提下,以最合理的价格采购到符合国家质量标准的电缆产品,对于相关各方都具有重要意义。

作为即将踏上社会参加祖国建设的现代大学生,我们应秉持学以致用、理论服务于实践的原则。因此,成立专项课题,研究分析电缆制造商的成本非常有必要。

1 电缆生产经营成本的计算原理及方法

制造商在电缆的生产、经营各环节中发生的成本包括电缆制造商在生产过程中的主材料成本、辅助材料成本、能耗成本、折旧成本、工时成本、管理成本、技术研发与质量保证成本、财务成本等。只有知己知彼,电力企业方能在电缆采购的招标、竞争性谈判等工作中掌握主动。

电缆制造企业的生产经营过程,同时也是费用发生、成本形成的过程。成本计算,就是对实际发生各种费用的信息进行处理。

第一,因为电缆是作为制造商耗费各种投入品后形成的产出物,是“制造”活动取得的直接成果,即产品。所以我们确定电缆产品作为对制造商的成本归属计算的对象。

第二,由于现代电缆制造企业的生产都是采用流水线作业的形式,连续不断的大量生产、不断完工。在这种情况下,只有人为地划分成本计算期,一般是以一个月作为一个成本计算期。

第三,因为电缆产品生产工艺的特点是:生产要分若干个步骤,必须按顺序进行,不能颠倒、不能并存,中间有半成品,要到最后一个步骤完成才能生产出产成品,是典型的连续性复杂生产。所以应采用分步法作为成本计算的方法,以每个步骤的半成品和最终电缆产品为成本的计算对象。

2 正确划分电缆制造商各项费用的界限,确定成本费用的范围

电缆制造企业发生的费用有很多项目,总体上可以分为“产品成本”与“期间费用”两大类。

2.1 “产品成本“简单地可以分为“直接材料”与“制造费用”二个项目。根据成本管理中“谁消耗、谁负担”的原则,凡电缆生产过程中消耗的各种主材料成本、辅助材料成本,都应列入“直接材料”项目;生产过程中消耗的直接人工工时、所需的能耗、设备折旧、质量保证、原材料损耗、维护维修费用等,应列入“制造费用”项目。

2.2 技术研发、运输、管理费用、财务费用等,则应列入“期间费用”。以上两大类费用的合计,在每个月的成本计算时,经过产品总量的分摊以后,最终以每规格、单位长度的电缆产品成本的形式体现。

10kV、1kV电力电缆产品主要由导体、绝缘、保护层三大要素构成。电缆产品的各种主材料和辅助材料的直接成本计算方法均为:生产消耗重量乘以材料的采购单价。因此有必要研究电缆结构重量的常用计算方法。

3 电缆产品成本的计算方法

3.1 “直接材料”项目的计算

就一个电缆规格型号而言,某一项材料的分项成本计算方法为:该材料的采购单价乘以消耗重量。该规格所有主材料和辅助材料的成本总和即为该规格的直接材料项目成本。现以在生产中使用量较大的10kV铜芯交联聚氯乙烯绝缘电力电缆YJV22-8.7/15kV 3×300规格和1kV交联聚乙烯绝缘电力电缆YJV22-0.6/1kV 4×150规格为测算规格,以2014年09月01日为测算时间点,具体计算“直接材料”项目成本如下:

导体的价值最高,导体部分的成本平均约占电缆产品总成本的80%左右。制造商铜材价格取自长江有色金属交易网每日公布的电解铜现货价格(含升跌税和交割费),在此基础上附加1500元/吨的加工费即为制造商无氧圆铜杆的采购价。2014年09月01日无氧圆铜杆价格为52元/kg。

XLPE 绝缘料其价格总体上与LLDPE期货价格相关。电缆制造商的绝缘料都是向其上游供应商采购,在电缆行业,相关高分子材料的市场比较成熟、价格比较稳定。通过对浙江省三家知名电缆生产企业开展调研后发现,2014年09月的相关原料价格如下:

根据上述原材料的采购单价,再结合前述的每公里电缆结构计算重量,可以计算出两个测算规格的“直接材料”成本为:

3.2 “制造费用”成本项目的计算方法

制造商在生产过程中消耗的直接人工工时、所需的能耗、设备折旧、质量保证、原材料损耗、维护维修费用等,均列入制造费用项目。通过对我省三家知名电缆生产企业开展调研后发现,“制造费用”成本额度一般是在“直接材料”成本的基数上,增加5个百分点左右。

3.3 “期间费用”的计算方法

制造商在经营过程中的技术研发、运输、管理费用、财务费用等,均列入“期间费用”。同样,经过调查统计后发现,“期间费用”额度一般是在“产品成本”的基数上,增加8个百分点左右。

综上所述,“产品成本”和“期间费用”合计可得,两个测算规格电缆的最终成本为:

4 结束语

由于电缆制造过程中,生产工艺门类多、物料流量大、专用设备多、工序复杂,且每一个电缆制造商的具体情况又不尽相同,因此要精确掌握电缆制造商的产品成本,是一项比较复杂的工作。本文旨在尝试提供一种方法,即从电缆结构重量计算出发,结合原材料的市场价格,通过计算主材料和辅助材料成本,从而推算出“直接材料”成本,并综合电缆制造企业在生产经营过程中的“制造费用”与“期间费用”项目,匡算出电缆产品成本,以达到建设需求单位在电缆采购中知己知彼、掌握主动的目的。也作为现代大学生,应用课堂的理论知识,研究社会生产实际中具体问题的尝试。

参考文献:

[1]王永维.电缆制造生产工艺初探[J].科技创新与应用,2013,(15):102.

[2]GB/T 3956-2008,电缆的导体

低压电缆范文第8篇

【关键词】低压电缆;混凝土管;敷设;内壁

相对于架空线路而言,电缆线路相对比较安全,有效地避免了安全事故的发生,并具有很大的优越性,所以在实际工作中,电缆的应用越来越广。随着社会的发展以及技术水平的不断提高,电缆的品种也在不断增多,尤其是在城市化过程中,由于电网不断的改变,越来越多的企业、街道、建筑都采用了电缆,这更能够保障人们的用电安全。

1.排管内敷设施工

电缆排管敷设的施工工艺流程为:挖沟人孔井设置安装电缆排管覆土埋标桩穿电缆。

1.1挖沟

在采用电缆排管敷设方法之前,需要由工作人员在适当的区域开挖电缆沟,在挖沟的过程中,施工人员应该电缆沟的深度控制在0.7m左右,另外还需要增加相应的排管厚度,并且电缆沟的宽度不得小于排管的宽度。当电缆沟挖好之后,施工人员需要将沟的底部夯实,增强其稳定性,然后再在其底部倒入相应的混凝土以作垫层,在施工过程中,我们需要将垫层的厚度控制在80mm以上。等到所有准备工作就绪之后,在进行电缆排管的安装。

1.2人孔井设置

在进行敷设过程中,施工人员可以在一些必要的拐角处设置相应的人孔井,以便电缆的拉、引、敷设。在设置人孔井的过程中,施工人员应该注意以下几点:1)在井内应该设置一个适当的集水坑,从而方便井内的水排出;2)在设置人孔井的过程中,所采用的建筑材料一般是混凝土、砖块等材料;3)人孔井的盖板也需要是混凝土制作而成,等到电缆排管敷设工程完成之后,施工人员切记要将盖板将人孔井密封,从而保障行人的安全。

1.3安装电缆排管

首先需要将事先准备好的排管放到已施工好的排管沟内;然后再用螺栓将每一根排管连接起来,保证其连续性以及平直度。另外,还需要将各个排管的接头处密封。在安装过程中,施工人员还应该注意到以下几点:(1)排管孔内的直径应该大于电缆的外径,而电缆的内径应该在90mm以上,外径应该在75mm以上;(2)排管的设置应该与设置的人孔井相接近,为了能够保证其有效的排水,应该设置大于0.5%的坡度;(3)埋设排管深度应与地面之间的距离在0.7m以上,在人行道处的距离应该大于0.5m;(4)在排管的选用过程中,施工人员应该根据实际情况,将排管的孔数进行充分考虑,通常情况下,排管的孔数应该在两个以上,为后期工作预留备用。

