电路设计原理范文

时间:2023-10-16 11:16:09

电路设计原理

电路设计原理范文第1篇

关键词:STM32单片机 原理 硬件电路设计

中图分类号: TP368.1 文献标识码:A 文章编号:1007-9416(2015)11-0000-00

STM32是一种ARM Cortex-O内核,是专门针对低功耗、低成本、高性能嵌入式应用所设计的,根据其不同的内核架构,可分为很多种不同的产品。在STM32单片机当中,采用了ARM较为先进架构的内核,其实施性能和功耗控制等都较为优良,能够最大限度的进行整合与集成,同时便于开发,能够让产品更加迅速的进入市场。在实际应用中,主要分为基础型、智能型、高级型等产品类型。

1 STM32单片机的原理

1.1系统架构

STM32单片机的研发和应用,成功的取代了过去的低端单片机,是一种处理速度较高的新型处理器,具有十分丰富的内置资源,集成了两路高级定时器和12位的AD,同时涉及了针对嵌入式应用底层化的新型内核。在STM32单片机当中,根据存储空间的大小和使用性能的强弱,主要可分为通用型和增强型。在时钟频率方面,二者存在着较为明显的差别,增强型单片机的MCU时钟能够达到72兆赫的最高频率,性能十分突出。在两种不同类型的STM32单片机中,都设置了相应的闪存,其区别在于外设接口方式和容量大小不同。

1.2 I/O模式和速率选择

采用软件进行编程,能够使STM32单片机输出50兆赫、10兆赫、2兆赫等不同的输出功率。通过提高GPIO端口相应内部电路的速率,能够将单片机的输出速率提高。在设置GPIO速率的过程中,可以利用软件的MODE寄存器来进行。在STM32单片机的GPIO输入模式中,主要包含浮空输入、下拉输入、上拉输入、模拟输入等模式,而在输出模式当中,则主要包括开漏复用输出、推挽输出、推挽复用输出、开漏输出等模式。

1.3 GPIO模式配置

在STM32单片机的模式配置中,可利用相关软件配置成8种不同的模式,从而实现单片机通用的输出和输入模式,其通用输入输出引脚被划分为不同的组别。

1.4 功能

由于STM32单片机中应用了72兆赫的CPU,因此基本上能够实现零等待。在处理数据的过程中,无需额外的响应时间,仅在一个及其周期内,就能够完成运算乘除法。该单片机的GPIO接口十分丰富,引脚的数量能够达到114个。其中,能够兼容5V的通用I/O接口数量为80个,因而STM32单片机能够有效的处理很多的5V模块。此外,其中还配置了16个外部中断,并将两个12位的模数转换器挂载到内部总线上,从而实现了保持采集数据和多重采集数据的功能。在其内部,还集成有温度传感器。在处理器的定位方面,STM32是ARM类型的处理器,因此相比于普通的单片机,其在各个方面都具有更为优良的性能。在单片机内部集成了高级定时器、通用定时器、基本定时期,总数能够达到7个。在与设备进行通信的过程中,集成了SPI接口、USB接口、CAN接口、USART接口等,从而与大多数的接口协议芯片都能够实现顺利的信息通信。此外,在单片机内部还集成了DMA直接存取寄存器,在向处理器传输数据的时候,不会占用CUP的处理时间,从而提高了单片机的整体工作效率。

2 STM32单片机硬件电路设计

2.1复位电路

如果STM32单片机处于休眠状态或程序不可控状态,可以通过重新上电的方式来进行初始化。不过,更好的方式是加装一个复位按键,从而避免了重复上电对系统所带来的影响。复位功能是连接单片机引脚和电容,使之形成回路,在按键时通过充放电实现初始化。因此,只需在按键位置设置一个电容形成回路,这样在按下按键的时候,电容就能够完成充放电,具体电路如图1所示。

2.2供电模块

STM32单片机是32位低功耗的高速MCU,具有较高的性价比。在工作中,只需要利用USB线与计算机相连,就能够实现其运行和工作。不过,由于STM32中采用的处理器内核具有较宽的供电范围,因此在大多数时候,会采取适中的电压进行供电。在实际操作中,可以基础过去的51单片机电源,利用ASM1117进行压降,从而满足STM32的供电需求。该供电电路能够兼顾到电源自身的波动性和系统的稳定性,从而在电源的输入端和输出端加装滤波电容,具体的电路如图2所示。

2.3外设ADC转换电路

由于浓度、湿度、光强、电流等无法直接显示,因此需要将模拟量转化为数字量,从而方便单片机的数据处理和人机交互。在STM32单片机的核心芯片中,挂载了ADC外设,同时在单片机内部嵌入了3个相互独立的12位ADC,从而实现了模拟量和数字量的转化。

3结语

STM32单片机相关领域当中一个十分重要的设备,该单片机以其优良的性能、较高的工作效率,受到了十分广泛的应用。随着相关领域工作研究的不断发展和进步,为了进一步提高STM32单片机的性能,应当对其原理和硬件电路设计进行研究,从而针对实际工作进行优化和改善,使STM32单片机能够发挥出更为良好的作用。

参考文献

[1]李大朋,曹国华,陈佶言.基于STM32单片机驱动面阵CCD实时图像显示的研究[J].长春理工大学学报(自然科学版),2014,01:37-40.

电路设计原理范文第2篇

本文简述了光电容积脉搏波描记法原理及其应用,介绍了人体外周血管中光电脉搏信号检测电路设计。

【关键词】光电容积脉搏波描记法 脉搏信号

1 前言

从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。脉搏波所呈现出的形态、强度、速率和节律等方面的综合信息,在很大程度上反映出人体心血管系统中许多生理病理的血流特征,因此对脉搏波采集和处理具有很高的医学价值和应用前景。

随着科学技术的发展,脉搏测试不再局限于传统的人工测试法或听诊器测试法。利用血液是高度不透明的液体,光照在一般组织中的穿透性要比在血液中大几十倍的特点,可通过传感器对脉搏信号进行检测,这种技术具有先进性、实用性和稳定性,同时也是生物医学工程领域的发展方向。

2 光电容积脉搏波描记法原理及应用简述

光电容积脉搏波描记法(Photo Plethysmo Graphy,下文简称PPG)是借光电手段在活体组织中检测血液容积变化的一种无创检测方法。当一定波长的光束照射到指端皮肤表面时,光束将通过透射或反射方式传送到光电接收器,在此过程中由于受到检测端皮肤肌肉和血液的吸收衰减作用,检测器检测到的光强度将减弱,其中皮肤肌肉、组织等对光的吸收在整个血液循环中是保持恒定不变的,而皮肤内的血液容积在心脏作用下呈搏动性变化,当心脏收缩时外周血容量最多,光吸收量也最大检测到的光强度最小;而在心脏舒张时,正好相反,检测到的光强度最大,故光接收器接收到的光强度随之呈脉动性变化,将此光强度变化信号转换成电信号,便可获得容积脉搏血流的变化。由此可见,容积脉搏血流中包含有血液流动等诸多心血管系统的重要生理信息。同时,容积脉搏血流主要存在于外周血管中的微动脉、毛细血管等微血管中,所以容积脉搏血流同样包含有丰富的微循环生理病理信息,是我们研究人体循环系统重要的信息来源。

PPG信号中包含有人体循环系统、呼吸系统等许多生理病理信息。在人体血压、血流、血氧、脑氧、肌氧、血糖、脉率、微循环、血管阻力、呼吸率、呼吸量等参数的无创检测中都有很好的应用前景。虽然由于红光、红外光与人体组织相互作用的机理十分复杂,影响它的因素也比较多。我们对容积脉搏血流本身的机理了解和研究得还很不够。加上对血流标定工作的困难,因而在临床上真正应用PPG 开发的医疗仪器还十分有限。目前应用得最为广泛和成功的是监护仪中的血氧和脉率检测。

3 光电脉搏信号检测电路设计

由于血液中氧合血红蛋白(HbO2)和脱氧血红蛋白(Hb)在红光和红外光区(600~1000nm)有独特的吸收光谱,因而使PPG 成为研究组织中血液成分尤其是血氧状态的简单而有效的方法。许多国家的研究人员对无创测量动脉血氧饱和度和组织血氧饱和度的装置进行了各自的研究。在他们所采用的无论是透射光法和反射光法中都以朗伯 比尔定律(The Lam-bert-Beer Law)和光散射理论为基础,利用氧合血红蛋白和脱氧血红蛋白的光吸收系数的差异来进行,在红光区(600~700nm)HbO2 和Hb的吸收差异很大,而在红外光谱区(800~1000nm)其吸收差异较小。当血氧饱和度变化时,也就HbO2 相对Hb的浓度发生变化时,血氧饱和度应该和光检测器上的660nm 和940nm 两个波长的相对光强之间存在较好的线性关系。

