云南兔儿风中的三萜类成分

时间:2022-09-05 01:12:57

云南兔儿风中的三萜类成分

[摘要] 对云南兔儿风Ainsliaea yunnanensis的化学成分进行了系统的研究。利用多种色谱技术进行分离纯化,并通过现代波谱鉴定其结构。从云南兔儿风乙醇提取物中的石油醚萃取部位中分离鉴定了12个三萜类化合物,分别为冬青醇乙酸酯(1),降香萜烯醇(2),α-香树脂醇(3),伪蒲公英甾醇(4),β-香树脂醇(5),刺囊酸(6),multiflorenol (7),3β-羟基-18-烯-齐墩果烷 (8),12-齐墩果烯-11-酮-3β-棕榈酸酯(9),羊齿烯醇(10),fern-7-en-3β-ol(11)和羽扇豆醇(12)。除化合物1,3,5,和10外,其余化合物均为首次从该属植物中分离得到;所有化合物均为首次从云南兔儿风植物中分离得到。

[关键词] 云南兔儿风;化学成分;三萜

[稿件编号] 2013-08-02

[基金项目] 国家自然科学基金面上项目(31171669)

[通信作者] 尚小雅,研究员,主要从事天然产物化学研究,E-mail:

[作者简介] 李金杰,助理实验师,从事天然产物分离,E-mail:

云南兔儿风Ainsliaea yunnanensis属菊科兔儿风属植物,又名追风剑、燕麦灵、接骨一支箭等;分布于我国云南、四川等地[1]。云南兔儿风为民间常用草药,具有祛风湿、舒筋骨、续骨散寒、止痛止咳等功效,主治跌打损伤、骨折疼痛等[1]。

文献调研发现,仅有2篇文献对其化学成分进行了探索。一篇采用傅里叶红外光谱法对云南兔儿风根、茎、叶和花中可能含有的化合物的结构类型进行了研究,结果表明云南兔儿风中含有挥发油、三萜、生物碱、木脂素、酚类、鞣质等[1]。另一篇研究生论文对云南兔儿风进行了分离,得到4个倍半萜苷,1个黄酮苷和2个酚类成分[2]。为了从资源丰富的云南兔儿风中获得结构多样的化合物,在不同模型上进行筛选评价,作者对前期筛选出具有较好抗炎、细胞毒活性的云南兔儿风乙醇提取物的石油醚萃取部位进行系统分离纯化,从中分离并鉴定了12个三萜类化合物,其中,有8个化合物为首次从该属植物中分离得到,所有化合物均为首次从该种植物中分离得到。

1 材料

Inova 500核磁共振仪;Micromass Autospec-Ultima ETOF型质谱仪( EI离子源);Waters 600高效液相色谱仪(Alltech公司Alltima C18制备柱,22 mm×250 mm,5 μm,Waters 2996型检测器)和Waters 2545二元高压液相色谱仪(Waters公司SunFire C18制备柱,19 mm×250 mm,5 μm,Waters 2998型检测器,2767型自动纯化进样器兼馏分收集器);CombiFlash 快速分离仪(正反相硅胶(43~60 μm) 制备柱ISCO公司产品);Pall纯水机(美国Pall公司);薄层色谱TLC显色为12%硫酸乙醇显色剂,喷后烘烤;旋转蒸发仪为BüCHI Rotavapor R-215型。所用溶剂均为分析纯,由北京化学试剂厂生产。

云南兔儿风全草采自云南楚雄市大桃县,经中国科学院昆明植物研究所卢金梅副研究员鉴定为兔儿风属植物云南兔儿风A.yunnanensis;标本(No.20091105)保存于北京联合大学生物活性物质与功能食品北京市重点实验室。

2 提取与分离

云南兔儿风干燥茎叶10.0 kg,将其粉碎后,过40目筛,然后依次用95%,80%,70%乙醇进行超声提取,每次2 h,将3 次提取液合并后,用旋转蒸发仪将其浓缩得到浸膏后,将浸膏分散于水中,分别用石油醚、乙酸乙酯和正丁醇依次萃取,最后得到石油醚部位78.0 g、乙酸乙酯部位102.5 g、正丁醇部位420.0 g。

