火电厂石灰石

时间:2022-09-30 01:38:56

火电厂石灰石

【摘 要】随着我国社会经济的不断发展,火力发电厂的数量及规模也在不断增加,虽然经济效益显著,但是随之而来的是生态环境的破坏与大气污染。如果不及时采取有效措施进行治理,生产中排出的 不仅制约了国民经济的发展,还对人类的健康、生存造成了严重的威胁。论文对火电厂石灰石——石膏湿法脱硫系统优化运行的改进策略进行分析,对脱硫系统与主机间协调控制的缺乏、 结垢及堵塞、运行稳定性差等常见的问题提出了解决方案。

【关键词】改进策略;优化运行;脱硫系统

为了提高火电厂脱硫系统的稳定性、经济性、可靠性,降低火电厂排放SO2的浓度,提高区域环境质量,减少电厂对大气污染的影响。将火电厂排放的SO2浓度控制在国家规定指标范围内。

1 火电厂脱硫工艺系统介绍

由脱硫废水排放系统、压缩空气系统、设备冷却水和工艺水系统、石膏脱水系统、排放系统、SO2吸收系统、烟气系统、吸收剂浆液供应系统、石灰石浆液制备系统等构成了脱硫工艺系统(如图1)。论文主要对石灰石浆液制备系统进

图1 脱硫工艺流程图

行说明。采用购买成品石灰石粉的方式为脱硫提供吸收剂,在石灰石浆液箱内加水,将石灰石粉制成浆液。一台电加热器、两台硫化风机、四台石灰石浆液泵、一个石灰石浆液箱、两台电动旋转给料阀、一座混凝土石灰石仓共同组成了石灰石浆液制备系统。

两台石灰石浆液给料泵分别设于脱硫装置中,一台运转、另一台作备用。供浆泵出口母管上安装了调节阀、电磁流量计、质量流量计。在BMCR工况下,每台泵的容量不小于120%的石灰石浆液总耗量。为了避免堵塞调节阀上游侧浆管,可将安装与调节阀上游侧浆管上的冲洗水阀程序设置成每两小时冲洗一次,这是由于石灰石浆流调节阀在正常运行的状态下有全关闭的可能。通过调节回路,按照化学计量比,将石灰石浆液输送至吸收塔反应池的中和区。石灰石浆液流量的修正可根据石灰石浆液实测密度来实施。反应池浆液 值、脱硫效率、SO2负荷等参数控制着石灰石供浆流量。为了使脱硫装置跟踪锅炉负荷满足设定的脱硫效率,吸收浆液PH值的改变可以通过调节石灰石给浆量来实现。

成品石灰石粉就可为脱硫提供吸收剂,在石灰石浆液箱内加入水,将石灰石粉制成浆液。为了给石灰石粉仓提供气化用,石灰石粉仓中可设置流化风机。石灰石粉仓的顶部侧面和顶部装有接触式料位计和非接触式料位计,一旦仓内达到最高料位时,接触式料位计会发出报警。石灰石粉仓的底部安装有流化装置,且还设计了相应的锥形下料口,气化丰管路、气化槽、气化装置等组成了流化装置。气化槽与气化装置由金属箱体和碳化硅多孔气化板构成。经过加热器进行加热后,通过装置底部接管将热空气引入气化腔,使粉料充分流化、并呈松散状态。因此,为了防止空气中湿气入仓导致的粉料起拱,可将流化空气加热。

脱硫所需的石灰石粉外购,经密封罐车运至脱硫岛。在该脱硫岛中设置了1个石灰石粉仓,每个粉仓设计有2个锥形下料口。每个下料口都设置了一套输送和计量装置。粉仓中的石灰石粉经电动插板门、旋转给料阀送入石灰石浆罐。同时,经调节回路控制的回收水或工业水也送入石灰石浆罐,自动配制成浓度为30wt%的石灰石浆液。石灰石浆液通过调节回路,按化学计量比,经石灰石供浆泵、调节阀送入吸收塔反应池中和区。

2 脱硫化学反应描述

2.1 吸收区的反应

(1)SO2在液相的溶解

在吸收区内烟气中的SO2溶解于喷淋浆液中,烟气中的HCl和HF也同时被吸收:

SO2+H2OH2SO3(1)

FGD装置的脱硫效率主要受气-液两相传质速率的影响,即L/G、气液接触时间、相对流速以及相互挠动程度强烈影响脱硫效率。

(2)酸的离解

SO2溶解于吸收液中形成的亚硫酸迅速离解成亚硫酸氢根、亚硫酸根和氢离子:

当低PH时(

当高PH时(>5)H2SO3H++SO32-(3)

HClH++Cl-(4)

HFH++F-(5)

吸收浆液通过吸收区后,由于吸收了SO2、HCl、HF等酸性物质,产生了H+,使浆液PH下降,吸收SO2能力降低。因此必须除去H+才能恢复洗涤浆液吸收SO2的能力。