血氧饱和度:SpO2=A+BR 其中,A、B为标定常数

由此原理设计出的无创脉搏血氧仪,是一种快速测量血氧饱和度的有效方法,成为当今国际上广泛采用的监护仪器。广泛用于手术室 监护室 急救病房 运动和睡眠等各种临床应用中。

人体的生物信号多属于强噪声背景下的低频的弱信号,脉搏波信号更是低频微弱的非电生理信号,必需经过放大和后级滤波以满足采集的要求,脉搏检测电路设计框如图1所示。

3.1 信号输入、传感器选择

利用指套式光电传感器,指套式光电传感器的换能元件用硅光电池,由于心脏的跳动,引起手指尖的微血管的体积发生相应的变化,当光通过手指尖射到硅光电池时,产生光电效应,两极之间产生电压由于指尖的微血管内的血液随着心脏的跳动发生相应于脉搏的容积变化,因而使光透过指尖射到硅光电池时也发生相应的强度变化,而非血液组织(皮肤、肌肉、骨格等)的光吸收量是恒定不变的,这样就把人体的脉搏(非电学量)转换为相应于脉博的电信号,方便检测。

3.2 差分放大

这里选用低噪声的集成仪器放大器INA114作为放大器的核心元件。最低2.3V的工作电源电压满足电源要求,INA114的失调电压不到0.1mV,因此取其电压增益100,根据INA114的增益计算公式可得RG=500Ω,INA114的内部结构图,如图2所示。

3.3 低通滤波器

利用归一化的方法设计低通滤波器。这里用四阶巴特沃斯低通滤波器,其优点是在通带内幅频特性曲线比较平坦,而且四阶也可以达到较陡的衰减的特性:其截止频率为20Hz时,到频率为40Hz时其衰减幅度为9%。它的作用是滤除频率为20Hz以上的信号分量。如图3所示。

设截至频率为20Hz,符合采样要求同时滤除工频干扰,根据归一化公式,取R1=R2=R3=R4=100KΩ,可算得C1=C2=C3= C4=0.25μF。

4 结束语

相信随着PPG基础研究工作的进一步开展和人们对这项技术的更深入了解,它必将开拓出更为广泛的应用领域。PPG方法所具有的无创性,且检测方便、操作简单、性能稳定、重复性好、安全无交叉感染等许多优点,使其不仅可用于医院中的临床检测、监护、急救体能测试,还可应用于社区和家庭医疗保健,并具备联网扩展功能,可以组建家庭社区和医院的医疗网络,在这些方面将都会有很好的应用前景。

参考文献

[1]杨福生.生物医学信号处理[M].北京:高等教育出版社,1995.

[2]康华光.电子技术基础[M].北京:高等教育出版社,1997.

作者简介

陈斌(1972-),男,安徽省怀宁县人。大学本科学历。现为中国电子科技集团公司第四十一研究所高级工程师、研发部部长。研究方向为自动化。

作者单位

电路设计原理范文第3篇

关键词: 万用表 安装 调试 实习 原理分析

Abstract: In order to explore the multicenter installation practice and theory analysis for the higher institutions in the electrical and electronic practice teaching, as the multicenter design principle books reference, I analyze the design concepts and circuit features of the MF47-6 multicenter as the Ohm's law basic principle in the practice teaching. I analyze one by one the first circuit, DC current, voltage, AC voltage, resistance circuits, in order to facilitate students to better understand and master the multicenter installation practice and debug design principle. This article focuses on the analysis of the circuit and DC current meter.

Key words: multicenter; installation; commissioning; practice; principle analysis

中图分类号:TN108.7 文献标识码: A文章编号:2095-2104(2012)

如图1是MF47-6万用表的电路图,它是由六个部分组成:表头显示部分、直流电压部分、直流电流部分、交流电压部分、电阻部分和晶体管测试部分。现将各部分剖析如下:

首先我们看图2、指针式万用表的基本测量原理图。

指针式万用表的基本原理,如图所示,它有表头、电阻测量档、直流电压测量档、直流电流测量档、交流电压测量档几个部分组成。图中SA为量程转换开关“一”为黑表棒,“+”为红标棒。测量直流电流时,外部电流从“+”表棒流进,“一”表棒流出,当测量直流电压时线路中用R2限流降压,当测量交流电压时线路中用VD二极管半波整流,经过电阻R3限流降压,再由表头显示出来。当测量电阻时在“+” “一”两表棒短路连接时校零,有内部小电池提供电流,使表头指针偏转到校零点。

具体电路分析如下:

一、表头演示部分

如图3所示表头为I表=46.2uA,(约2.3KΩ的表头动圈导线电阻)和WH2(500Ω)的可调电阻组成R表=2.5KΩ的表头内阻 (该表在调试时就是把表头的2.5KΩ调准确) 。二极管D3、D4和C1(10uF)并联在2.5KΩ表头的两端。电容C1(10uF)起到平稳电流吸收脉冲的作用,二极管起到电压过高电流过大时的正反双向保护作用。R21和WH1组成表头的分流电路。

根据并联电路电压相等的原理由计算得出R21和WH1上的分流电流I分为:46.2 uA乘2.5K= 30K乘I分,由此可以得出I分的电流为3.85 uA。此时表头电流的总电流为I表并=46.2+3.85=50.05 uA,取50. uA。 同时可以算出此时的并联电阻为R表并=(2.5K乘3 0K)÷(30K+2.5K)=2.31K。故等效表头并联电阻为R表并=2.31K,表头等效并联电流I表并=50.uA,如图3所示。

我们再看图3正常满度电流时,表头两端的电压U表是多少?U表=U并=I表乘R表=I并表乘电阻R并表= 50 uA乘2.31K =115.5mV=0.1155V。此电压降远远小于硅二极管的正向导通电压0.6—0.7 V的值,所以D3、D4不导通 ,如图4所示;图4是二极管导通特性曲线。当万一电路接错使表头电压大于等于二极管的正向导通电压0.6—0.7V时,二极管D3、D4导通泄流,因此起到双向保护表头的作用。

二、直流电流档电路的分析

如图5所示,此时表头为50 uA,内阻为2.31K再和R22=2.69K串联,组成刚好为5K的电阻,我们把它叫做R表串=5KΩ,这时表头电流还是I表并=I表串=50 uA,这时表头电压降取名为U表串;U表串=R表串乘I表串=5K乘5 0 uA=250mV=0.25V。 所以当:

2.1三层电刷的量程开关转到直流电流DCmA0.05 mA(50 uA)档时,(电流全部流进表头50 uA)既能测量直流电流0.05mA(50 uA),又能测0.25V的电压降。

2.2电流表是根据并联电阻扩大分流电流达到扩大电流表的量程的原理设计的(下同),当量程开关转到DCmA0.5档时:电阻R4与表头R表串=5KΩ并联分流。同时我们知道此时

流过表头的电流刚好设计为50 uA,内阻为5kΩ,分流电流应该为:500 uA—50 uA=450 uA,根据并联分流电压相等的原理(下同);则450 uA乘R4=50 uA乘5K。由此可以计算得出R4=555Ω。我们的分析和电路图上电阻一致。

2.3同理:当量程开关转到DCmA5 mA档时:R3与表头R表串=5KΩ分流,分流电流是:5000uA—50uA=4950uA,则4950uA乘R3=50uA乘5K,所以R3=50.5Ω。分析也和实际一样。

2.4当量程开关转到DCmA50 mA档时:R2与表头R表串=5KΩ分流,分流电流是:50000uA—50uA=49950uA,则49950uA乘R2=50uA乘5K,所以R2=5Ω,功率取1/2瓦。

2.5当量程开关转到DCmA500mA档时:用R1+ R29二个电阻串联起来看做是一个电阻与表头R表串=5KΩ分流,分流电流是:500000uA—50uA=499950uA,则499950uA乘(R1+ R29)=50uA乘5K,因此500 mA档的分流电阻理论计算为0.5005Ω,实际R1+R29=0.44Ω+0.05Ω=0.49Ω。其中缺少了0.0105Ω;(要是把R1做成0.45Ω的话R1+R29=0.45Ω+0.05Ω=0.50Ω比理论计算0.5005Ω只有少了0.0005Ω 这样误差为很小;但是电阻阻值是国家有标称值的规定,不是生产厂家、使用单位、设计者自己可以任意决定的,为了优先保证后面5A档时用0.05Ω的电阻,所以这里只能选择用R1=0.44Ω的电阻、可能就是这个原因吧?)少去的0.0105Ω我们估且把它看作是接触电阻存在的缘故吧。