将石油醚部位78.0 g 进行正相硅胶柱色谱,用石油醚-丙酮(100∶1~0∶100)梯度洗脱,洗脱液经薄层色谱检测合并相似的流分,得到10个组分(sh-1~sh-10)。sh-3组分有大量白色沉淀析出,过滤得沉淀,将沉淀部分上低压Flash正相硅胶柱进行纯化,用石油醚-丙酮(100∶0~20∶1)梯度洗脱,得到化合物1(200 mg)。sh-4组分上凝胶柱色谱,先用石油醚-氯仿-甲醇(5∶5∶1)反复洗脱,再用丙酮反复结晶,得到化合物9(20 mg)。sh-7组分上凝胶柱色谱,用石油醚-氯仿-甲醇(5∶5∶1)洗脱,得到8个组分sh-7-1~sh-7-8;将sh-7-6组分反复上低压Flash正相氰基柱进行纯化,先用石油醚-丙酮(100∶1~15∶1)梯度洗脱,再用HPLC制备色谱进行分离,流动相为甲醇-水(95∶5),保留时间为44 min时,得到化合物6(15 mg)。sh-8组分放置有沉淀析出,过滤得沉淀,将沉淀上低压Flash正相硅胶柱分离,用石油醚-丙酮(50∶1~2∶1)梯度洗脱,得到5个组分sh-8-1~sh-8-5;将sh-8-1组分上低压Flash反相C18硅胶柱进行纯化,用甲醇-水(90∶10~100∶0)梯度洗脱,得到5个组分sh-8-1-1~sh-8-1-5,将sh-8-1-1组分用HPLC制备色谱进行分离,流动相为甲醇-水(97∶3),保留时间为70 min时,得到化合物12(20 mg);将sh-8-1-2组分用HPLC制备色谱进行分离,流动相为甲醇-水(98∶2),保留时间为80 min时,得到化合物2(15 mg),保留时间为77 min时,得到化合物3(5 mg),保留时间为78 min时,得到化合物4(6 mg),保留时间为84 min时,得到化合物7(10 mg);将sh-8-1-3组分用HPLC制备色谱进行分离,流动相为甲醇-水(98∶2),保留时间为70 min时,得到化合物5(8 mg),保留时间为68 min时,得到化合物8(9 mg);将sh-8-1-4组分用HPLC制备色谱进行分离,流动相为甲醇-水(99∶1),保留时间为117 min时,得到化合物10(13 mg),保留时间为124 min时,得到化合物11(7 mg)。

3 结构鉴定

化合物1 白色粉末,EI-MS m/z 468(M+・)。1H-NMR(CDCl3,500 MHz) δ:4.51(1H,dd,J=11.0,4.0 Hz,H-3),5.41(1H,d,J=2.6 Hz,H-7),0.93(3H,s,H-23),0.85(3H,s,H-24),0.76(3H,s,H-25),0.99(3H,s,H-26),0.94(3H,s,H-27),1.04(3H,s,H-28),1.05(3H,d,J=8.7 Hz,H-29),0.90(3H,d,J=5.9 Hz,H-30),2.07(3H,s,-OCOCH3);13C-NMR(CDCl3,125 MHz) δ:36.5(C-1),24.0(C-2),81.1(C-3),37.8(C-4),50.6(C-5),24.2(C-6),116.2(C-7),145.5(C-8),48.2(C-9),35.1(C-10),16.8(C-11),32.4(C-12),37.8(C-13),41.3(C-14),28.9(C-15),37.7(C-16),32.0(C-17),54.9(C-18),35.3(C-19),38.0(C-20),29.2(C-21),31.5(C-22),27.5(C-23),15.8(C-24),13.0(C-25),23.7(C-26),22.7(C-27),32.1(C-28),25.6(C-29),22.5(C-30),21.3(-OCOCH3 ),170.9(-OCOCH3)。以上数据与文献[3-4]报道的冬青醇乙酸酯(bauerenyl acetate)数据一致。

化合物2 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz) δ:3.24(1H,dd,J=11.3,3.8 Hz,H-3),5.42(1H,d,J=3.0 Hz,H-7),0.94(3H,s,H-23),0.86(3H,s,H-24),0.75(3H,s,H-25),0.99(3H,s,H-26),0.97(3H,s,H-27),1.04(3H,s,H-28),1.05(3H,d,J=9.0 Hz,H-29),0.90(3H,d,J=5.5 Hz,H-30);13C-NMR(CDCl3,125 MHz) δ:37.0(C-1),27.9(C-2),79.4(C-3),39.0(C-4),50.6(C-5),24.3(C-6),116.6(C-7),145.5(C-8),48.4(C-9),35.4(C-10),17.0(C-11),32.6(C-12),37.9(C-13),41.4(C-14),29.4(C-15),37.9(C-16),32.2(C-17),55.1(C-18),35.5(C-19),38.2(C-20),29.0(C-21),31.7(C-22),27.7(C-23),14.8(C-24),13.1(C-25),23.8(C-26),22.8(C-27),32.2(C-28),25.8(C-29),22.7(C-30)。以上数据与文献[3,5]报道的降香萜烯醇(bauerenol)数据基本一致。

