论建筑结构设计中的概念设计

时间:2022-09-06 07:50:22

论建筑结构设计中的概念设计

摘要:针对目前建筑结构设计当中墨守成规的现象,提倡采用概念设计思想来促进结构工程师的创造性,推动结构设计的发展。所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确力学分析或在规范中难以规定的问题中,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。

关键词:概念设计,建筑设计,措施

Abstract: in view of the current structure design rules of the phenomenon, advocated by the conceptual design ideas to promote the structural engineer's creative, and promote the development of the structure design. The so-called concept design generally refers to not through numerical calculation, especially in some difficult to make precise mechanics analysis or in the provisions of the code of hard problems, from the point of view of the whole building structure to determine the overall layout and the macroscopic control of seismic detail measures.

Keywords: concept design, architecture design, measures

中图分类号:TU2 文献标识码:A 文章编号:

引言

随着概念设计的广泛应用,概念设计越来越多的优点将会被更多的工程师所发现和接受,并将成为今后结构设计的主流思想。因此,研究建筑结构的概念设计对今后建筑设计的发展是具有深远意义的,这就需要建筑设计师不断探索和学习,为建筑设计做出更大的贡献。

1 概念设计在建筑结构设计中的涵义

1.1概念设计的概念

概念设计是指在建筑结构方案设计初期,工程设计师依据已知设计理论结合工程经验,从宏观的角度对建筑设计方案进行概念性的分析估算和比较选择,通过对建筑结构的总体布局和布置必要的抗震措施,以实现合理设计的目标。所得方案往往概念清晰,定性正确,易于手算,避免后期设计阶段中不必要的繁琐运算,具有较好的经济可靠性能,同时,也是判断计算机内力分析输出数据可靠与否的重要依据。

1.2概念设计的步骤

概念设计阶段是由不断趋于满意的循环过程构成的,其过程可分为以下三个阶段:

1.2.1分析:对问题过程进行深入理解。其主要特点是信息模糊性,在分析的过程中,数据都是不完整的,以及一些可供设计人使用的都是一些较为准确的陈述。

1.2.2综合:即产生解决方案的过程。在这个阶段,运用各种知识结合工程经验将想法方案通过图纸的方式综合表达出来,其特点主要是由工程师的灵感和思维起主导作用,从而将建筑结构和设计意图的图形表达方式产生出来。

1.2.3评估:即判断和比较选择方案的阶段。这是一个选择循环的过程,该循环过程会一直持续直到方案达到双方满意为止。设计人员在进行评估时,会用功能模型方式并运用数据计算等手段将各方案进行比对选择,以期获取合理的经济可行性和技术可行性。

2 结构设计中的概念设计的体现

2.1概念设计在结构设计流程中的体现

结构设计的流程一般分为三个部分: 前期的方案选择、中期的结构计算阶段及后期的施工图绘制阶段。 这三个阶段都发挥着重要的作用。

2.1.1合理选择结构方案。一个成功的设计必须选择一个经济合理的结构方案,即选择一个切实可靠的结构形式和结构体系。必须对工程的设计要求、地理环境、材料供应、施工条件等情况进行综合分析,在此基础上进行结构选型,确定最优结构方案。概念设计在工程设计一开始就应把握好场地选择、能量输入、房屋体型、结构体系、刚度分布、构件延性等几个方面,从根本上消除建筑中的抗震薄弱环节。

2.1.2选用恰当的计算简图。结构计算是在计算简图的基础上进行的,即对作用的荷载与构件的约束状态进行一定的简化,使其接近实际状态。现在的建筑物功能复杂多样,以前的手算已经无法满足要求,结构计算只能通过计算机来完成。所以,要将实际工程的结构形式转变成可以用于计算机计算的模型,并保证有足够的精确度就成为结构设计的关键问题。 而要达到这一目的就需要设计人员在结构计算的过程中利用概念设计进行判断与控制。

2.1.3正确分析计算结果。现在结构设计中有许多软件可以供结构设计人员选择,但不同软件往往会导致不同的计算结果。所以,设计人员在进行结构计算前,先要全面了解该程序软件的适用范围和技术条件,使用时要避免操作失误,且对电算的结果再用概念设计进行科学分析,以做出正确的合理判断。

3 概念设计中的结构措施

协同工作与结构体系。对于建筑结构,协同工作的概念即是要求结构内部的各个构件相互配合,共同工作.这不仅要求结构构件在承载能力极限状态能共同受力,协同工作,同时达到极限状态,还要求他们能有共同的耐久寿命.结构的协同工作表现在基础与上部结构的关系上,必须视基础与上部结构为一个有机的整体,不能把两者割裂开来处理.例如,对砖混结构,必须依靠圈粱和构造柱将上部结构与基础连接成一个整体,而不能单纯依靠基础自身的刚度来抵御不均匀沉降,所有圈粱和构造柱的设置,都必须围绕这个中心.

