大黄酸调控mTOR信号通路活性抑制肾小管上皮细胞自噬蛋白表达的分子机制

时间:2022-10-10 07:48:26

大黄酸调控mTOR信号通路活性抑制肾小管上皮细胞自噬蛋白表达的分子机制

[摘要] 目的:探讨大黄酸抑制饥饿诱导的肾小管上皮(NRK-52E)细胞自噬蛋白的作用和分子机制。方法:用Hank′s平衡盐溶液(Hank′s balanced salt solution,HBSS)诱导NRK-52E细胞产生饥饿状态,在干预后的各时间点(0,0.5,1,2,6 h),首先,检测细胞自噬标志性蛋白――哺乳动物同族物微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)I/II的表达水平;其次,检测细胞哺乳动物类雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)表达及其磷酸化水平(phosphorylated-mTOR Ser2448,p-mTOR S2448);然后,以大黄酸(5 mg・L-1)、HBSS(1 mL)以及mTOR抑制剂雷帕霉素(100 nmol・L-1)单独或联合干预,分别检测其LC3 I/II,mTOR,p-mTOR S2448蛋白表达水平的变化。结果:HBSS诱导NRK-52E细胞LC3 II蛋白高表达、p-mTOR S2448蛋白低表达;大黄酸与HBSS联合干预可以逆转HBSS诱导的NRK-52E细胞LC3 II和p-mTOR S2448蛋白表达水平;雷帕霉素与大黄酸、HBSS联合干预可以恢复HBSS诱导的NRK-52E细胞LC3 II蛋白表达水平。结论:HBSS抑制mTOR信号通路活性而诱导肾小管上皮细胞发生自噬;大黄酸调控mTOR信号通路活性而抑制肾小管上皮细胞自噬蛋白的表达,这可能就是其干预细胞自噬的作用和分子机制。

[关键词] 大黄酸;自噬;mTOR信号通路;肾小管上皮细胞;雷帕霉素

自噬(autophagy)是真核细胞内一种溶酶体依赖性蛋白降解过程,主要分为巨自噬(macroautophagy)、微自噬(microautophagy)和分子伴侣介导性自噬(chaperon-mediated autophagy,CMA),其中,巨自噬(简称为自噬)在细胞内最为普遍[1]。研究表明[2-3],自噬在饥饿、缺氧、缺血/再灌注和感染等条件下可被激活,并且,在维持细胞内环境稳定、调控能量代谢等方面发挥着重要作用。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)可以调控细胞周期及其增殖和凋亡过程,同时,作为自噬的主要调节剂,它能够抑制细胞自噬[4]。然而,对于肾小管上皮细胞而言,在生理和病理条件下,自噬对其作用究竟是怎样的?是否可以被临床上常用的“保肾”中药或雷帕霉素所影响?目前还不是很明确[5]。

据报道[6],自噬与凋亡之间有着密切的联系。借助腺嘌呤诱导的肾间质纤维化模型鼠,笔者发现,大黄附子汤(由大黄、附子、细辛组成)可以通过调控JNK/Bcl-2信号通路而改善模型鼠肾小管上皮细胞凋亡和肾间质纤维化[7]。作为大黄附子汤君药之一的大黄,其主要成分――大黄酸(rhein)在体内外可以调节肾小管上皮细胞转分化,改善肾纤维化[8-9],那么,大黄酸是否在体外可以影响肾小管上皮细胞自噬,并通过mTOR信号通路而发挥调节作用呢?笔者采用Hank′s 平衡盐溶液(Hank′s balanced salt solution,HBSS)诱导大鼠肾小管上皮(NRK-52E)细胞饥饿状态而激活其自噬,与雷帕霉素相对照,试图阐明大黄酸通过mTOR信号通路干预NRK-52E细胞自噬的作用和分子机制。