该表的设计误差精确度直流电流0.05mA—500mA档为2.5,5A档时为5。我们知道分流电阻减小分流电流增加电流测量值偏小、为负误差,我们可以来看一下误差为:0.0105Ω/0.5005Ω= 0.020979=0.021,小于百分之二点一即误差为2.1;符合设计要求小于2.5。

2.6 5A档时(5000000—50)乘R29=50 uA乘(5K+0.44Ω),所以R29=0.05Ω ,这里电阻刚刚好。设计者的高明之处在于把5 00 mA档的分流电阻0.5005分为的R1+R2=0.44+0.05=0.49Ω。其R29=0.05Ω正好为测量5A档分流所用;而5A档测量时要把档位放在500mA档,负表棒不变,正表棒从R29右边5A插空直接,用R29直接分流大电流,避免了量程开关的接触电阻对大电流测量的影响。

三、调试说明

该表在没有校试设备的情况下,可用数字万用表校准,方法如下:

焊好表头引线正端,数字万用表拨至20K档,红表棒接A点,(把表头引线负端从线路板上断开),黑表棒接表头引线负端,调可调电阻WH2,使电阻显示值刚好为理论设计值2.5KΩ,(温度为20℃),调好后焊好表头引线负端。调试就完成了。只要装配没有错误,通过上述方法,本表基本能校准,但是有条件者最好用数字校验台校试。

参考文献:万用表检测应用实例/韩广兴等编著。—北京:电子工业出版社,2007.5 ISBN 978-7-121-03993-5

看图识用万用表/门宏编著。—北京:电子工业出版社,2011.1(看图识电子系列丛书) ISBN 978-7-121-12195-1

晶体管收音机(电子技术讲座三).(上海业余工业大学)编写。科学出版社1971年 统一书号:15031.14出版社书号:51。15-7

电路设计原理范文第4篇

关键词:课程体系改革;教学内容优化;集成电路设计

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)34-0076-02

以集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。

我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。

一、专业课程体系存在的主要问题

1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。

2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。

3.课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。

二、专业课程体系改革的主要措施

1.“4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。

我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。

2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。

在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。

对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。

三、结论

集成电路产业是我国国民经济发展与社会信息化的重要基础,而集成电路设计人才是集成电路产业发展的关键。本文根据调研结果,分析目前集成电路设计本科专业课程体系存在的主要问题,结合我校实际情况,对我校电子科学与技术专业集成电路设计方向的专业课程体系进行改革,提出“4+3+2”专业课程体系,并对专业课程讲授内容进行优化。从而满足我校集成电路设计专业创新型人才培养模式的要求,为培养实用创新型集成电路设计人才提供有力保障。

参考文献:

[1]段智勇,弓巧侠,罗荣辉,等.集成电路设计人才培养课程体系改革[J].电气电子教学学报,2010,(5).

[2]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).

[3]谢海情,唐立军,文勇军.集成电路设计专业创新型人才培养模式探索[J].电力教育,2013,(28).

[4]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].教育与教学研究,2008,(22).

[5]杨媛,余宁梅,高勇.半导体集成电路课程改革的探索与思考[J].中国科教创新导刊,2008,(3).

电路设计原理范文第5篇

【关键词】计算机 电路设计 辅助 方法

之前在进行电路设计的时候,主要就是靠人工将一些电子元件通过导线然后连接起来,对于一些比较简单的电路,这样的方法还是可行的,但是现在的电路设计越来越复杂,在进行人工连接电路的时候就显得无从下手。所以人们才开始采用印制电路板的方式来进行电路的连接,传统的手工方式制作的话,工作量是比较的大,而且制作的周期也比较的长,往往很小的电路板也需要很长的时间才能够经过很多人制作出来,而且在后期如果要进行修改的话也比较的麻烦。随着计算机技术的应用,就能够很好的去解决这些问题。在通过计算机进行辅助电路设计的时候,往往之前需要很多人才能完成的工作,现在也只需要一个人就可以完成,而且在进行电路设计的时候,时间的周期也缩短了很多。

一、计算机辅助电路设计的一些优点

在采用计算机辅助电路设计的时候,主要就是利用了计算机模拟代替了之前的通过搭接来对电路进行试验的方法,这样的话在电路的设计阶段,就可以减少很多去验证电路的工作量,使得在进行电路设计的过程当中,进程会比之间快了很多。现在很多的专业软件上面都有很多的参数数据库和图形数据库,在设计当中需要用到的电子元件基本上这些数据库当中都能够提供,如果有些电子元件在数据库当中没有的话,那么也可以在设计之间先设计好这样一个电子元件的模型放入到相应的数据库当中,在设计当中如果需要的话那么也就可以很方便的直接拿出来用。同时在进行印刷电路板设计的时候,也可以采用相应的印刷电路板设计的专业软件,而这些专业的软件是可以进行自动布线布局以及后期处理的作用。而在进行图纸的绘制时,也可以采用相应的软件来进行制版。这样的话对于电路设计的周期就可以缩短很多,而且成本的费用也可以节约不少。

二、计算机辅助电路设计的具体方法

(一)设计电路图。在设计一个电路,要想使得它能够去完成一定的作用和功能,就应该先要设计好一个比较完整是电路原理图。在使用计算机复制电路设计的时候,采用计算机技术来设计电路的原理图是非常方便的,而且在设计的过程当中对于一些不合理需要修改的地方进行修改的时候也非常的方便,同时在设计好了电路的原理图之后,在通过相关的专业软件进行自动的布线布局,对于最后制作成线路板的版图也非常的方便。首先就是要在计算机当中打开进行原理图设计的专业软件,在打开了专业的设计软件之后就应该要新建一个文件,然后还要加载一些原理图设计的数据库。如果在这些电子元件库当中没有设计所需要的电子元件,那么就需要使用电子元件的生产软件,制作出相应的电子元件,然后就可以按照之前的电路设计的构思,调用数据库当中的电子元件来进行电路原理图的设计。在设计的当中,对于那些有电气性能连接的电子元件,就应该要用线把这些电子元件的管脚连上,而对于设计当中的总线电路,则可以才有一个总线来进行连接,这样的话就减少在设计当中连接的线条比较多的麻烦。但是如果需要在总线的两端分出很多的线条,那么就需要对这些线条进行相应的标注。而有些的线路上如果是有节点的话,那么就必须要把这些节点连接起来,不然的话计算机系统就会认为这些线路是没有连接在一起的。

在原理图的设计完成了之后,就应该要建立相应的网络表。在原理图和印制线路版图的之间,是需要靠网络表来进行连接的,要想将原理图最终变成相应的线路板版图就需要通过网络表来完成。首先要打开印制线路版图的相关软件,然后加载成功相应的数据库。在禁止布线层当中画好相应的印制线路版图的基本外形,然后就对自动布线的设置进行相应的调整,使得印制线路版图能够很好的达到设计的相关要求。在通过相应的网络表,通过自动布局的命令来摆好那些相应的组件,还应该要通过自动布线的命令来进行布线,这个过程是需要一定的时间才能够完成的。在完成了上述过程之后,在通过人工来对电路图当中一些不合理的地方进行调整,是电路图的设计能够合理。在全部完成电路设计之后,就可以生产电路板。

(二)设计电路板的版图。现在很多电路板厂在生产电路板的时候,基本上都是根据用户自己设计的印制线路版图来进行生产的。如果是那些已经成型了的电路板,还想要多生产一块或者是很多块的话,就可以直接利用计算机来进行辅助的设计,在生成了印制线路版图之后在进行电路板的生产。针对一些线路比较简单的电路,可以采用刻度尺度量的方法来将印制线路版图输入到计算机当中,首先要在线路当中的某一角设置一个原点,然后其他的点则是可以用这点来进行参照,然后来用刻度尺进行度量。针对一些线路比较复杂,电子元件比较多的电路,如果还是采用刻度尺来进行度量输入的话,那么就需要很多的时间,而且精确度也不是很高。这种情况下,就可以采用扫描仪将印制线路版图输入到计算机当中。通过这种方法,就可以省去很多的麻烦,而且还可以减少一些差错,所以采用扫描仪将印制线路版图输入到计算机当中,在提高电路质量的同时还可以提高工作的效率。

三、结束语

在社会的科学技术不断发展的时候,计算机辅助电路设计的方法也在不断的发展和更新,所以电路的设计者也应该要不断的学习新的技术和知识,使自己可以得到相应的提高,才能够更好的满足科学技术的发展需要。

参考文献:

[1]叶勇盛.计算机辅助电路设计教学方法研究与实践[J].职业教育研究,2010,03:90-91.

