浅析大体积混凝土裂缝产生的影响因素和完善途径

时间:2022-10-10 09:34:01

浅析大体积混凝土裂缝产生的影响因素和完善途径

摘要:随着我国基础建设的快速发展,大体积混凝土施工日益增多(如斜拉桥的索塔、承台及基础、高层建筑的箱型基础或筏型基础),而大体积混凝土施工中普遍会遇到裂缝控制问题,这是因为混凝土体积大,聚集的大量水化热会导致混凝土内外散热不均匀,在受到内外约束的情况下,混凝土内部会产生较大的温度应力并很可能导致裂缝产生,最终为工程结构埋下严重质量隐患。因此,探讨裂缝产生的原因和防止裂缝的出现就显得格外重要。通过对大体积混凝土裂缝产生的原因和类型的论述,从各个环节提出了预防裂缝的综合措施。

关键词:大体积混凝土;裂缝产生;影响因素;解决对策

一、大体积混凝土裂缝的研究背景

混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,这是一个相当普遍的现象。大体积混凝土结构出现裂缝更普遍。在全国调查的高层建筑地下结构中,底板出现裂缝的现象占调查总数的20%左右,地下室的外墙混凝土出现裂缝的现象占调查总数的80%左右。所以,混凝土结构的裂缝是建筑工程长期困扰的一个技术难题,一直未能很好地解决。国内外工程技术界都认为,规定钢筋混凝土结构的最大裂缝宽度主要是为了保证钢筋不产生锈蚀。各同的规范中有关允许最大裂缝宽度的规定虽小完全一致,但基本相同。如在正常的空气环境中裂缝允许宽度为0.3~0.4mm;在轻微腐蚀介质中,裂缝允许宽度为0.2~0.3mm;在严重腐蚀介质中,裂缝允许宽度为0.1~0.2mm。但对建筑物的抗裂要求过严,必将付出大的经济代价。科学的要求是将其有害程度控制在允许范围之内。根据国内外的调查资料,工程实践中结构物的裂缝原因,属于由变形变化(温度、湿度、地基变形)引起的约占80%以上,属于荷载引起的约占20%左右。在大体积混凝土工程施上中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。因此,控制混凝土浇筑块体因水化热引起的温升、混凝土浇筑块体的内外温差及降温速度,防止混凝土出现有害的温度裂缝(包括混凝土收缩)是其施工技术的关键问题。

二、大体积混凝土裂缝产生的影响因素

1.水泥水化热的影响

混凝土在硬化过程中水泥与水反应放出大量的热,我们称之为水化热,该热量主要在混凝土的硬化过程中,一般时间为一周左右,每克水泥可以放出500焦耳左右的热量,如果以水泥用量400 Kg/m3来计算,每立方米混凝土将放出200000千焦耳的热量,从而使混凝土内部温度升高。尤其对于大体积混凝土来讲,由于热量较大,这种现象更加严重。因为混凝土内部和表面的散热条件不同,因此混凝土中心温度很高,这样就会形成由内而外的温度梯度,使混凝土内部产生压应力,表面产生拉应力,当拉应力超过混凝土的极限抗拉强度时混凝土表面就会产生深度不等的各种裂缝。

2.混凝土的收缩

混凝土在空气中凝固时体积减小的现象称为混凝土干缩。混凝土在不受外力的情况下由于自身在从浇注到终凝的过程中产生的变形,受到外部约束时,将在混凝土中产生拉应力,使得混凝土开裂。引起混凝土的裂缝主要有塑性收缩、干燥收缩和温度收缩等三种。在硬化初期主要是水泥在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。

3.外界气温湿度变化的影响

大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热温升和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温度梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。

三、解决大体积混凝土产生裂缝的对策

1.降低水泥水化热和变形

(1)选用低水化热或中水化热的水泥品种配置混凝土,混凝土泌水性的大小与用水量有关,用水量多,泌水性大;且与温度高低有关,水完全析出的时间随温度的提高而缩短;此外,还与水泥的成分和细度有关。所以,在选用矿渣水泥时应尽量选择泌水性的品种,并应在混凝土中掺入减水剂,以降低用水量。