1 材料与方法

1.1 药物与试剂 大黄酸(用0.1 mol・L-1NaOH配置成1 g・L-1溶液)、雷帕霉素(用二甲基亚砜配置成100 μmol・L-1溶液)购自美国Sigma-Aldrich公司;Dulbecco′s Modified Eagle Medium/Nutrient Mixture F-12(DMEM/F12)培养基、胎牛血清(Fetal bovine serum,FBS)、青霉素链霉素溶液、Hank′s 平衡盐溶液(HBSS)购自美国HyClone公司;溴酚蓝(bromophenol blue,BPB)、二硫苏糖醇(dithiothreitol,DTT)和BSA(bovine serum albumin)购自BioSharp公司;磷酸酶抑制剂(phosphatase inhibitor cocktail)和Chemi-Lumi One L发光液购自日本Nacalai公司;蛋白酶抑制剂、显影定影试剂盒购自碧云天公司;蛋白相对分子质量Marker购自美国Thermo Scientific公司;聚偏二氟乙烯(polyvinylidene fluoride,PVDF)膜购自Millipore公司;兔抗大鼠哺乳动物同族物微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)I/II抗体、兔抗大鼠mTOR抗体、兔抗大鼠磷酸化mTOR(phosphorylated-mTOR Ser2448,p-mTOR S2448)抗体、兔抗大鼠β-actin抗体、辣根过氧化物酶(horseradish peroxidase,HRP)标记的羊抗兔IgG抗体购自美国Cell Signaling Technology公司;X光胶片购自Kodak公司。

1.2 仪器 细胞培养箱(日本SANYO公司);奥林巴斯CK40型倒置显微镜;Western blot设备(美国BioRad公司)。

1.3 细胞培养和干预措施 大鼠肾小管上皮细胞株(NRK-52E)由日本山梨大学分子信号教研室Kitamura教授惠赠。NRK-52E细胞从液氮中取出后,常规复苏,接种于细胞培养基(95%DMEM/F12+5%FBS,含1%青霉素链霉素溶液),置于细胞培养箱中进行培养(37 ℃、饱和湿度、5%CO2);将细胞以2×105个/孔的密度铺板至12孔板中,按各个实验的不同时间点将培养基换成HBSS 1 mL,再分别添加大黄酸(5 mg・L-1)和雷帕霉素(100 nmol・L-1)进行干预。

1.4 细胞中LC3 I/II抗体、mTOR抗体、p-mTOR S2448蛋白表达 采用Western blot检测上述蛋白的表达水平。在细胞刺激后的规定时间内,将12孔板中的液体倒掉,用PBS洗2遍,每个孔加入细胞裂解液100 μL进行裂解;再加入BPB和DTT各1 μL,于100 ℃沸水中煮4 min使蛋白变性;根据目的蛋白的相对分子质量配制7.5%或15%分离胶和10%浓缩胶;将等量(20 μL)的各种蛋白分别加样,在电泳槽中加满电泳缓冲液进行十二烷基硫酸钠聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gelelectrophoresis,PAGE-SDS);电泳完毕后,取下凝胶,将凝胶上的蛋白电转移至PVDF膜上,根据目的蛋白的位置留取所需PVDF膜;用含3%BSA的聚氧乙烯脱水山梨醇单月桂酸酯(tris buffered saline tween,TBST)缓冲液封闭1 h;分别向PVDF膜中加入相应的一抗(兔抗大鼠LC3 I/II抗体、兔抗大鼠mTOR抗体、兔抗大鼠p-mTOR S2448抗体,均为1∶1 000稀释;兔抗大鼠β-actin抗体,1∶2 000稀释),密封,4 ℃孵育过夜。用TBST缓冲液洗涤PVDF膜,共3次,每次5 min;加荧光标记的二抗(羊抗兔IgG抗体,1∶2 000稀释),孵育1.5 h;再次用TBST缓冲液洗涤PVDF膜,共3次,每次5 min;取出PVDF膜,将Chemi-Lumi One L发光液均匀滴撒在PVDF膜上,在暗室压X光胶片、曝光和定影;用Quantity one 4.1.1软件(Bio-Rad)进行光密度分析,结果分别与β-actin或mTOR光密度对照,其比值表示蛋白相对表达量。