[2]侯云涛.APFC电路的计算辅助设计与仿真研究[D].西北大学,2003.

[3]张尚韬.计算机辅助电路分析程序设计(CAA)[J].福建信息技术教育,2008,01:25-28.

[4]忻斌健,张申科.计算机辅助电路设计程序(PSPICE)教学的实施及体会[J].电气电子教学学报,2001,01:92-93+97.

电路设计原理范文第6篇

模拟电路课程支撑的能力包括:阅读电子元器件技术文件和电原理图的能力、单元电路设计能力、电路综合设计能力、计算机辅助设计能力、编写设计文件的能力。依据能力目标的不同,可以划分不同的任务类型,并据此确定任务目标,设计任务结构。

关键词:模拟电路电路设计教学模式

以大规模集成工艺为依托的各种数字电路问世以来,由于其相对模拟电路的高可靠性和灵活性,逐渐取代了各种传统的模拟电路的应用领域。但是现实的物理世界毕竟是模拟的,因此,任何数字化系统都包含有模拟电路部分,模拟电路并没有因数字电路的兴起而被完全取代。模拟电路课程仍然是电子工程、电气工程、自动控制、通信等涉电类专业的核心课程之一。

模拟电路课程的重要性还在于无论从工程技术还是专业能力结构而言,模拟电子技术都处于较为底层的位置,通过该课程的学习获取的知识、经验、工程技术方法是顺利学习上述专业几乎所有其它专业课程的基础。

模拟电路是教学难度相对较大的课程。其学习的困难性在于,学生是第一次接触以半导体器件为核心的有源电路;模拟电路“数字化”、结构化程度低,表现出的物理现象和涉及的数学工具又较为复杂;模拟电路的工程技术方法很难实现程序化,常常需要依赖经验知识解决问题。

电路设计是电子技术人员的工作邻域和具有典型性的工作过程,模拟电路设计过程相当完整地体现了模拟电路技术应用能力的内容和要求。构建基于模拟电路设计的学习任务,依据设计工作过程组织教学活动,能够较好地实现培养模拟电子技术应用能力的教学目标。

1、工作过程、能力与任务类型

一个较完整的电子系统电路设计的工作过程,包括:技术指标分析,方案设计,单元电路设计与参数调整,电路综合联调与性能测试。通过对模拟电路设计工作内容和过程的分析,完成电路原理设计过程必须具备的、应由模拟电路课程支撑的能力包括:阅读电子元器件技术文件和电原理图的能力、单元电路设计能力、电路综合设计能力、计算机辅助设计能力、编写设计文件的能力。因此模拟电路课程的学习任务有4种类型:识读电原理图和技术资料、单元电路设计与电路综合、计算机仿真测试、编制设计文件。

单元电路设计与电路综合是基本任务,它引领其它类型任务和整个项目的实施完成。

不同类型的任务可以根据设计任务的需要和本身的复杂程度,作为单独的任务存在,与相关的设计任务共同组成学习项目,也可以作为完成设计的准备知识存在于设计任务之中。例如,反馈放大器设计可以作为一个学习项目,由识读反馈放大电路原理图、反馈放大电路性能分析、反馈放大电路设计3个关联的任务组成。

识读电原理图和阅读元器件技术文件是基本能力。电路设计,特别是在原理设计和电路结构设计时,极少原理性的创新,绝大多数是对已有电路的适用性改进和重新组合,这种改进和组合需要阅读已有的设计资料,借鉴他人的技术经验和成果;为提高电路性能,降低成本,提高工作效率,往往需要在电路中采用新出现的电子元器件,例如集成电路芯片,需要阅读生产方提供的产品规格书及典型应用电路。识读电原理图和技术文件对于形成和提高电路设计能力具有基础性的意义。

目前,电子电路计算机辅助设计(EDA)包括电子工程设计的全过程,例如系统结构模拟、电路特性分析、在系统可编程器件开发、绘制电路图和制作PCB。在电子工程设计中有着不可替代的重要作用,是电子工程技术人员必须具备的专业技术能力之一。在模拟电路课程的学习任务中,主要是指应用计算机完成电路图绘制、电路性能和参数的仿真测试与分析、编制设计文件等工作。

在电路设计的实际工作过程中,编写设计文件是重要的工作内容和不可缺少的环节。没有设计文件,无法进行初步设计完成以后的后继工作。对于学习任务而言,编写设计文件,是一个总结和提高的过程,有利于培养交流沟通能力和养成严谨的工作态度。设计文件也是判断和评价项目或任务完成情况的重要依据。

2、任务目标

(1)电路识读任务,是对针对设计任务收集技术资料(主要是可供设计参考的电路)并进行分析,属于电路设计的准备工作,任务的目的是为完成设计任务建立必要的知识储备。大致分为互相关联的3个层次:1)识别元器件符号、功能和主要技术指标。依据符号识别电路中的元器件是读图的基础,作为专业入门课程,对此应该给与一定程度的注意,要能够识别和了解符号的含义、主要器件功能和技术指标。根据电路中使用的核心器件,往往可以判断电路的功能。2)区分电路单元,判断电路功能。较复杂的电路系统都由单元电路构成,功能单一的单元电路也可以进一步分解为部分电路,例如放大器可分为输入级、中间级和输出级;稳压器可分为整流和稳压部分。对部分电路功能的分析,得出对整个系统功能的判断,并作为下一步工程估算的基础。3)指出电路的结构特点,估算分析电路技术指标。分析电路形式与结构,可以得出电路大致的技术性能指标,定性判断元器件参数对电路性能的影响。例如对放大器输入级、输出级电路形式和结构的分析,可以大致得出放大器的输入、输出特性;对中间级的分析,可以大致判断放大能力;依据级间耦合方式,可以判断放大器频率响应范围;甚至电源电压也可以据以分析放大器输出信号幅值。

(2)设计任务目标包括典型单元电路设计与电子线路综合设计,在定性分析的基础上实现定量估算,自顶向下完成初步的设计。依据设计工作过程,可以分解为以下阶段目标。1)正确理解任务要求,分析各项技术指标的含义。仔细研究任务的工程背景和要求,正确分析和理解各项技术指标的含义,分析实现任务要求的技术途径,这是完成设计的前提条件。2)设计总体框图,分配技术指标。参考与任务相同或相近的电路方案,选用能够满足技术指标要求的核心器件,完成方案论证。对于同一个任务,实现的方案可以有多个,应具备将不同方案加以分析、比较的能力,从中确定一种相对较优的方案。

依据选定的方案按照功能划分成若干个互相联系的模块,将技术指标和功能分配给各个模块。3)单元电路设计。依据模块的功能和技术指标要求,参考典型电路,确定电路结构,计算元器件参数完成单元电路的初步设计。4)仿真测试。模拟电路,比如放大器、滤波器等的参数比较繁琐,需要进行多次调整才能达到技术指标要求。要能够在计算机上对单元电路仿真测试,修改电路参数,观测性能指标,直至满足技术指标要求。5)电路联调,测试技术指标。在单元电路完成逐步设计的基础上,通常依据信号流向,逐级完成级联和调试直至全部电路调试完成,系统技术指标达到设计要求。这个过程是电路综合的过程,也可以在计算机上模拟仿真实现。

(3)仿真测试调整任务的目标是在电子电路设计过程中实现较为精确的量化分析。其作用主要表现在3个方面。[3]1)验证电路方案设计的正确性。当要求的系统功能确定之后,首先采用系统仿真或结构模拟的方法验证系统方案的可行性,进而对构成系统的各单元电路结构进行模拟分析,以判断电路结构设计的正确性及性能指标的可实现性。2)电路特性的优化设计。分析恶劣温度条件下的电路特性,计算分析器件容差对电路的影响量,用于确定最佳元器件参数、电路结构以及适当的系统稳定裕度,实现电路的优化设计。3)实现电路的模拟测试。电子电路的设计过程中大量的工作是元器件参数计算、各种数据测试及特性分析。在工程估算的基础上,通过仿真测试与分析加以调整,能有效提高设计工作的效率。4)技术文件编写要求在完成电路设计的同时编写尽可能详细的符合工程标准的技术文件,包括方案设计说明、原理框图、电原理图、原理与技术说明、元器件参数计算、技术指标与特性测试数据、元器件清单等。