化合物3 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz) δ:3.22(1H,dd,J=11.0,5.0 Hz,H-3),5.13(1H,t,J=3.5 Hz,H-12),0.95(3H,s,H-23),0.79(3H,s,H-24),1.00(3H,s,H-25),1.04(3H,s,H-26),1.07(3H,s,H-27),0.80(3H,s,H-28),0.80(3H,d,J=3.0 Hz,H-29),0.91(3H,br s,H-30);13C-NMR(CDCl3,125 MHz) δ:38.9(C-1),27.4(C-2),79.2(C-3),39.0(C-4),55.3(C-5),18.5(C-6),33.1(C-7),40.2(C-8),47.9(C-9),37.1(C-10),23.4(C-11),124.6(C-12),139.7(C-13),42.2(C-14),28.9(C-15),26.8(C-16),33.9(C-17),59.2(C-18),39.8(C-19),39.8(C-20),31.4(C-21),41.7(C-22),28.3(C-23),15.8(C-24),15.8(C-25),17.0(C-26),23.5(C-27),28.3(C-28),17.6(C-29),21.5(C-30)。以上数据与文献[6]报道的α-香树脂醇(α-amyrin)数据一致。

化合物4 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz) δ:3.20(1H,dd,J=11.3,5.1 Hz,H-3),5.26(1H,br d,J=7.0 Hz,H-21),0.97(3H,s,H-23),0.77(3H,s,H-24),0.85(3H,s,H-25),1.04(3H,s,H-26),0.92(3H,s,H-27),0.74(3H,s,H-28),1.00(3H,d,J=6.5 Hz,H-29),1.63(3H,s,H-30);13C-NMR(CDCl3,125 MHz) δ:39.0(C-1),27.6(C-2),79.2(C-3),39.0(C-4),55.5(C-5),18.5(C-6),34.4(C-7),41.2(C-8),50.6(C-9),37.3(C-10),21.8(C-11),27.8(C-12),39.4(C-13),42.3(C-14),27.2(C-15),36.9(C-16),34.6(C-17),48.9(C-18),36.5(C-19),140.0(C-20),119.0(C-21),42.5(C-22),28.1(C-23),15.5(C-24),16.4(C-25),16.2(C-26),14.9(C-27),17.9(C-28),22.7(C-29),21.8(C-30)。上述数据与文献[7]报道的伪蒲公英甾醇(ψ-taraxasterol)数据一致。

化合物5 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz) δ:3.22(1H,dd,J=11.0,5.0 Hz,H-3),5.13(1H,t,J=3.5 Hz,H-12),0.94(3H,s,H-23),0.79(3H,s,H-24),0.97(3H,s,H-25),1.00(3H,s,H-26),1.13(3H,s,H-27),0.83(3H,s,H-28),0.87(6H,s,H-29,30);13C-NMR(CDCl3,125 MHz) δ:38.8(C-1),27.4(C-2),79.2(C-3),38.9(C-4),55.3(C-5),18.5(C-6),32.8(C-7),40.0(C-8),47.8(C-9),37.3(C-10),23.7(C-11),121.9(C-12),145.4(C-13),41.9(C-14),28.6(C-15),26.3(C-16),32.7(C-17),47.4(C-18),47.0(C-19),31.2(C-20),34.9(C-21),37.1(C-22),28.3(C-23),15.7(C-24),15.7(C-25),17.0(C-26),26.2(C-27),27.1(C-28),33.5(C-29),23.9(C-30)。以上数据与文献[7]报道的β-香树脂醇(β-amyrin)数据一致。