1.5 统计学分析 采用SPSS 13.0统计软件处理,计量资料采用±s表示,组间比较采用非参数Mann-Whitney U检验,P

2 结果

2.1 HBSS诱导NRK-52E细胞自噬 LC3 I/II是自噬的标志性蛋白,LC3 I向LC3 II转化的程度或者LC3 II/LC3 I比值高低能反映自噬的程度[3]。结果显示,在不同时间点(0,0.5,1,2,6 h),随着HBSS(1 mL)干预NRK-52E细胞时间的延长,LC3 I向LC3 II转化的程度逐渐增加;在1 h时,LC3 II蛋白表达水平最高(图1);与各自前一个时间点相比,1 h和2 h的LC3 II蛋白表达水平明显变化,其差异有统计学意义(P

2.2 HBSS抑制mTOR信号通路活性 mTOR激活会抑制内质网膜脱落而形成的自噬体膜,也就是抑制了自噬[4] 。为探讨HBSS是否会通过调控mTOR信号通路而干预自噬,笔者对mTOR信号通路中关键蛋白mTOR和p-mTOR S2448进行了检测。结果显示,在不同时间点(0,0.5,1,2,6 h),随着HBSS(1 mL)干预NRK-52E细胞时间的延长,p-mTOR

与各自前一个时间点相比1)P

图1 HBSS诱导NRK-52E细胞LC3 I,LC3 II蛋白表达特征与表达量的比较

Fig.1 Comparison of characteristic and quantity of the protein expressions of LC3 I and LC3 II induced by HBSS in NRK-52E cells

S2448蛋白表达水平逐渐降低(图2);在6 h时,p-mTOR S2448蛋白表达水平最低;与各自前一个时间点相比,在0.5和6 h 时,其蛋白表达水平的差异有统计学意义(P

图2 HBSS抑制NRK-52E细胞p-mTOR S2448蛋白表达特征与表达量的比较

Fig.2 Comparison of characteristic and quantity of the protein expression of p-mTOR S2448 inhibited by HBSS in NRK-52E cells

2.3 大黄酸抑制HBSS诱导的NRK-52E细胞自噬 为探讨大黄酸是否能影响HBSS诱导的NRK-52E细胞自噬,笔者将大黄酸(5 mg・L-1)与HBSS(1 mL)联合干预NRK-52E细胞,在1 h时,检测LC3 I,LC3 II的蛋白表达水平。结果显示,大黄酸与HBSS联合干预可以明显降低LC3 II蛋白表达水平,与HBSS干预组相比,其差异有统计学意义(P

与空白组相比1)P

图3 大黄酸抑制HBSS诱导的NRK-52E细胞LC3 I,LC3 II蛋白表达特征与表达量的比较

Fig.3 Comparison of characteristic and quantity the protein expressions of LC3 I and LC3 II exposed to HBSS inhibited by rhein in NRK-52E cells

2.4 大黄酸激活HBSS抑制的mTOR通路活性 为探讨大黄酸是否能通过调控mTOR信号通路而影响细胞自噬,笔者将大黄酸(5 mg・L-1)与HBSS(1 mL)联合干预NRK-52E细胞,在6 h时,检测了p-mTOR S2448和mTOR的蛋白表达水平。结果显示,大黄酸与HBSS联合干预可以明显促进p-mTOR S2448蛋白表达水平的恢复,与HBSS干预组相比,其差异有统计学意义(P

2.5 大黄酸干预NRK-52E细胞自噬的分子靶点可能是mTOR 为探讨大黄酸是否确实是作用于mTOR而影响细胞自噬,笔者将大黄酸(5 mg・L-1)、HBSS(1 mL)与mTOR公认的抑制剂[10]――雷帕霉素(100 nmol・L-1)联合干预NRK-52E细胞,在1 h时,检测LC3 I,LC3 II的蛋白表达水平。结果显示,雷帕霉素、大黄酸与HBSS联合干预可以