1.4覆土

等到电缆排管敷设完成之后,施工人员应该向监理部门、建设部门等上级部门汇报,让他们对工程的验收,等到上级管理人员验收合格之后再将后续工作(覆盖、填土等)完成到位。在填土过程中,施工人员需要注意的是,要将土料一层一层的压实,从而保证其稳定性,另外,填充的土料应该比地面要高,这样可以防止其因沉降而出现不平整的现象。

1.5埋标桩

直埋电缆在直线段每隔50~100m处、电缆的拐弯、接头、交叉、进出建筑物等地段应设标桩。标桩露出地面以15cm为宜。直埋电缆敷设的一般规定有以下五条:

电缆的埋设深度一般要求电缆的表面距地面的距离不应小于0.7m。穿越农田时不应小于1m。在寒冷地区,电缆应埋设与冻土层以下。在电缆引入建筑物、与地下建筑物交叉及绕过地下建筑物时,可埋设浅些,但应采取保护措施。

当电缆与铁路、公路、城市街道、厂区道路交叉时,应敷设与坚固的保护管或隧道内。同沟敷设两条及以上电缆时,电缆之间、电缆与管道、道路、建筑物之间平行或交叉时的最小净距应符合相关规范的规定。电缆之间不得重叠、交叉和扭绞。电缆直埋敷设时,严禁在管道上面或下面平行敷设。与管道(特别是热力管道)交叉不能满足距离要求时,应采取隔热措施。

2.电缆的保护管

2.1电缆保护管的设置

在下列地点,电缆应有一定强度的保护管或加装保护罩:

(1)进入建筑物、隧道、穿过楼板及墙壁处。

(2)电缆引至电杆、设备、墙外表面或屋内行人容易接近处,距地面高度2m、至地下0.2m处行人容易接触的一段。

(3)下管道接近和交叉时的距离不能满足有关规定时。

(4)当电缆线与城镇道路、公路或铁路交叉时,保护管的管径不得小于100mm。

(5)其他可能受到机械损伤的地方。

2.2保护管的加工

电缆保护管不应有孔洞、裂缝和显著的凹凸不平,内壁应光滑无毛刺。金属电线管应采用热镀锌管或铸铁。硬质塑料管不得用在温度过高或过低的场所。在易受机械损伤的地方和在受力较大处直埋时,应采用足够强度的管材。

3.电缆线路敷设的规定

3.1电缆敷设的程序

(1)先敷设集中的电缆,再敷设分散的电缆。

(2)先敷设电力电缆,再敷设控制电缆。

(3)先敷设长电缆,再敷设短电缆。

(4)先进行敷设难度大的电缆敷设,再对敷设难度小的电缆进行敷设。

3.2电缆敷设的规定

(1)施工前应对电线进行详细检查。规格、型号、截面积、电压等级均应符合设计要求,外观无扭曲、损坏及漏油、渗油等现象。

(2)每轴电缆上应标明电缆规格、型号、电压等级、长度等级、长度及出厂日期。电缆盘应完好无损。

(3)冬季电缆敷设,温度达不到规范要求时,应将电缆提前加温。

(4)电缆短距离搬运,一般采用滚动电缆轴的方法。滚动时应按电缆轴上箭头指示方向滚动。如无箭头时,可按电缆缠绕方向滚动,切不可反缠绕方向滚动,以免电缆松弛。

(5)电缆支架的假设地点应选好,以敷设方便为准,一般应在电缆起止点附近为宜。架设时,应注意电缆轴的转动方向,电缆引出端应在电缆轴的上方,敷设方法可用人力或机械牵引。

4.结束语

电缆排管敷设的敷设方法可以有效解决电缆穿越公路、铁路、建筑物及地下其他管道时的施工困难,同时最大程度避免了电缆处于地下复杂环境中受到外界自然条件干扰、挤压和损坏的可能,从而保证了输配电的质量与安全。

【参考文献】

[1]成健,张晓朋.地下电缆设施的防水堵漏[J].山西电力,2010(06).