3、任务结构及实施

一个典型的电路设计任务由工程背景描述、任务要求、基础知识学习、设计方法与步骤、电路设计等学习单元组成。

3.1工程背景描述

工程背景描述的内容主要包括电路功能、工程应用背景、技术发展背景介绍。工程背景描述的实质是“提出问题”,工程背景描述尽可能选择具有典型性的电子工程问题为实例,解决关于学习目标的问题。

3.2 任务要求

设计任务必须具备明确的工程应用背景,必须提出具体的设计要求(技术指标)。例如交流放大器设计任务,应明确提出工作频率、信号源、输出特性、输入特性、工作稳定性等要求等技术指标。提出任务要求,应依据由浅入深循序渐进的原则,从体现基本功能的一两个技术指标开始,逐步增加技术指标数量,提高设计难度。

3.3基础知识学习

基础知识学习包括任务分析、相关理论知识学习、参考方案与参考电路分析及相应的基础练习等。基础知识的学习包括理论知识、技术知识、经验知识和经验技能的学习。理论知识是重要的,因为它是能力的组成部分,同时对于学生的发展能力起到更为持续和关键的作用。在工程实践中学习和使用的理论知识才能被真正掌握并形成能力,因此应该以实现电路设计任务为依据,确定理论知识的学习内容和学习深度,力求将理论与实践、数学方法与物理概念更紧密地结合起来。

提供设计参考的电路必须是工程电路,但学习是一个循序渐进的过程,基础知识的学习会使用原理电路为学习对象,原理电路不能仅有电路结构和元器件标号,也要标注元器件主要参数,使学生在定性分析阶段就能对电路参数有直观的影像,逐步建立数量观念,这对于初次接触模拟电路的学生是十分重要的。

3.4设计方法与步骤

不同功能和结构的电路,具体的设计内容、方法与步骤各不相同。甚至同样功能的电路,技术要求不同,设计时考虑的重点、设计依据、电路结构等均有区别,但工程估算是贯穿整个设计过程始终的基本方法。

以反馈放大器为例,设计步骤如下:

选择反馈组态,选择反馈深度,选择反馈级数,确定放大级数,确定输入级、中间级、输出级的电路结构,计算电路参数,仿真测试和参数调整。容易理解,上述步骤都必定建立在必要的工程估算的基础之上。

3.5 电路设计

这是学生在相对独立的情况下,完成电路设计的过程。尽量采用与前面4个学习单元及撰写设计文件交叉进行的方式实施。

不同类型的学习任务,其结构不尽相同。但区别主要是在(4)、(5)两部分。

不同类型的学习任务以“定性分析、工程估算与仿真测试调整相结合”的方法实现。

4、结语

电路设计在知识的运用上不同于单纯的电路分析与计算,依据模拟电路原理设计过程构建学习任务,组织和实施教学过程,不仅能够有效控制理论知识学习深度,促使学生较为自主地获取经验知识,并在获取知识的同时实现知识转换为技术应用能力,更有利于实现培养学生模拟电路技术应用能力的教学目标。

参考文献

[1] Sergio Franco.基于运算放大器和模拟集成电路的电路设计[M].西安交通大学出版社,2009.

[2] 谢自美 等.电子线路综合设计[M].华中科技大学出版社,2006.

[3] 赵世强 等. 电子电路EDA技术[M].西安电子科技大学出版社,2000.

[4] M.Herpy.模拟集成电路[M].高等教育出版社,1984.

[5] 黄昌宁,夏莹.集体管电路(第二版)[M].科学出版社,1984.

电路设计原理范文第7篇

关键词:集成电路专业;实践技能;人才培养

中图分类号:G642.0 文献标志码: A 文章编号:1002-0845(2012)09-0102-02

集成电路产业是关系到国家经济建设、社会发展和国家安全的新战略性产业,是国家核心竞争力的重要体现。《国民经济和社会发展第十二个五年规划纲要》明确将集成电路作为新一代信息技术产业的重点发展方向之一。

信息技术产业的特点决定了集成电路专业的毕业生应该具有很高的工程素质和实践能力。然而,目前很多应届毕业生实践技能较弱,走出校园后普遍还不具备直接参与集成电路设计的能力。其主要原因是一些高校对集成电路专业实践教学的重视程度不够,技能培养目标和内容不明确,导致培养学生实践技能的效果欠佳。因此,研究探索如何加强集成电路专业对学生实践技能的培养具有非常重要的现实意义。

一、集成电路专业实践技能培养的目标

集成电路专业是一门多学科交叉、高技术密集的学科,工程性和实践性非常强。其人才培养的目标是培养熟悉模拟电路、数字电路、信号处理和计算机等相关基础知识,以及集成电路制造的整个工艺流程,掌握集成电路设计基本理论和基本设计方法,掌握常用集成电路设计软件工具,具有集成电路设计、验证、测试及电子系统开发能力,能够从事相关领域前沿技术工作的应用型高级技术人才。

根据集成电路专业人才的培养目标,我们明确了集成电路专业的核心专业能力为:模拟集成电路设计、数字集成电路设计、射频集成电路设计以及嵌入式系统开发四个方面。围绕这四个方面的核心能力,集成电路专业人才实践技能培养的主要目标应确定为:掌握常用集成电路设计软件工具,具备模拟集成电路设计能力、数字集成电路设计能力、射频集成电路设计能力、集成电路版图设计能力以及嵌入式系统开发能力。

二、集成电路专业实践技能培养的内容

1.电子线路应用模块。主要培养学生具有模拟电路、数字电路和信号处理等方面的应用能力。其课程主要包含模拟电路、数字电路、电路分析、模拟电路实验、数字电路实验以及电路分析实验等。

2.嵌入式系统设计模块。主要培养学生掌握嵌入式软件、嵌入式硬件、SOPC和嵌入式应用领域的前沿知识,具备能够从事面向应用的嵌入式系统设计能力。其课程主要有C语言程序设计、单片机原理、单片机实训、传感器原理、传感器接口电路设计、FPGA原理与应用及SOPC系统设计等。

3.集成电路制造工艺模块。主要培养学生熟悉半导体集成电路制造工艺流程,掌握集成电路制造各工序工艺原理和操作方法,具备一定的集成电路版图设计能力。其课程主要包含半导体物理、半导体材料、集成电路专业实验、集成电路工艺实验和集成电路版图设计等。

4.模拟集成电路设计模块。主要培养学生掌握CMOS模拟集成电路设计原理与设计方法,熟悉模拟集成电路设计流程,熟练使用Cadence、Synopsis、Mentor等EDA工具,具备运用常用的集成电路EDA软件工具从事模拟集成电路设计的能力。其课程主要包含模拟电路、半导体物理、CMOS模拟集成电路设计、集成电路CAD设计、集成电路工艺原理、VLSI集成电路设计方法和混合集成电路设计等。此外,还包括Synopsis认证培训相关课程。

5.数字集成电路设计模块。主要培养学生掌握数字集成电路设计原理与设计方法,具备运用常用的集成电路EDA软件工具从事数字集成电路设计的能力。其课程主要包含数字电路、数字集成电路设计、硬件描述语言、VLSI测试技术、ASIC设计综合和时序分析等。

6.射频集成电路设计模块。主要培养学生掌握射频集成电路设计原理与设计方法,具备运用常用的集成电路EDA软件工具从事射频集成电路设计的能力。其课程主要包含CMOS射频集成电路设计、电磁场技术、电磁场与

天线和通讯原理等。

在实践教学内容的设置、安排上要符合认识规律,由易到难,由浅入深,充分考虑学生的理论知识基础与基本技能的训练,既要有利于启发学生的创新思维与意识,有利于培养学生创新进取的科学精神,有利于激发学生的学习兴趣,又要保证基础,注重发挥学生主观能动性,强化综合和创新。因此,在集成电路专业的实验教学安排上,应减少紧随理论课开设的验证性实验内容比例,增加综合设计型和研究创新型实验的内容,使学有余力的学生能发挥潜能,有利于因材施教。

三、集成电路专业实践技能培养的策略

1.改善实验教学条件,提高实验教学效果。学校应抓住教育部本科教学水平评估的机会,加大对实验室建设的经费投入,加大实验室软、硬件建设力度。同时加强实验室制度建设,制订修改实验教学文件,修订完善实验教学大纲,加强对实验教学的管理和指导。