图4 大黄酸促进HBSS抑制的NRK-52E细胞p-mTOR S2448蛋白表达特征与表达量的比较

Fig.4 Comparison of characteristic and quantity of the protein expression of p-mTOR S2448 inhibited by HBSS enhanced by rhein in NRK-52E cells

恢复LC3 II蛋白表达水平,与大黄酸与HBSS联合干预组相比,其差异有统计学意义(P

3 讨论

临床实践表明,大黄是延缓慢性肾衰竭患者肾功能减退、减轻肾纤维化的重要药物[11];对伴有慢性肾脏病的啮齿类动物,大黄可以改善其体重、血清肌酐、蛋白尿和血压等[12]。此外,大黄的主要成分――大黄酸[13]可以明显改善单侧输尿管结扎(unilateral ureteral obstruction,UUO)小鼠肾组织中转化生长因子(transforming growth factor,TGF)-β1、α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)和纤维连接蛋白(fibronectin)的表达,减轻肾纤维化[9];大黄酸还能明显改善TGF-β1诱导的肾小管上皮细胞肥大和细胞外基质(extracellular matrix,ECM)沉积[14],抑制高糖诱导的肾小管上皮细胞间质转分化(epithelial-mesenchymal transition,EMT)[8]。因此,大黄和大黄酸都是治疗肾脏疾病的有效药物。

一般情况下,当细胞处于“饥饿”时,自噬活性将被上调,通过溶酶体内水解酶的降解作用,为缺

与空白组相比1)P

图5 雷帕霉素逆转大黄酸抑制HBSS诱导的NRK-52E细胞LC3 I,LC3 II蛋白表达特征与表达量的比较

Fig.5 Comparison of characteristic and quantity of the protein expressions of LC3 I and LC3 II inhibited by rhein exposed to HBSS reversely-regulated by rapamycin in NRK-52E cells

血、缺氧后的细胞提供能量而维持其功能和存活;但是,过多或过少的自噬反而会损伤细胞,甚至可导致细胞死亡[15]。Chien等报道[16],在肾脏缺血/再灌注大鼠模型中,自噬的增加伴随着凋亡的增加,增强抗凋亡基因Bcl-xL的表达,能够抑制肾小管上皮细胞的自噬和凋亡;Nakagawa等报道[17],在急性肾损伤大鼠模型中,everolimus(mTOR的抑制剂)会增加自噬和加重肾小管损伤;Suzuki等报道[18],自噬的抑制剂可以抑制H2O2诱导的肾小管上皮细胞死亡。这些结果都说明,在特定的条件下,自噬会加重肾小管上皮细胞损伤,抑制自噬就可能改善其损伤。

LC3是核心自噬蛋白,细胞溶质形式的LC3(LC3 I)通过结合脂化的磷脂酰乙醇胺,连接到LC3的羧基末端,转化为LC3 II,其转换的多少,也就是LC3 II蛋白表达水平的高低能反应自噬发生的程度[19]。笔者的研究结果表明,HBSS作为细胞饥饿的诱导剂,随着作用时间的延长,能促进LC3 I向LC3 II转化,增强LC3 II蛋白表达水平,诱导NRK-52E细胞自噬发生,而大黄酸可以降低LC3 II蛋白表达水平,抑制HBSS诱导的细胞自噬。