对协同工作的理解,还在于当结构受力时,结构中的各个构件能同时达到较高的应力水平.在多高层结构设计时,应尽可能避免短柱,其主要的目的是使同层各柱在相同的水平位移时,能同时达到最大承载能力,但随着建筑物的高度与层数的增加,巨大的竖向和水平荷载使底层柱截面越来越大,从而造成高层建筑的底部数层出现大量短拄,为了避免这种现象的出现,对于大截面柱,可以通过对柱截面开竖槽,使矩形柱成为田形柱,从而增大长细比,避免短柱的出现,这样就能使同层的抗侧力结构在相近的水平位移下,达到最大的水平承载力;而对于梁的跨高比的限制,一般还没有充分认识到.实际上与长短柱混杂的效果一样,长、短梁在同一榀框架中并存,也是极为不利的,短跨粱在水平力的作用下,剪力很大,梁端正、负弯矩也很大,其配筋全部由水平力决定,竖向荷载基本不起作用,甚至于粱端正弯矩钢筋也会出现超筋现象。同时,由于梁的剪力增大,也会使支承柱的轴力大幅增大,这种设计是不符台协同工作原则的,并使结构的造价上升.

多高层结构设计的主要目的即是为了抵抗水平力的作用,防止扭转,为有效的抵抗水平力作用,平面上2个正交方向的尺寸宜尽量接近,目的是保证这z个方向上的“惯性矩”相等,以防止1个方向强度(稳定性)储备太大,而另一个方向较弱.因此,抗侧力结构(柱、剪力墙)宜设置在四周,以增大整体的抗侧刚度及抗扭惯性矩,同时,应加大梁或楼层的刚度,使柱(或剪力墙)能承担较大的整体弯矩,这就是“转换层”的概念.防止扭转的目的,是因为在扭转发生时,各柱节点水平位移不等,距扭转中心较远的角柱剪力很大,而中柱剪力较小,破坏由外向里,先外后里.为防止扭转,抗侧力结构应对称布置,宜设在结构两端,紧靠四周设置,以增大抗扭惯性矩.因此,高层或超高层建筑中,尽管角柱轴压比较小,但其在抗扭过程中作用却很大(若角柱先坏,整个结构的扭转刚度或强度下降,中柱必定依次被破坏),同时,在水平力的作用下,角柱轴力的变化幅度也会很大,这样势必要求角柱有较大的变形能力.由于角柱的上述作用,角柱设计时在承载力和变形能力上都应有较多考虑,如加大配箍,采用密排箍筋柱、钢管混凝土柱.目前,部分建筑在其四角设置巨型钢管柱,从而极大地增强了角柱的强度和抗变形能力.在高层建筑结构设计中,柱轴压比的限值已成为困扰结构工程师的实际问题,随着建筑高度的增加,结构下部柱截面也越来越大,而柱的纵向钢筋却为构造配筋,即使采用高强混凝土,柱截面也不会明显降低.实际上,柱的轴压比大小,直接反映了柱的塑性变形能力,而构件的变形能力会极大地影响结构的延性.混凝土基本理论指出:混凝土构件的曲率廷性,即弯曲变形能力主要取决于截面的相对受压区高度和受压区边缘混凝土的极限变形能力.相对受压区高度主要取决于轴压比、配筋等,混凝土的极限变形能力主要取决于箍筋的约束程度,即箍筋的形式和配箍特征值.因此,为了增大柱在地震作用下的变形能力,控制柱的轴压比和改善配箍具有同样的意义,因而采用密排螺旋箍筋柱或钢管混凝土均可以提高柱轴压比的限值。

4 结语

结构设计已随着时代的进步在不断的进步,我们结构工程师和建筑师在设计中创造性地相互配合,设计出令人满意的作品,为每一个崭新的工程师奠定基础,把概念设计推向主流。

参考文献

[1]高立人,王跃,结构设计的新思路――概念设计,工业建筑 ,1999(1)

[2]林同炎,S.D.思多台斯伯利 ,结构概念和体系,中国建筑工业出版社

注:文章内所有公式及图表请用PDF形式查看。

上一篇:碎石化处理水泥砼路面改造方案探讨 下一篇:支架法现浇预应力混凝土连续梁施工监理控制要...