2.改进实验教学方法,丰富实验教学手段。应以学生为主体,以教师为主导,积极改进实验教学方法,科学安排课程实验,合理设计实验内容,给学生充分的自由空间,引导学生独立思考应该怎样做,使实验成为可以激发学生理论联系实际的结合点,为学生创新提供条件。应注重利用多媒体技术来丰富和优化实验教学手段,如借助实验辅助教学平台,利用仿真技术,加强新技术在实验中的应用,使学生增加对实验的兴趣。

3.加强师资队伍建设,确保实验教学质量。高水平的实验师资队伍,是确保实验教学质量、培养创新人才的关键。应制定完善的有利于实验师资队伍建设的制度,对实验师资队伍的人员数量编制、年龄结构、学历结构和职称结构进行规划,从职称、待遇等方面对实验师资队伍予以倾斜,保证实验师资队伍的稳定和发展。

4.保障实习基地建设,增加就业竞争能力。开展校内外实习是提高学生实践技能的重要手段。

实习基地是学生获取科学知识、提高实践技能的重要场所,对集成电路专业人才培养起着重要作用。学校应积极联系那些具有一定实力并且在行业中有一定知名度的企业,给能够提供实习场所并愿意支持学校完成实习任务的单位挂实习基地牌匾。另外,可以把企业请进来,联合构建集成电路专业校内实践基地,把企业和高校的资源最大限度地整合起来,实现在校教育与产业需求的无缝联接。

5.重视毕业设计,全面提升学生的综合应用能力。毕业设计是集成电路专业教学中最重要的一个综合性实践教学环节。由于毕业设计工作一般都被安排在最后一个学期,此时学生面临找工作和准备考研复试的问题,毕业设计的时间和质量有时很难保证。为了进一步加强实践环节的教学,应让学生从大学四年级上半学期就开始毕业设计,因为那时学生已经完成基础课程和专业基础课程的学习,部分完成专业课程的学习,而专业课教师往往就是学生毕业设计的指导教师,在此时进行毕业设计,一方面可以和专业课学习紧密结合起来,另一方面便于指导教师加强对学生的教育和督促。

选题是毕业设计中非常关键的环节,通过选题来确定毕业设计的方向和主要内容,是做好毕业设计的基础,决定着毕业设计的效果。因此教师对毕业设计的指导应从帮助学生选好设计题目开始。集成电路专业毕业设计的选题要符合本学科研究和发展的方向,在选题过程中要注重培养学生综合分析和解决问题的能力。在毕业设计的过程中,可以让学生们适当地参与教师的科研活动,以激发其专业课学习的热情,在科研实践中发挥和巩固专业知识,提高实践能力。

6.全面考核评价,科学检验技能培养的效果。实践技能考核是检验实践培训效果的重要手段。相比理论教学的考核,实践教学的考核标准不易把握,操作困难,因此各高校普遍缺乏对实践教学的考核,影响了实践技能培养的效果。集成电路专业学生的实践技能培养贯穿于大学四年,每个培养环节都应进行科学的考核,既要加强实验教学的考核,也要加强毕业设计等环节的考核。

对实验教学考核可以分为事中考核和事后考核。事中考核是指在实验教学进行过程中进行的质量监控,教师要对学生在实验过程中的操作表现、学术态度以及参与程度等进行评价;事后考核是指实验结束后要对学生提交的实验报告进行评价。这两部分构成实验课考核成绩,并于期末计入课程总成绩。这样做使得学生对实验课的重视程度大大提高,能够有效地提高实验课效果。此外,还可将学生结合教师的科研开展实验的情况计入实验考核。

7.借助学科竞赛,培养团队协作意识和创新能力。集成电路专业的学科竞赛是通过针对基本理论知识以及解决实际问题的能力设计的、以学生为参赛主体的比赛。学科竞赛能够在紧密结合课堂教学或新技术应用的基础上,以竞赛的方式培养学生的综合能力,引导学生通过完成竞赛任务来发现问题、解决问题,并增强学生的学习兴趣及研究的主动性,培养学生的团队协作意识和创新精神。

在参加竞赛的整个过程中,学生不仅需要对学习过的若干门专业课程进行回顾,灵活运用,还要查阅资料、搜集信息,自主提出设计思想和解决问题的办法,既检验了学生的专业知识,又促使学生主动地学习,最终使学生的动手能力、自学能力、科学思维能力和创业创新能力都得到不断的提高。而教师通过考察学生在参赛过程中运用所学知识的能力,认真总结参赛经验,分析由此暴露出的相关教学环节的问题和不足,能够相应地改进教学方法与内容,有利于提高技能教学的有效性。

此外,还应鼓励学生积极申报校内的创新实验室项目和实验室开放基金项目,通过这些项目的研究可以极大地提高学生的实践动手能力和创新能力。

参考文献:

[1]袁颖,等.依托专业特色,培养创新人才[J]. 电子世界,2012(1).

[2]袁颖,等.集成电路设计实践教学课程体系的研究[J]. 实验技术与管理,2009(6).

[3]李山,等.以新理念完善工程应用型人才培养的创新模式[J]. 高教研究与实践,2011(1).

[4]刘胜辉,等.集成电路设计与集成系统专业课程体系研究与实践[J]. 计算机教育,2008(22).

[5]李祖林,等.电气信息类专业实习教学模式研究[J]. 电气电子教学学报, 2008(4).

电路设计原理范文第8篇

【关键词】教学目标;过程;协作学习;情境;能动性

【Abstract】Base on project teaching method , proposed the teaching reform steps and Methods of the Microcomputer principle,set up a teaching situation ,it is clear that Teachers under the student as the center , “student performance management system”project used to wear in Microcomputer principle, inspired the learning interest of the students.

【Key words】The teaching goal;Process;Collaborative learning;Situation;Motility

1 项目教学法[1]

根据项目教学法原理和规则, 把理论和实践相结合,让学习者在一定的情境即社会需求的背景下,把自身已有的知识和经验为基础主动的建构学习活动。即是在教师设计的情境下的学生的学习过程,使学生借助已有的知识和经验,主动探索,积极交流,建立对《微机原理》课程新的认知过程。笔者将《微机原理》与工程项目相结合,将工程项目应用于教学的过程,也是使学生主动建构自己已有知识经验的过程,同时也是通过新经验与原有知识经验的相互作用而不断充实、丰富和改造自己已有知识经验的过程。将课程与工程项目结合,更强化了学生学习的主动性、实践性、创造性和社会性,从而对学习与教学提出了许多新的见解和思想。

2 《微机原理》的课程情景

《微机原理》的课程情景包括《微机原理》课程特点和《微机原理》课程设置特点。

(1)《微机原理》课程特点:《微机原理》包括二个方面的内容,其一,汇编语言的程序设计;其二,硬件电路的设计和软件接口;其三,《微机原理》涉及的概念比较复杂,规则繁多,使用灵活,容易出错,教师教学和学生学习都感到困难,并不同程度产生畏难心理;这是一门实践情很强的课程,没有深澳的理论,也没有逻辑推理过程,同时是指令对底层的操作,所以执行过程是看不见摸不着的,对学生来说不能形象的理解,枯槽无味,因此学习起就比较困难。

(2)《微机原理》课程设置特点:其一,《微机原理》教学的少课时,多内容,该课程从54学时减少到了41学时;其二,汇编语言作为程序设计语言之一,不但是计算机专业的必修课,而且非计算机专业的学习课程。

为解决上述问题笔者在整个教学过程中分别以指令系统模型图和系统电路为主线,将系统电路分为七个模块,描述硬件系统开发过程,将各个子项目合理按排到单元,并且提出了下列要求:将教材的各接口芯片与 存储器2716、2114以独立方式编址按下列要求设计电路:

(1)译码芯片为74LS138\74LS32\74LS20\74LS04\74LS30

(2)ROM存储器系统为2KB RAM存储器系为4KB

(3)接口芯片的端口地址16位其中最低二位为接口芯片的片内译码,第三位到第8位为74LS138的输入和控制信号,第九位到第十四位为自已学号编号作为门电路的译码输入信号。

要求学生在本课程学习的过程中完成上述项目内容(以下简称为“项目”)。

3 《微机原理》的课程内容的设计

3.1 抽象的指令形象化 ,由于PC 机的汇编指令比较多,同时指令是对底层的操作,是看不见摸不着的,所以学习起来比较费劲,难以理解,所以为化解这个问题,在汇编语言的这部分教学过程中设计一个模型,有助于学生在学习指令时对指令的理解。

例如根据指令系统模型在讲解MOV AL,[1000H]指令时,强调将13送至AL中,不是将1000H送入AL中,图中是采用动画,这样就很直观的形象,例如要求将1000H单元的内容送至I/O接的2000H端口中去