[2]何建洪.隧道多工序平行作业施工技术探讨[J].四川建材,2010(02).

低压电缆范文第9篇

关键词:建筑配电 低压电缆 分接技术 分支电缆

1 低压配电网系统中电力电缆的应用及现状

随着世界范围内的科技大发展,低压电力电缆由于制造工艺简单,没有敷设落差的限制,工作温度可以提高,电缆的敷设、维护、接续比较简便,又有较好的抗性等优点,再加之电力工业的大力发展已广泛应用于建筑业中。我国低压电力电缆的发展是迅速的,和世界上发达国家相比,其技术水平基本是同步的,能够满足我国国民经济发展的需要。

对于中、低压配电网来说,通常情况下采用电缆作为向用户输送和分配电能的方式,该种输送方式在国内外得到广泛的使用。在众多使用电缆的环境中,进行供、配电网路施工时,处理主干线电缆和分路干线电缆的接头问题逐渐成为主要问题。由于分接点都是供、配电网路中电力电缆敷设的节点,也是电网系统的故障易发点,从而也是安装过程中最需要注意的地方。

传统的施工方法难度大、技术要求高、周期时间长、现场费用高;并且在一定程度上存在难以确保绝缘强度和可靠性,以及一致性差等缺陷。随着科技的发展,电力电缆分接的方式方法也日新月异。根据工序工艺、环境条件、使用要求等条件出现了诸如电缆T型接头、电缆分线箱、插接母线、分支电缆(预制分支电缆、电缆穿刺线夹分支)等电力电缆分接的方法。

本文通过阐述分支电缆的技术特点、结构与性能,进而做出相应的对比。

2 分支电缆

作为一种新型的建筑配电电缆,分支电缆通常情况下,被广泛应用于中高层建筑、大型厂房、文体场馆、路灯电源的电力配送中。对于分支电缆来说,往往根据建筑的具体结构,按照相应的配电要求,进而在一定程度上单独地设计与制造主干电缆、分支线电缆、分支连接体。按照施工工艺,可以将分支电缆分为:预制分支电缆和电缆穿刺线夹分支。

对于预制分支电缆来说,通常情况下就是工厂结合电缆用户的实际要求,同时按照主、分支电缆型号、规格、截面、长度及分支位置等指标,进而在一定程度上借助工厂内的专用生产设备,在工厂内的流水线上制作带分支的电缆,同时完成主干线电缆与分支电缆之间的连接。

在分支电缆中,穿刺线夹作为一种主要的结构形式,通常情况下,在小容量动力与照明供电系统中,应用比较广泛。

2.1 分支电缆产生背景

随着经济的发展,生活水平的提高,高层建筑适应了社会发展的需要。因此,在设计高层建筑配电系统的过程中,施工方和业主高度关注供电的可靠性、工程的经济性和施工的便利性,在施工过程中,如果采用普通电力电缆加T接箱或母线(母线槽)的方式进行供电,在一定程度上难以统一三者之间的矛盾。因此,只能根据工程的实际情况,各自有所侧重,在这种情况下产生了分支电缆,解决上述难题。

2.2 预分支电缆其主要特点有

①采用工厂预制方式在一定程度上可以降低劳动强度,提高劳动效率,进而缩短工期。②施工作业人员的技术条件得到明显的改善。③在绝缘性能方面,分支联结体能够与电缆主体保持一致,进而在一定程度上提高了电缆接头的绝缘性和可靠性。④分支接头的绝缘处理费用大幅降低,缩小敷设占用空间,安装简单。⑤分支部采用高强度密闭接头,进而在一定程度上提高了抗震、防水、耐火的性能,因此可以进行露天或埋地敷设。⑥在供电的可靠性方面,与电缆绝缘刺穿线夹分支技术相比,其安全性更高,通常情况下,有效通过率一次高达100%。⑦生产周期长,不能现场制作,分支接点距离制作前需要预测量尺寸。

预分支电缆分支接头形式:

2.3 电缆刺穿线夹分支

对分支结构进行刺穿密封是电缆刺穿线夹分支的关键技术,通过添加强力纤维塑料和特殊合金的方式,在一定程度上提高了分支接头的机械强度、防水性能和分支的电接触性能等。

电缆刺穿线夹分支的技术特点:①节省人工和安装费用。②在施工过程中,无需截断主电缆,通常情况下可以在电缆的任意位置设置分支,并且在一定程度上不需对导线和线夹进行任何的处理。③与常规的接线方式相比,该方式操作简单、快捷,同时可以省去了剥除绝缘层、搪锡或压线端子等工序,进而在一定程度上减少了绝缘层、电线头等垃圾,避免对环境构成污染。④穿刺线夹是直接穿刺导通通电,不能完全防水、防氧化,这也对性能造成隐患。⑤线夹主要靠螺母紧固还要各点平衡才能达到长期稳定供电,基本没有抗震性,很容易造成接触电阻过大,不利于长期运行。

3 在建筑配电领域中的应用比较

3.1 预分支电缆的应用及比较

在高层建筑施工过程中,预分支电缆作为母线槽供电的替代产品,广泛应用于高中层建筑、住宅楼、商厦、宾馆、医院电气竖井内垂直供电,同时在隧道、机场、桥梁、公路等供电系统中也得到广泛的应用。

以中、高层建筑竖井内预分支电缆安装为例,预分支电缆安装的要点:①在应用预分支电缆技术的过程中,通常情况下,需要对建筑电气竖井的实际尺寸进行测量,进而在一定程度上结合配电系统的实际情况进行定制,防止楼层功能发生改变,进而导致容量发生变动,通常情况下,需要将预分支电缆的干线和支线截面放大一级,必要情况下,需要预留分支线进行备用。②制定预分支电缆的过程中,通常情况下,需要提供相应的预分支电缆附件,其中非常重要的是选择钢丝吊头的(钢丝网套)规格,并且在一定程度上需要考虑电缆的外径和重量等因素。

3.2 穿刺线夹应用及比较

穿刺线夹的使用是继预分支电缆后的一电缆T接方式。在中高层建筑1KV电力系统中,对于小负荷的电力主干线路的分支连接来说特别适用。同样,对于高层建筑、民用住宅、路灯配电、户外架空线等低压动力和照明配电线路等也可以使用,并且可以在竖井内、露天等进行相应的安装。

进行电缆刺穿线夹分支施工时,需要注意的要点:①对于分支线的位置,需要在主线电缆上确定好,并且在一定程度上在确定的部位剥去长200mm-500mm的外护套,在剥皮过程中不能割伤线芯的绝缘层。②将主线电缆线芯分叉,将分支线直接插入支线帽内,在主线电缆分支线芯处固定线夹,并且在一定程度上用手拧紧连接处的线夹螺母。③按顺时针方向,用套筒扳手套固定线夹拧紧线夹上的力矩螺母,通常情况下,刺穿刀片与金属导体的接触效果达到最佳时,在这种情况下力矩螺母会自动断离,对导线和线夹不需要做任何特殊的处理。④在井道内如果并行安装多条电缆,通常情况下将多个刺穿线夹的安装位置设置在不同的平面或立面上,并且在一定程度上需要保持3倍以上的电缆外径间距,安装位置彼此之间要错开,进而在一定程度上减少堆积占用的安装控件。

3.3 预分支电缆和穿刺分支电缆的区分

共同点:①在结构方面,分为单芯型和多芯绞合型,每根单芯分支电缆又分为:主干电缆;支线电缆;分支连接头。对于主干电缆导体来说,无接头,具有较好的连续性,进而在一定程度上减少了故障点和接触电阻。②在性能上,分支电缆是一种新型的电力配送电缆,分支接头接触电阻极小,不受热胀冷缩和轻微振动的影响。

不同点:①在结构上:预分支电缆是把经过专门工艺处理的单芯电力电缆作为建筑主干电缆,根据各具体建筑的结构特点和尺寸量体裁衣,预先把分支接头与分支线、主干电缆一同设计由专业制造厂完成,使得接头可靠性大大提高。②在性能上:从外观上看,预分支电缆无法知道内部接头质量,只有靠两项重要的试验才能检测接头性能,即机械拉力试验和电热循环试验。