研究表明,在生理和应激条件下,mTOR信号通路是调控细胞自噬的关键信号途径[20],mTOR信号通路活性增强可以促使核糖体与内质网黏附,抑制内质网膜脱落而形成自噬体膜,因此,调控mTOR信号通路就可以影响细胞自噬的发生[4]。笔者发现,随着HBSS作用时间的延长,HBSS可以明显降低NRK-52E细胞p-mTOR蛋白表达水平,mTOR信号通路的活性受到抑制,而大黄酸能恢复受抑制的mTOR信号通路活性;此外,笔者还发现,雷帕霉素,作为高度特异的mTOR抑制剂[21-24],可以抵消大黄酸对细胞自噬的抑制作用。据此,笔者认为,大黄酸可能是通过调控mTOR信号通路活性而抑制HBSS诱导的细胞自噬;大黄酸干预NRK-52E细胞自噬的分子靶点可能是mTOR。尽管如此,笔者还没有直接的证据说明大黄酸在体外对肾小管上皮细胞自噬的保护作用。

综上所述,HBSS抑制mTOR信号通路活性而诱导肾小管上皮细胞发生自噬;大黄酸调控mTOR信号通路活性而抑制肾小管上皮细胞自噬蛋白的表达,这可能就是其干预细胞自噬的作用和分子机制。

[参考文献]

[1] Green D R,Levine B. To be or not to be? How selective autophagy and cell death govern cell fate [J]. Cell,2014,157(1):65.

[2] Malicdan M C,Noguchi S,Nishino I. Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy [J]. Autophagy,2007,3(4):396.

[3] Glick D, Barth S, Macleod K F. Autophagy:cellular and molecular mechanisms [J]. J Pathol,2010,221(1):3.

[4] Klionsky D J,Meijer A J,Codogno P. Autophagy and p70S6 kinase [J]. Autophagy,2005,1(1):59.

[5] Periyasamy-Thandavan S,Jiang M,Schoenlein P, et al. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology [J]. Am J Physiol Renal Physiol,2009,297(2):F244.

[6] Salminen A,Kaarniranta K,Kauppinen A. Beclin 1 interactome controls the crosstalk between apoptosis,autophagy and inflammasome activation:impact on the aging process [J]. Ageing Res Rev,2013,12(2):520.

[7] 涂,孙伟,万毅刚,等. 大黄附子汤调控JNK/Bcl-2信号通路而改善尿酸性肾病肾小管/间质损伤的机制 [J]. 中华中医药杂志,2013,28(5):1351.

[8] Peng L,Yang J,Ning C,et al. Rhein inhibits integrin-linked kinase expression and regulates matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio in high glucose-induced epithelial-mesenchymal transition of renal tubular cell [J]. Biol Pharm Bull,2012,35(10):1676.

[9] He D,Lee L,Yang J,et al. Preventive effects and mechanisms of rhein on renal interstitial fibrosis in obstructive nephropathy [J]. Biol Pharm Bull,2011,34(8): 1219.

[10] Geissler E K,Schlitt H J. The potential benefits of rapamycin on renal function,tolerance,fibrosis,and malignancy following transplantation [J]. Kidney Int, 2010,78(11):1075.

[11] Wang H,Song H,Yue J,et al. Rheum officinale (a traditional Chinese medicine)for chronic kidney disease [J]. Cochrane Database Syst Rev,2012,11(7):CD008000.

[12] Hanzlicek A S,Roof C J,Sanderson M W,et al. The effect of Chinese rhubarb,Rheum Officinale,with and without Benazepril on the progression of naturally occurring chronic kidney disease in cats [J]. J Vet Intern Med,2014,28(4):1221.

[13] Koyama J,Morita I,Kobayashi N. Simultaneous determination of anthraquinones in rhubarb by high-performance liquid chromatography and capillary electrophoresis [J]. J Chromatogr A,2007,1145(1/2):183.

[14] Guo X H,Liu Z H,Dai C S,et al. Rhein inhibits renal tubular epithelial cell hypertrophy and extracellular matrix accumulation induced by transforming growth factor beta1 [J]. Acta Pharmacol Sin,2001,22(10):934.

[15] Kroemer G,Levine B. Autophagic cell death:the story of a misnomer [J]. Nat Rev Mol Cell Biol,2008,9(12):1004.