MOV DX,2000H

MOV AL,[1000H]

OUT DX,AL

这个例题既让学生理解I/O操作指令又让学生理解存储器和I/O指的作令是不同的,既形象又直观。

3.2 硬件部分教学设计

教学内容如系统电路图2所示 ,通过这张电路图让学生知道本课程的学习任务,达到什么样的要求,从而激发学生的学习兴趣。

作者将本系统电路划分为七个模块,分别是译码电路设计、存储器系统设计、8253定时电路电路设计、8251接口电路设计、8255接口电路设计和A/D或D/A电路设计及8259接口电路设计,把每个子项目与其章节对应,以该系统电路为教学过程的始终,将各章节的知识点惯穿其中,从而引导学生学习完相应内容后积极完成项目的相应任务,掌握各章节的知识,要求学生最终完项目的设计,让学生知道学习的最终目标和《微机原理》课程的意义,看到了自已的收获,激发了学生积极性,使学生产生学习兴趣,从而提高学习效率。

3.3 分析教学目标、明确教学任务

基于项目教学法的思想,我们的教学设计是学生是学习的主体,在汇编语言程序设计部分通过指令系统模型图,确定《微机原理》课程的汇编语言程序设计部分学习情境教学目标分析,确定基本概念、语法以及程序设计有关的知识内容,《微机原理》硬件部分,明确各子项目与CPU接口的基本方法,这是教学设计面临的首要任务。

《微机原理》课程目标:通过项目的训练,培养学生编程思想和基本技能,熟悉基本程序设计方法,掌握硬件电路的设计,能更好理解软硬件结合,解决本专业领域中的问题。

4 教学过程设计

笔者基于项目教学法的思想,以指令系统模型和系统电路设计真实问题情景为依托,探索、学习和解决实际问题的过程,从而用问题来驱动学习。

《微机原理》采用 以模块为载体,用任务进行驱动的教学方法。以《系统电路设计》为主线,把任务分配于所有章节中,课程教学具有连贯性。同时结合现场提供实际项目案例(子项目)组织教学。教学过程中,通过案例导入,任务驱动(I/O接口电路是怎么样编址?),引导学生由简到繁、由易到难、循序渐进地完成一系列“模块任务”,在完成“模块任务”的过程中,培养学生分析问题、解决问题,完成课程设计和教学训练的全过程。使学生体会到知识的实用性,提高学习兴趣。

例如 在硬件部分教学过程中,先以译码电路设计先行,因为译码电路是接口电路设计的第一道关口,只有弄清楚了这部电路的设计,也就理解了I/O端口编址方法,从而更进一步理解端口的概念。所以阐述译码电路设计的原则,输入信号的构成及输出信号为低电平,同时阐述地址编码规则,给出应该实例进行分析。

5 学习情境设计

学习情景的选择:为学生选择一个完整、真实的学生比较熟悉问题背景(例如讲授输入输出接口时I/O接口为什么要设置地址?引入这栋大楼的教室为什么要编号?)作为《微机原理》教学的平台或者切入点,激必学生学习的欲望;同时该情境又要能让学生感受此情境的在学习过程中学生在这个群体互动与交流,即协作学习,驱动学习者进行自主学习,从而达到主动建构知识意义的目的。

所以笔者在《微机原理》教学实施中,将《系统电路》实际问题或引入课堂教学,进行适当简化处理,作为教学和实验实训项目。根据课程内容和工作过程,结合学生特点,采用任务驱动、项目教学、讲练结合等教学手段,把项目开发过程的工作环节及任务穿插于各个知识点的学习中,设计如下的七个学习情境[2]。

译码电路设计――输入输出接口

存储器系统设计――存储器

8253接口电路设计――定时与计数器

8251接口电路设计――串行接口

8255接口电路设计――并行接口

A/D或D/A电路设计――模拟量输入/输出通道

8259接口电路设计――中断系统

6 协同学习环境设计

在《微机原理》教学过程中始终以《系统电路》为主线,让学生在自学的基础上开展小组讨论、协商,以进一步完善和深化对项目意义建构。整个协同学习过程均由教师组织引导,讨论的问题可由师生根据教学内容,根据项目结合《系统电路》提出,在教师的指导下通过个人、小组搜集材料、提取信息、处理信息、合作研究、探索解决问题的学习方式,为学生提供一个交流、合作、探索、发展的平台。

例如:项目内容的(3),就是要求学生在学习完译码电路设计后完成,为此为了让学生理解其中的位的概念,就必需引导对学生将地址总线和学号的编号对应。从而让学生发挥想象,自主设计,由于学号不同所以设计出来的译码电路也就各不相同。

7 总结

在基于项目教学法的思想指导下,将指令系统模图和《系统电路》运用在《微机原理》教学中,始终突出以学生为主,教师为辅原则, 通过鼓励学生主动参与项目,自主学习、培养学生的团队意识和探索精神,从而激发了学生的学习兴趣。这种教学改进深受学生欢迎,使学生对微机原理掌握更深入、更扎实,全面的提升《微机原理》的教学质量。

【参考文献】

[1]R・M・加涅L・J・布里格斯.教学设计原理[M].华东师范大学出版社.

电路设计原理范文第9篇

关键词:集成电路设计;创新型人才;培养模式

作者简介:谢海情(1982-),男,湖南耒阳人,长沙理工大学物理与电子科学学院,讲师。(湖南 长沙 410004)

基金项目:本文系长沙理工大学教学改革研究项目(项目编号:JG1348)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)28-0029-02

集成电路的产业规模和技术水平已成为一个国家综合国力的重要标志之一。近年来,我国集成电路产业发展迅速。2004年,我国集成电路产量为211亿块,销售额为545.3亿元。2011年一季度,我国集成电路总产量达到191亿块,销售额达348.4亿元,中国已经成为全球集成电路产业发展最快的地区之一。

我国集成电路产业经过多年的发展,已基本形成了四业(设计业、制造业、封装业和测试业)并举协同发展、四个相对集中的产业集群(长江三角洲、珠江三角洲、环渤海地区和京津地区)和多个国家集成电路产业化基地。[1,2]一直以来,国家对集成电路产业的发展高度重视,《中共中央国务院关于加强技术创新发展高科技实现产业化的决定》中将IC产业放在了电子信息产业的第一位。[3]随着我国集成电路设计产业突飞猛进地发展、繁荣,对集成电路设计相关人员的需求也日益增加,仅靠国内少数高校的研究生已很难满足产业发展的需要。为满足快速发展的集成电路产业对人才的需求,2001年教育部开始批准设置“集成电路设计与集成系统”本科专业。[4]集成电路设计在国内众多高等院校都由原来纯粹的研究生教学逐渐转为由本科教学开始。

本文从课程体系设置、实验实践教学等多方面详细分析了目前集成电路设计本科教学存在的问题。在此基础上,从三个方面提出了集成电路设计本科人才培养的改革措施,探索集成电路设计本科创新型人才培养模式。

一、集成电路设计本科人才培养存在的主要问题

1.课程设置及课程内容不合理,从而降低了学生的学习热情

目前,国内多数院校的集成电路设计专业在本科阶段主要开设有“固体物理”、“半导体物理”、“晶体管原理”、“数字集成电路设计”和“模拟集成电路设计”等专业课程。对于这些课程的开设主要存在下列问题:

(1)不重视专业基础课程的教学。“固体物理”、“半导体物理”和“晶体管原理”是集成电路方面的基础课,为后续更好地学习集成电路专业课提供理论基础。如果这些基础课程没学好,学生在学习后续相关专业知识时就会比较困难,进而直接导致学业的荒废。但有些高等院校将这些课程设置为选修课,设置较少的课程教学课时量,甚至少数院校不开设这些课程。

(2)课程开设顺序上存在很多问题。在部分高等院校的培养计划中,“固体物理”课程和“晶体管原理”课程同一个学期开设,造成了学生在学习“晶体管原理”课程时没有“固体物理”课程的基础,从而很难快速地进入状态,学习兴趣受到严重影响。

(3)基础课程的理论性太强,学生学习的兴趣不高。“固体物理”、“半导体物理”和“晶体管原理”是专业基础课程,理论性较强,公式推导较多,并且要求学生具有较好的数学基础。然而,一般来说,本科学生都比较厌烦复杂的理论分析和繁琐的公式推导,特别是基础相对较差的学生,再加上较强的数学基础要求,学生学习的积极性受到极大打击。此外,部分高校设置的专业基础课程教学课时量较少,学生不能全面、深入地学习,进一步削弱了学生的学习热情。[5]

