基于PID控制理论和步进电动机的冬季室内温度控制系统设计

时间:2022-10-18 06:39:40

基于PID控制理论和步进电动机的冬季室内温度控制系统设计

摘要:我国北方,冬季取暖一般采用暖气技术集中供暖,用户不能自主地调节温度,室内温度过高,资源浪费的现象严重。本设计应用PID控制技术,以步进电动机作为执行元件,根据实时测量的室内温度,来控制阀门的开度,调节暖气管道内热水或热气的流量,从而达到了控制室内温度的目的,增强了居民室内生活的舒适度,减少了能源的浪费。

关键词:PID控制;流量;PM2.5;编码;解码;

中图分类号:S611 文献标识码: A

The design of the winter indoor temperature control system PID control theory and the stepping motor based on

HanLiang

(Heilongjiang province atmospheric detection securitycenter, Harbin, 150030)

Abstract: In the north of China, winter heating technology usually adopts the centralized heating and users can not control temperature by themselves. As a result, indoor temperature is too high which results in a serious waste of resources. The design adopts PID control technology and uses a step motor as the actuator. The design can change the flow of hot water or gas in pipes by controlling valves according to the real-time measurement of the indoor temperature. In this way, indoor temperature can be controlled. People will live in a more comfortable environment. At the same time, energy is saved.

key words:PID control; flow; PM2.5; encoding; decoding;

引言

我国北方属于典型的温带大陆性气候,冬季寒冷干燥。目前为了改善室内温度环境,我国北方城市普遍采用集中供暖[1]。各市均建有大规模的地下暖气管道网,由政府指定的供暖公司负责运营。集中供暖有着较为明显的好处:资源利用率高,平均成本较低,供暖效果好。但是,也存在不少缺点:一是无论白天还是黑夜,不管用户是否需要,暖气始终全天供热;二是用户没有办法自主调节室内温度的高低,造成室内温度过高,空气流通不好。居民非常容易出现皮肤发紧,口唇干燥、咽部发痒、咳嗽、流鼻血等“暖气病”。用户为了降低温度,只能打开窗户散热,使宝贵的能源白白浪费了。近年来,我国北方地区冬季雾霾频发,pm2.5频频爆表,燃烧煤炭作为集中供暖的主要手段,成为罪魁祸首,成为众矢之的。如何才能在不降低冬季室内生活的舒适度的前提下,实现节能降耗的目的呢?

本设计采用步进电动机来控制阀门的开度,进而调节暖气管道内水或气的流量,实现了控制室内温度的目的,从而增强了居民室内生活的舒适度,为节能降耗做出了巨大贡献。

一、系统设计方案

本系统由两个模块组成,一个是温度设置及测量模块,一个是驱动模块,两个模块在物理上相互分立,使用时可以将温度和测量模块放到远离暖气片的地方,保证温度测量的准确性。驱动模块直接到暖气管道上控制暖气的流量。两个模块之间通过红外遥控发射/接收芯片PT2262/2272传递控制信息。温度设置及测量模块又分为键盘输入、温度测量、温度显示三个单元。人们可以通过键盘设定自己需要的温度,温度的测量采用数字温度传感器18B20,18B20将采集到的温度信号以串行数据的形式传递给单片机AT89C51,经过处理后,在数码管上显示当前测量的温度。同时,AT89C51把实时测量的温度和用户预先设定的温度比较和分析,得出调整指令。通过红外遥控发射/接收芯片PT2262/2272将调整指令传递给驱动模块的单片机,由驱动模块单片机控制步进电动机完成阀门开度的调整,实现改变暖气管道内热水流量的目的。系统框图如图1所示。

图1 系统框图

二、温度传感器18B20

18B20是美国Dallas 半导体公司创造的数字化温度传感器。该温度传感器外形如一只三极管,温度感应元件及转换电路集成在一个芯片上。现场温度直接转换成二进制数字表示的温度,存储在18B20内的存储器里,18B20和单片机之间仅需要一条数据线连接,单片机可以通过数据线向18B20写入或读取数据,而且可以通过数据线提供18B20正常工作所需要的电源。每个18B20都有不同的序列号,所以多个18B20可以使用同一根总线和单片机相连接,单片机通过序列号识别不同的18B20并发起读写动作。这一特点使用户组建温度传感器网络变得十分容易。通过程序设定,DS18B20 可以达到9~12 个二进制位的分辨率。测量温度的范围为-55°C~+125°C,在-10~+85°C范围内,测量精度可以达到±0.5°C[2]。由于DS18B20 具有体积小、测温精度高、适用电压范围宽、采用一线式总线、可组网等优点,在实践中的得到了广泛的应用。