(2)使用粗骨料,尽量选用粒径较大,级配良好的粗细骨料,控制砂石含泥量,掺加粉煤灰等掺合料或掺加相应的减水剂,缓凝剂,改善和易性,降低水化比,以达到减少水泥用量,降低水化热的目的。尤其是砂石中的含泥量,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。

(3)改善配筋,为了保证每个浇筑层上下均有温度筋,可建议设计人员将分配筋适当调整温度筋分布细密,一般用Φ8钢筋,双向配筋,间距150,这样可以增加抵抗温度的能力,上层钢筋的绑扎,应在浇筑完下层混凝土后进行。

2.降低混凝土温度差

(1)选择较适宜的气温浇筑大体积混凝土,尽量避开炎热天气浇筑混凝土。夏季可采用低温水或冰水搅拌混凝土,可对骨料喷冷水雾或冷气进行预冷,或对骨料进行覆盖或设置遮阳装置,避免阳光直晒,运输工具如具备条件也应搭设逼阳设施,以降低混凝土拌合物的入模温度。

(2)掺合相应的缓凝型减水剂,如木质素磺酸钙等。

(3)在混凝土入模时,采取措施改善和加强模内的通风,加速模内热量的散发。

3.加强施工中的温度控制

(1)在混凝土浇筑之后,做好混凝土的保温保湿养护,缓缓降温,充分发挥徐变特性,降低温度应力,夏季应避免阳光暴晒,注意保湿,冬季应采取保温覆盖,一面急剧的温度梯差发生。

(2)采取长时间的养护,规定合理的拆模时间,延缓降温时间和速度,充分发挥混凝土的应力松弛效应。

(3)加强温度监测和管理,实行信息化控制,随时控制混凝土内的温度变化,内外温差控制在25℃以内,基面温差和基地温差均控制在20℃以内,及时调整保温及养护措施,使混凝土的温度梯度和湿度不至于过大,以有效控制有害裂缝的出现。

(4)合理安排施工顺序,控制混凝土在浇筑中均匀上升,避免混凝土拌合物堆积过大高差,在结构完成后及时回填,避免其侧面长期暴露。

4.改善条件,削减温度应力

(1)采取分层或分块浇筑大体积混凝土,合理设置水平或垂直施工缝,或在适当的地方,设置施工后浇带,以放松约束程度,减少每次浇筑长度的蓄热量,防止水化热的积聚,减少温度应力。

(2)对大体积混凝土基础与岩石地基,或基础与厚大的混凝土垫层之间设置滑动层,如采用平面浇沥青胶铺砂,或刷热沥青或铺卷材在垂直面,键槽部位设置缓冲层,如铺设30-50mm厚沥青木丝板或聚苯乙烯泡沫塑料,以消除嵌固作用,释放约束应力。

5.构造设计上采取防裂措施

(1)设计合理的结构形式,减少工程数量,降低水化热。

(2)充分利用混凝土在基坑有侧限条件,在混凝土中掺加微膨胀剂,使其在基坑约束下成一定的预压力,补偿混凝土内部温度、收缩产生的拉应力,从而有效的避免混凝土裂缝的产生。

(3)大体积混凝土体积庞大,施工周期一般较长,从而减低设计标号,达到减少混凝土水泥用量,降低水化热的目的。

(4)由于边界存在约束才会产生温度应力,采用改善边界约束的构造设计,如遇有约束强的岩石类地基、较厚的混凝土垫层时,可在接触面上设滑动层来减少温度应力。

(5)在设计构造方面还应重视合理配筋对混凝土结构抗裂的有益作用。

参考文献:

[1]迟陪云.大体积混凝土开裂的起因及防裂措施.混凝土.2001年

[2]康方中.浅谈现浇商品混凝土楼板变形裂缝的成因和防治.混凝土.2003年

[3]段峥.现浇大体积混凝土裂缝的成因与防治.混凝土.2003年

[4]尤启俊.外加剂对混凝土收缩抗裂性能的影响.混凝土.2004年

上一篇:复杂环境大跨度钢栈桥吊装技术 下一篇:钢结构焊接质量影响因素与控制措施