2.实践教学量不足,学生动手能力差

电子设计自动化(Electronic design automatic,EDA)是集成电路设计技术的必备基础手段。集成电路设计专业的本科毕业生必须掌握一些常用的EDA工具,对将来工作和继续深造学习都具有很大的促进作用。为了推广EDA工具的使用,许多EDA公司实施了专门的大学计划。我校购买了CADENCE软件以及高性能服务器,搭建数/模混合集成电路设计EDA平台,并与ALTERA公司共建了EDA/SOPC联合实验室。但学生的实际使用情况却喜忧参半,难以实现软件使用量的最大化。一方面,购买的软件等资源主要供学生实验课上使用,其余时间学生很少使用。另一方面,教师在上实验课时一般都采用填鸭式灌输方式,而不是学生自己摸索,从而难以理解、使知识融会贯通。因此,学生很容易忘记实验课上学到的知识点,在后续的工作或学习中要用到相关软件工具时需重新学习。动手能力差成为了集成电路设计方向本科生择业时的一大障碍。[6]

3.门类分科不合理,属性不一致

无论是从专业内容还是专业性质上分,集成电路设计方向都应该属于工科性质。然而,我校将该专业划归理科专业。这将导致虽然学习的课程与内容和其他高校工科性质的集成电路设计方向基本一致,毕业时学生却是获得理学学士,造成很多学生在就业时遇到问题。许多单位招聘时首先看的是毕业证和学位证,使得很多学生错失了就业的好机会。最终直接导致下一学年选择该专业的学生越来越少,只能靠调剂维持正常教学。另一方面,学生对集成电路产业现状和发展趋势了解甚少,对集成电路设计专业的优势了解不够,对集成电路设计人才市场需求和该专业的良好就业形势认识不清,从而不能充分激发学生的学习兴趣。

二、创新型人才培养的具体措施

1.改革课程教学,增强学生的创新能力

建立由公共基础、专业基础、专业方向和工程实践四大模块组成的集成电路设计专业课程体系。压缩公共基础课,取消与集成电路设计方向关系不大的基础课程(比如计算机文化基础课程)。合理安排专业基础课程和专业方向课程的开课顺序、课时量。在教学内容和教学方法上,集成电路设计的教师应该做到“授之以渔,而不是授之以鱼”。对于集成电路设计方向的本科生而言,其学习的内容是集成电路相关的最基础理论知识、电路结构及特点。其学习重点应该是掌握基础的电路结构以及分析电路的基本方法等,而不是电路各性能参数的具体推导。因此,教师在讲授“固体物理”和“晶体管原理”等集成电路设计专业基础课时,应该尽量避免冗长的公式及繁琐的推导,以免影响学生的学习兴趣。另外,适当减少理论教学中复杂的公式推导,而着重半导体器件工作原理和特性的物理意义的学习,既可使学生容易接受又有利于后续专业方向课程的学习。

2.完善实验实践环节,培养学生的创新能力

实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。对于集成电路设计专业而言,完善实验实践教学环节需要从以下三个方面着手:

(1)增加实验教学的课时量。目前,集成电路专业本科教学中的实验教学量过少。以“模拟集成电路设计”课程为例。总课时量为48学时,其中理论课38学时,实验教学仅10个学时。38学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。仅10个学时的实验教学还包括2~4学时的EDA工具学习,留给学生独自进行电路设计的就只有6~8个学时。学生不可能很好地理解理论课所学知识,更谈不上融会贯通,极大地削弱了学习兴趣。因此,增加本科教学的实验教学课时量可以有效地促进教学效果,激发学生的学习兴趣。

(2)完善和优化由课程设计、课程实训、生产实习、毕业实习和毕业设计构成的专业实习实践教学体系。该实习实践教学体系具备分级教学和多层次教学的特点,对集成电路专业创新型人才的培养具有重要作用,尤其是其中的课程设计和毕业设计。课程设计和毕业设计是理论基础和工程实践的有机结合,可以很好地培养学生的工程素质和创新能力。在这两个环节中,选题是关键,也是难点。选题既要具有一定的工程背景又要让学生感兴趣,从而不但培养学生的工程能力,而且激发学生学习的主动性、积极性和实践创新能力。

(3)应该将以CADENCE软件为主体建立的数/模混合集成电路设计EDA平台,以及与ALTERA公司共建的EDA/SOPC联合实验室作为开放式电子设计训练和综合创新性实验基地的重要组成部分,成为学生进行课程设计和毕业设计以及课外实践活动的平台,从而实现软件资源使用的最大化。

3.增加就业相关知识,增强学生的竞争能力

据相关部门统计,极少数集成电路设计专业的本科毕业生会从事集成电路设计方向相关工作,多数选择改行或继续学习深造。这是因为一方面本科生基本知识储备不够,更主要的原因是设置集成电路设计专业研究生课程的高等院校越来越多。然而,集成电路版图、集成电路工艺以及集成电路测试等与集成电路设计相关的工作岗位对集成电路设计知识的要求较低。从事上述几个工作岗位若干年将有助于从事集成电路设计工作。因此,就个人的长远发展而言,集成电路版图、集成电路工艺以及集成电路测试等工作岗位对于本科生而言更具有竞争力。因而,教师在讲授集成电路设计方面知识的基础上应有重点地讲授基本的集成电路版图、集成电路工艺流程、芯片测试等相关内容。

再者,定期举办学术报告会,让学生了解集成电路产业的最新发展现状和发展趋势,了解集成电路产业的市场需求,了解集成电路设计及相关人才市场需求,了解集成电路设计专业就业前景,从而激发学生的学习兴趣,充分调动学生的学习积极性。

三、结论

集成电路产业是我国的新兴战略性产业,是国民经济发展与社会信息化的重要基础。创新型人才是发展集成电路产业的关键。因而,大力推进集成电路产业的发展必须提高集成电路设计人才的培养质量。目前,我国内集成电路设计本科教育尚处于孕育发展阶段,虽适应IC产业发展的需求,但仍存在很多问题需要解决。本文根据调研结果分析目前集成电路设计本科人才培养存在的问题,结合我校实际情况提出了几项改革措施,但远没有涉及集成电路设计本科创新型人才培养模式的诸多方面。但是,可以预测,有政府的大力扶持和相关教师及学生的共同努力,我国的集成电路设计本科人才培养定会逐步走向成熟,最终建立完善的集成电路设计本科创新型人才培养模式。

参考文献:

[1]杨媛,余宁梅,高勇.半导体集成电路课程改革的探索与思考[J].中国科教创新导刊,2008,(3).

[2]刘胜辉,崔林海,黄海.集成电路设计与集成系统专业课程体系研究与实践[J].教育与教学研究,2008,(22).

[3]孙玲.关于培养集成电路专业应用型人才的思考[J].中国集成电路,2007,(4).

[4]方卓红,曲英杰.关于集成电路设计与集成系统本科专业课程体系的研究[J].科技信息,2007,(27).

[5]殷树娟,齐臣杰.集成电路设计的本科教学现状及探索[J].中国电力教育,2012,(4).

电路设计原理范文第10篇

>> 基于TL494太阳能降压充电电路设计 基于STC89C52和TL494的开关电源的设计 基于脉宽控制器TL494的升压开关电源设计 基于TL494芯片 PWM控制电路工作原理分析与检测 直流降压斩波电路的设计 一种基于TL494芯片的电动车电机控制器 基于PSCAD的直流斩波电路的仿真 基于MATLAB/Simulink的直流斩波电路分析 直流斩波电路的MATLAB研究 基于CPLD的直流无刷电机驱动电路设计 直流斩波电路的Matlab/Simulink仿真研究 基于AD760的高精度直流电压输出电路设计 基于小型高效直流开关电源的控制电路设计 GTO斩波调速系统主电路的设计 基于串联直流稳压电源电路的Multisim应用于电路设计分析研究 基于CPLD的WatchDog电路设计 基于EMCCD的驱动电路设计 基于89C51单片机的数控直流电源电路设计 基于Matlab的交流斩波型PFC电路仿真研究 交流信号转直流信号电路设计 常见问题解答 当前所在位置:.

[2]王兆安,刘进军.电力电子技术[M].北京:机械工业出版社,2010.119-120.

[3]胡寿松.自动控制原理[M].北京:机械工业出版社,2007.264-265.

作者简介:

秦平安,1991――,男,重庆市人,西南大学计算机与信息科学学院2010级自动化(控制方向)本科生,主要研究方向:嵌入式开发。

上一篇:特殊教育导论范文 下一篇:实验教学案例范文