4 总结

随着社会科技的不断进步,低压电力电缆分接技术逐步成熟,针对不同的使用条件及环境,出现了与之相适应的低压电力电缆分接技术的方式方法。从最初的电缆头制作,到电缆分接箱的普及,再到预分支电缆的制作及穿刺线夹的广泛应用,在工艺、工序上逐步简化,且电气连接性及用电可靠性得到了大幅度的提升。

分支电缆中的预分支电缆及穿刺线夹两种电缆分接方式虽然各有利弊,但其在施工过程中简洁方便的施工工艺、可靠的供电性能、低廉的造价及检修维护费用使其在建筑配电领域被广泛应用。

经过不断的社会实践,相信不久的将来方式方法更新颖的、性价比更高的电力电缆分接技术会不断涌现出来,造福于社会。

参考文献:

[1]GB50168-2006,电气装置安装工程电缆线路施工及验收规范[S].

[2]GB50303-2002,建筑电气工程施工质量验收规范[S].

低压电缆范文第10篇

【关键词】载流量;灵敏度;挤塑外套;谐波电流

电气设计过程中电力电缆设计是一项非常重要的内容,它关系到电器设备能否正常运转,甚至对设备的寿命、大楼的安全及人民的生命财产有着重要影响,因此在计算、选择电力电缆时应慎之又慎。

1 电缆选择

交流系统单芯电力电缆,当需要增强电缆抗外力时,应选用非磁性金属铠装层,不得选用未经非磁性有效处理的钢制铠装。

在潮湿或易受水浸泡的电缆,其金属层、加强层、铠装上应有聚乙烯外护层;保护管中敷设的电缆、水中电缆的粗钢丝铠装应有挤塑外护层。常用挤塑外套包括聚乙烯(PE)或聚氯乙烯(PVC)。在潮湿或易受水浸泡环境下,XLPE电缆易受外部水或化学溶液渗透浸入形成水树导致绝缘故障,应慎用。

GB 50127-2007《电力工程电缆设计规范》中对铠装电力电缆使用范围有明确规定,不应扩大铠装电力电缆使用范围,如:一般环境下电缆穿水煤气钢管保护,仍然采用铠装电力电缆,既增加了工程造价,又给日后维护带来不便。

2 低压电力电缆截面计算

2.1 按照实际载流量选择电缆截面。目前通行电缆载流量选用标准为GB/T 16895.15-2002《建筑物电气装置》:第5部分:电气设备的选择与安装:第523节:布线系统载流量,该标准对工程中电缆载流量计算有着非常严格的条件及要求,针对设计中常见问题,应着重注意以下几个问题。

2.1.1 国家标准GB/T 16895.15-2002不适用于单芯铠装电缆,单芯铠装电缆的载流量应由电缆制造商确定。

2.1.2 并联电缆载流量的确定。由于并联电缆散热与单根电缆不同,且并联敷设路径不能做到绝对相同,此时并联电缆载流量并不是两根电缆在不同敷设方式下载流量之和,而应该取一个降低系数,系数取值详见国家标准GB/T 16895.15-2002中:表52-E1~表52-E5。

2.1.3 电缆直埋或穿管埋地敷设时土壤阻热系数的选择。当敷设在干燥或潮湿土中,除实施换土处理等能够避免水分迁移的措施外,土壤热阻系数宜选择不小于2.0K•m/W。

2.1.4 环境温度时电缆载流量应换算。国家标准中环境温度为:空气中:30°C,土壤中:20°C,当环境温度不同时应换算,特别注意:室外露天设备(如:空调外机等)、电缆沟及室内竖井、不同埋地深度等。

2.1.5 同时在计算电缆载流量时,应充分附加考虑系统谐波电流。

2.2 按单相短路保护灵敏度选择电缆截面。

对于TN系统,当配电线路较长,应同时考虑短路保护电器满足接地故障保护灵敏性的要求、线路电压降(可按相关手册计算)的要求。

2.2.1 按短路电流校验低压断路器动作的灵敏性。

为使低压断路器可靠切断接地故障电流,以免发生间接电击事故,应校验断路器瞬时或定时限(即:短延时)过电流脱扣器动作的灵敏性,计算按下式:

Id≥Kr Is 或Id≥Kr Im

式中:Id―被保护线路末端接地故障电流,通常采用单相接地故障电流;

Is―断路器瞬时过电流脱扣器的整定电流;

Im―断路器定时限过电流脱扣器的整定电流;

Kr―断路器瞬时或定时限过电流脱扣器动作可靠系数,取1.3。

其中:单相接地故障电流计算式为:Id=220/Z Z=

式中R、X、Z为相线―保护线回路电阻、电抗、阻抗,可查阅相关手册。

2.2.2 提高TN系统地故障保护灵敏性的措施主要有三种:

第一种 提高接地故障电流。主要方法:选用D,yn11接线组别变压器;加大导体截面;改变导体结构。

第二种 采用带短延时过电流脱扣器的断路器;

第三种 采用带接地故障保护的断路器,可采用:零序电流保护和剩余电流保护。

上述三种措施的选用应根据电器设备要求、经济性、可行性、可操作性进行有条件比较,不能盲目选择。

2.3 几种特殊情况下的电缆截面:

2.3.1 建筑总柜进线电缆截面整定。应根据持续允许电流、上级空气开关详细参数、敷设方式及长度、电压降要求、经济电流密度、短路热稳定等进行详细计算及校验,不能仅按满足本级开关过载保护选择。

2.3.2 耐火型电缆截面。对于可能处于火场中的电缆,因着火时线芯温度急剧升高导致电压损失增大,此时应核算电压损失,以确保重要设备连续运行。通常,原本采用50mm²及以下,放大一级截面;70mm²及以上,放大两级截面。

2.3.3 动力、照明配电箱进线截面不宜小于6mm²;住宅进户线截面不应小于10mm²。

2.3.4 对于短时或周期工作制设备应将额定功率换算为统一负载持续率下的有功功率后选择电缆截面,如:电梯、电焊机、行车等设备。

3 低压电力电缆防火处理

电缆火灾的发生,既有过热、短路、绝缘老化等内因,也有引燃着火等外因,工程设计时,应创造有利于电缆防火、阻止延燃的条件。

3.1 一类高层建筑以及重要的公共场所等防火要求高的建筑物,应采用阻燃低烟无卤交联聚乙烯绝缘电力电缆或无烟无卤电力电缆。

3.2 消防设备应选用耐或型电缆,不应选择阻燃电缆。

3.3 合理选择剩余电流动作保护器。剩余电流动作保护器动作电流应不小于正常运行泄漏电流的2.5倍,同时还不应小于其中泄漏电流最大的一台用电设备正常运行泄漏电流的4倍。许多设计中仅考虑电器设备泄漏电流,未考虑配电线路泄漏电流,这是不对的。

3.4 实施必要的防火构造。电缆进出、穿越建筑物、构筑物墙、楼板、孔洞,电气柜、盘底部开孔部位,穿入钢管管口等应做防火封堵;电缆沟进入建筑物处应设置防火墙。

4 低压电力电缆敷设

4.1 为防止产生涡流,单芯电力电缆不得单独穿于钢导管内。

4.2 为避免增大磁通量,采用单芯电缆敷设时应按回路捆扎。

4.3 桥架内不同绝缘等级电力电缆间、普通电力与消防电力电缆间应设置金属隔板。

4.4 桥架、室外电缆沟转弯处的弯曲半径不应小于桥架内电缆最小允许弯曲半径。

应注意,本文仅列出在设计或使用过程中容易忽视的一些问题及处理办法,电力电缆选择及计算的详细方法参照国家相应规范规程、设计手册。

参考文献:

[1]GB 50127-2007《电力工程电缆设计规范》。

[2]《工业与民用配电设计手册》第三版,中国电力出版社,中国航空工业规划设计研究院 组编。

上一篇:阻燃电缆范文 下一篇:电缆卷筒范文