(3)中间产物的中和

通过吸收区的洗涤液中含有一定量的CaCO3,由于洗涤液在吸收区的停留时间很短,仅有很少量的CaCO3溶解后与上述离子发生以下反应:

CaCO3(S) CaCO3 (a q) (6)

CaCO3 (a q) +CO2+H2O Ca (HCO3)2(7)

Ca(HCO3)2+2H+Ca2++2CO2+2H2O(8)

Ca2++2Cl-CaCl2(a q)(9)

Ca2++2F-CaF2(10)

Ca2++2HSO3-Ca(HSO3)2(a q)(11)

Ca2++SO32-CaSO3(12)

Ca(HSO3)2+O2 Ca2++2SO42-+2H+(13)

从式(3)可知,式(12)发生在高PH环境中,洗涤浆液在吸收区的顶部时PH最高,因此式(12)的反应易发生在吸收区顶部,同时吸收塔顶部浆液中HSO3-浓度很低。

洗涤液在下落过程中,不断吸收烟气中的SO2,因此吸收区较低部位的浆液PH较低,SO32-浓度大量减少,仅含有少量CaSO3,而更多的是可溶行的亚硫酸氢钙(见式11)。

由于烟气中含有一定量O2,部分O2溶于洗涤浆液中发生式13氧化反应使部分HSO3-氧化。此反应也会使洗涤液的PH下降。

2.2 氧化区的反应

在氧化区的下部设置了固定管网式氧化气管,大量的空气鼓入氧化区的下部,在吸收区形成的未被氧化的HSO3-几乎全部被氧化成SO42-和H+:

2HSO3-+O°(溶解氧)2SO42-+2H+(14)

上述反应最好在PH4~4.5的环境中进行。由于从吸收区落入氧化区的浆液的PH大致为3.5~5,再加之氧化区底部分隔器的作用,氧化区浆液可维持在最佳氧化PH范围内。

从式14可知,HSO3-被氧化的同时产生了更多的H+,浆液中过剩的CaCO3将中和H+,与SO42-形成可溶性CaSO4:

CaCO3+2H+Ca2++H2O+CO2(15)

Ca2++SO42-CaSO4(16)

反应池的排出浆液正是从此区的底部(即靠近分隔管的下面)抽出馈送至脱水系统,因为此区域浆液中未反应的CaCO3最少,亚硫酸盐含量最低。

2.3 中和区的反应

此区主要发生中和反应和石膏结晶析出,所以有时也称此区为结晶区。

由于循环洗涤浆液中仅有一定量的CaCO3,在吸收区和氧化区内中和了一部分H+。从吸收塔顶部喷淋下来的吸收浆液中CaCO3的含量不能过高,否则洗涤浆液的PH过高在吸收区内会形成大量CaSO3,CaSO3是较难氧化成CaSO4的。PH过高也会使氧化区的氧化反应不易进行。此外,CaCO3含量过高会使氧化后未反应的CaCO3太多,造成石膏品质下降。PH也提高,氧化区浆液PH最好控制在4~4.5,因此进入中和区的浆液还含有较多的H+和SO42-,通过向中和区补加一定量的石灰石浆液来中和之,与此发生式15和式16所示的反应。向中和区补加一定量的石灰石浆液的另一目的是,使进入下一循环的洗涤浆液中有适当含量的CaCO3,恢复洗涤浆液的PH值。

中和区中CaSO4的不断产生导致了溶液的过饱和,从而形成石膏结晶析出:

CaSO4+2H2OCaSO4·2H2O(17)

在石膏结晶析出的过程中,通过控制CaSO4的过饱和度使石膏结晶缓慢析出,避免形成大量细小的石膏晶核。通过维持循环吸收浆液含固量80~180g/l和浆液在反应池中有足够停留时间来优化石膏结晶过程,使过饱和的CaSO4趋于在已有的石膏表面析出结晶并有足够时间逐渐长大。

3 优化脱硫系统改进策略

传统的脱硫系统存在着一些问题,例如:系统经济性较差、脱硫系统与主机之间协调不足、GGH结垢及堵塞、脱硫工艺精度较低、运行稳定性差等。为了使上述问题得以有效解决,必须对脱硫系统进行优化。

3.1提高脱硫工艺

石灰石___石膏湿法脱硫反应的核心在于如何控制吸收塔浆液的PH值。吸收塔浆液的PH值受到石灰石品质、脱硫效率控制值、原烟气SO2浓度、机组出力大小等条件的影响。为提高脱硫效率,应对液气比进行合理控制。在湿法脱硫中,增加吸收塔内部的液气比的方法为:在吸收塔内增加运行循泵的台数和增设加装托盘。作为布风装置,吸收塔托盘置于吸收塔喷淋区域的下部,在整个吸收塔截面上,均匀分布着通过托盘后的烟气。循泵上的喷嘴是用来雾化石膏浆液的。喷淋系统将浆液均匀分布于吸收塔内,使烟气与吸收浆液充分接触,从而充分吸收烟气中存在的SO2。