三、红外遥控发射/接收芯片PT2262/2272

PT2262/2272采用CMOS工艺制造,分别具有编码和解码的功能,其中PT2262是编码电路,PT2272是解码电路,PT2262/2272必须配对使用,可用于无线数据的发送和接收。PT2262/2272分别拥有18个管脚,最多可以设置12位地址端管脚和6位数据管脚。地址管脚可以设置成“0”、“1”、“悬空”三种状态,但是必须保证PT2262和PT2272的地址管脚设置相同,否则PT2272不能解码。在实际应用中,我们一般采用4位数据码和8位地址码的方式。

编码芯片PT2262发出的编码信号称为码字,一个完整的码字包含地址码、数据码和同步码三部分。解码芯片PT2272在接收到PT2262发来的信号后,首先分离出地址码,并对地址码进行比较,只有当接收到的码字的地址码和2272的地址码相同时,2272的VT管脚才能输出高电平,表示解码成功。单片机在检测到VT脚高电平的信号后,开始读取PT2272接收到的数据。

四、步进电动机

步进电动机也称为脉冲电动机,它可以将电脉冲信号转换成相应的角位移,每输入一个电脉冲信号,步进电动机就转动一定的角度,由于该电动机的转动方式是步进的,所以把它叫做步进电动机。步进电动机具有以下优点:一是步进电动机转动的角度和输入电脉冲的个数成正比,转动的速度由输入电脉冲的频率决定,频率越高,速度越快。而且在不超出步进电动机负载能力的情况下,以上关系不受负载大小、电压高低等因素的影响;二是步进电动机在不失步的情况下,每转动一圈的步数是固定的,所以电动机的步距误差不会积累;三是步进电动机具有良好的控制性能,在开环控制系统中,转速具有很宽的调节范围,而且能够快速启动、制动和反转。正是由于步进电动机具有以上优点,所以在数字控制系统中经常被用作执行元件。

五、软件设计

该系统的软件设计分为两大部分,分别对应系统硬件的两个模块。其中驱动模块的程序设计包括控制量的读取和步进电动机的控制。温度测量模块包括温度采集子程序(读取18B20测得的温度数据)、显示子程序、键盘输入子程序(用户设置室内温度)、PID温度控制子程序(计算控制量)。前面几个程序都比较简单,这里不再赘述,下面我们详细介绍一下PID温度控制子程序的设计原理。单片机首先读取18B20测量的实时温度数据,然后把测量温度和设定温度进行比较得到温度误差,把温度误差作为PID控制系统的输入信号,由PID算法计算得出控制量。PID控制系统的结构框图如图2所示。

图2 PID控制系统的结构框图

系统的控制规律可以用u(k)= u(k)+u(k-1)和u(k)=Kp[e(k)- e(k-1)]+Ki e(k) +Kd[e(k)- 2e(k-1)+ e(k-2)]两个算式表示[3]。其中u(k)表示每个测量周期阀门的变化量,Kp表示PID控制系统的比例系数, Ki表示PID控制系统的积分系数、 Kd表示PID控制系统的微分系数,e(k)表示k时刻的温度误差。由于室内温度是一个相对缓慢的变化过程,所以我们在该温度控制系统中采用了周期性的控制方式,即在一个温度采样周期内保持控制量u(k)恒定不变[1]。

结语

为了验证系统对室内温度控制的准确性和稳定性,我们做了多次试验,下表为实验记录的测量数据,分析记录数据可知,本设计控制温度准确性高,达到了预期目标。

本系统采用PID控制理论,以AT89C51单片机为系统的控制单元,以红外遥控发射/接收芯片PT2262/2272为数据传输的纽带,选用步进电动机作为系统最终的执行机构,根据室内温度和设定温度的误差来改变阀门的开度,较好的实现了室内温度的调节。实验表明,该系统具有稳定性好、控制精度高、节能环保等优点,具有一定的实用价值。

参考文献:

[1]于浩令.北方冬季室内温度控制系统的设计.科技信息.2010,(26):272.

[2]艾诚,韩峻峰.基于DS18B20的温度控制系统设计.微型机与应用.2013,32(17):11-13.

[3]贺争汉,王大为,史亚维,屈毅.RBF辨识pid控制器在温室温度控制中的应用研究.电子设计工程.2013,21(22):33-35.

作者简介:韩亮,男,1980年,工程师,黑龙江省大气探测保障中心,研究领域:电气自动化控制

上一篇:基于钻孔桩施工技术分析 下一篇:价值工程在建筑项目工程监理造价中的应用