[16] Chien C T,Shyue S K,Lai M K. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy [J]. Transplantation,2007,84(9):1183.

[17] Nakagawa S,Nishihara K,Inui K,et al. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury [J]. Eur J Pharmacol,2012,696(1/3):143.

[18] Suzuki C,Isaka Y,Takabatake Y,et al. Participation of autophagy in renal ischemia/reperfusion injury [J]. Biochem Biophys Res Commun,2008,368(1): 100.

[19] Kabeya Y,Mizushima N,Ueno T,et al. LC3,a mammalian homologue of yeast Apg8p,is localized in autophagosome membranes after processing [J]. EMBO,2000,19(21):5720.

[20] Jung C H,Ro S H,Cao J,et al. mTOR regulation of autophagy [J]. FEBS Lett,2010,584(7):1287.

[21] Sehgal S N. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression [J]. Clin Biochem,1998,31(5):335.

[22] Sehgal S N. Sirolimus:its discovery, biological properties, and mechanism of action [J]. Transplant Proc,2003,35(3 Suppl):7S.

[23] Hay N,Sonenberg N. Upstream and downstream of mTOR [J]. Genes Dev, 2004,18(16):1926.

[24] Fingar D C,Blenis J. Target of rapamycin(TOR):an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression [J]. Oncogene,2004,23(18):3151.

Molecular mechanism of rhein on inhibiting autophagic protein

expression in renal tubular epithelial cells via regulating mTOR

signaling pathway activation

TU Yue1, SUN Wei1,2*, GU Liu-bao3, WAN Yi-gang1,4, HU Hao1, LIU Hong1

(1. Research Institute of Kidney Disease, Nanjing University of Chinese Medicine, Nanjing 210029, China;

2. Jiangsu Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine,

Nanjing 210029, China;

3. Department of Molecular Signaling, University of Yamanashi, Yamanashi 409-3898, Japan;

4. Department of Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School,

Nanjing 210008, China)

[Abstract] Objective: To explore the effects and molecular mechanisms of rhein on reducing starvation-induced autophagic protein expression in renal tubular epithelial(NRK-52E)cells. Method: Hank′s balanced salt solution(HBSS)was used to induce NRK-52E cells to be in the state of starvation. After the intervention of HBSS for 0,0.5,1,2 and 6 hours,firstly,the protein expression of microtubule-associated protein 1 light chain 3(LC3 I/II),which is a key protein in autophagy,was detected. Secondly,the protein expressions of mammalian target of rapamycin(mTOR)and phosphorylated-mTOR Ser2448(p-mTOR S2448)were examined. And then,after the co-treatment of rhein(5 mg・L-1)and HBSS(1 mL)without or with mTOR inhibitor,rapamycin(100 nmol・L-1),the protein expressions of LC3 I/II,mTOR and p-mTOR S2448 were tested,respectively. Result: HBSS could induce the up-regulation of LC3 II and the down-regulation of p-mTOR S2448 at protein expression level in NRK-52E cells. The co-treatment of rhein and HBSS could reversely regulate the protein expressions of LC3 II and p-mTOR S2448 in NRK-52E cells significantly. The co-treatment of rapamycin,rhein and HBSS could recover the level of LC3 II protein expression in HBSS-intervened NRK-52E cells. Conclusion: HBSS induces autophagy in renal tubular epithelial cells by inhibiting mTOR signaling pathway activation. Rhein reduces the autophagic protein expression in renal tubular epithelial cells through regulating mTOR signaling pathway activation,which is the possible effects and molecular mechanisms.

[Key words] rhein; autophagy; mTOR signaling pathway; renal tubular epithelial cells; rapamycin

doi:10.4268/cjcmm20142103

上一篇:丹参类贝壳杉烯氧化酶(SmKOL)基因全长克隆及其... 下一篇:黄芪甲苷的生物样品稳定性考察及在大鼠体外肠...