3.2技术革新与设备改造

循环泵噪声超标、吸收塔防腐内衬局部脱落、机械密封损坏、浆液泵过流部件腐蚀磨损、 结垢堵塞等问题严重,技术革新与设备改造已势在必得,这也是优化脱硫系统设备的重要环节。

(1) 设备改造

GGH,是中文烟气换热器的英文缩写,是烟气脱硫系统中的主要装置之一。其为原烟气与净烟气之间的热交换元件。在脱硫工艺中,会先冷却进入吸收器之间的烟气。我们先从改造吹灰系统来看,可截断吹灰器原蒸汽吹灰管路,采用原蒸汽吹灰程序作为控制程序,增加高压水吹灰系统;同时注意控制吸收塔运行参数,包括吸收塔PH值,浆液密度和吸收塔液位等,也是保证GGH长周期正常运行的重要手段。经过对吹灰系统的改造,系统差压问题获得解决。

(2)更换GGH元件

仅仅通过对热换元件的冲洗不能彻底解决元件内部结垢严重的问题,因此,在不改变GGH框架的情况下,需要对换热元件进行更换。更换后,有效降低了GGH系统阻力,差压问题得到改善。

(3)人工冲洗脱硫系统

在冲洗脱硫系统并人工冲洗、检查了除雾器后,降低了脱硫系统运行电耗、提高了机组运行可靠性、降低了GGH差压、使得GGH换热元件的畅通面积得到改善。为了保持脱硫运行的可靠性,可对GGH以及除雾器进行定期彻底人工冲洗,人工冲洗GGH后,效果非常的明显。

3.3 增强主机与脱硫系统之间联调控制

将后烟气系统接入脱硫系统,在烟囱与引风机之间串接脱硫系统,如图2

图2 脱硫系统串接于后烟气系统图

所示。在机组遇到非计划停运时,通常走脱硫回路的机组烟气则被切除至旁路。串接脱硫装置后,主机与脱硫系统之间烟气通道的切换是通过旁路挡板以及进、出口挡板,烟气通道在脱硫回路与旁路的切换过程会影响到主机炉膛内部负压。对此,在对旧机组烟道进行改造的基础上解决烟气脱硫的唯一方法就是加装脱硫装置。脱硫设施在加装于主机烟道尾部后,尤其提高了高灰份煤、高硫煤的燃煤标准,这对脱硫率的数值产生了影响。脱硫系统采用两炉一塔方式,引风机并列后与增压风机串联运行,再设计一个控制器实现主机设备与脱硫系统之间的联合控制回路确保主机安全、稳定运行。同时,通过内部调节,保证入口负压在理想区间内,实现脱硫系统与主机联动控制的目标。当机组烟气走正常脱硫烟气回路时,炉旁路档板处于关闭状态时的联合控制回路,该回路新增协调控制回路,前馈采用机组负荷指令,通过引入炉膛负压偏差,共同控制运行不但实现了稳定控制炉膛负压,还合理分配了串联运行效率,减少了能量损失,提高了运行经济性。

随着国家对环保的重视,对电厂脱硫排放要求越来严格,逐步取消脱硫旁路挡板是大势所趋。我厂在2010年已取消脱硫旁路挡,脱硫系统故障停运时必须联锁停止主机组运行,这对脱硫系统的可靠性和安全提出了更高的要求。所以,对湿法脱硫系统进行运行优化,提高脱硫系统的可靠性和安全性势在必行。

4 结语

为使火电企业实现零排放,推进烟气脱硫产业化模式,致力于脱碳、脱硝、脱硫工作。只有生存环境优美了,经济才能获得稳步发展。文章分析、探讨了石灰石___石膏湿法脱硫系统优化运行的策略,结合我厂的实际脱硫系统工艺现状,从脱硫系统与主机之间的联控设计、技术革新、脱硫系统设备改造方面进行了介绍。

参考文献:

[1]邱奎,安鹏飞,杨馥宁,诸林.高含硫天然气脱硫操作条件对能耗影响的模拟研究[J].石油学报石油加工,2012(6).

[2]姜瑞雨,王青宁,宗绪伟,李澜,叶业通.改性凹凸棒用于FCC汽油的吸附脱硫[J].石油学报石油加工,2010(4).

[3]马保国,陈全滨,李相国,王伟强,尹晓波.活化方式对CFBC脱硫灰自硬化性能的影响[J].建筑材料学报,2013(1).

上一篇:助推胶带机在新庄孜矿三号主斜井胶带机改造中... 下一篇:超大采高液压支架压死拆除工艺研究