化合物6 白色粉末,EI-MS m/z 472(M+・)。1H-NMR(DMSO,500 MHz) δ:3.32(1H,br s,H-3),5.16(1H,br s,H-12),4.28(1H,br d,J=5.0 Hz,H-16),0.72(3H,s,H-23),0.67(3H,s,H-24),0.85(3H,s,H-25),0.89(3H,s,H-26),1.09(3H,s,H-27),0.87(6H,s,H-29,H-30);13C-NMR(DMSO,125 MHz) δ:38.0(C-1),25.6(C-2),79.2(C-3),38.4(C-4),54.8(C-5),18.0(C-6),32.1(C-7),38.9(C-8),45.4(C-9),36.6(C-10),22.9(C-11),121.5(C-12),143.8(C-13),41.3(C-14),32.8(C-15),76.8(C-16),47.1(C-17),40.8(C-18),45.7(C-19),28.2(C-20),33.3(C-21),30.4(C-22),27.2(C-23),16.0(C-24),15.1(C-25),16.8(C-26),26.9(C-27),178.6(C-28),32.4(C-29),23.4(C-30)。以上数据与文献[8]报道的刺囊酸(echinocystic acid)数据基本一致。

化合物7 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz) δ:3.24(1H,dd,J=11.3,4.3 Hz,H-3),5.47(1H,br s,H-7),0.97(3H,s,H-23),0.86(3H,s,H-24),0.74(3H,s,H-25),0.98(3H,s,H-26),1.07(3H,s,H-27),0.98(3H,s,H-28),1.06(3H,s,H-29),1.09(3H,s,H-30);13C-NMR(CDCl3,125 MHz) δ:36.2(C-1),27.8(C-2),79.4(C-3),39.0(C-4),50.3(C-5),24.3(C-6),117.9(C-7),147.6(C-8),49.0(C-9),35.4(C-10),17.3(C-11),34.8(C-12),37.3(C-13),41.7(C-14),31.8(C-15),36.7(C-16),31.1(C-17),47.0(C-18),34.3(C-19),31.1(C-20),34.0(C-21),37.2(C-22),27.8(C-23),15.0(C-24),13.3(C-25),27.2(C-26),26.3(C-27),36.3(C-28),33.8(C-29),28.4(C-30)。结合化合物2和5的数据,归属了此化合物的碳氢数据,以上数据与文献[9]报道的multiflorenol数据基本一致。

化合物8 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz) δ:3.20(1H,dd,J=11.5,5.0 Hz,H-3),4.86(1H,s,H-19),0.97(3H,s,H-23),0.77(3H,s,H-24),0.88(3H,s,H-25),1.02(3H,s,H-26),0.71(3H,s,H-27),1.09(3H,s,H-28) ,0.94(6H,s,H-29,H-30);13C-NMR(CDCl3,125 MHz) δ:38.6(C-1),27.6(C-2),79.1(C-3),39.0(C-4),55.7(C-5),18.4(C-6),34.8(C-7),40.9(C-8),51.4(C-9),37.4(C-10),21.3(C-11),26.4(C-12),39.1(C-13),43.5(C-14),27.7(C-15),37.9(C-16),34.5(C-17),142.9(C-18),129.9(C-19),32.5(C-20),33.5(C-21),37.5(C-22),28.1(C-23),15.6(C-24),16.3(C-25),16.9(C-26),14.7(C-27),25.4(C-28),31.5(C-29),29.4(C-30)。以上数据与文献[10]报道的3β-羟基-18-烯-齐墩果烷(3β-hydroxy-olean-18-ene-germanicol)数据一致。

化合物9 白色针状结晶(丙酮),EI-MS m/z 678(M+・)。1H-NMR(CDCl3,500 MHz) δ:4.52(1H,dd,J=11.8,4.8 Hz,H-3),5.58(1H,s,H-12),0.87(3H,s,H-23),0.88(3H,s,H-24),1.16(3H,s,H-25),1.13(3H,s,H-26),1.36(3H,s,H-27),0.85(3H,s,H-28),0.90(3H,s,H-29),0.88(3H,s,H-30);13C-NMR(CDCl3,125 MHz)δ:38.9(C-1),23.8(C-2),80.4(C-3),38.2(C-4),55.2(C-5),17.5(C-6),32.9(C-7),45.6(C-8),61.8(C-9),37.1(C-10),200.3(C-11),128.2(C-12),170.7(C-13),43.5(C-14),26.6(C-15),26.6(C-16),32.5(C-17),47.8(C-18),45.3(C-19),31.2(C-20),34.6(C-21),36.7(C-22),28.2(C-23),16.9(C-24),16.6(C-25),18.8(C-26),23.6(C-27),28.9(C-28),33.2(C-29),23.6(C-30),173.8(C-1′),35.0(C-2′),32.1(C-3′),29.8~29.3(C-4′~13′),25.3(C-14′),22.8(C-15′),14.3(16′-CH3)。以上数据与文献[11-12]报道的12-齐墩果烯-11-酮-3β-棕榈酸酯(3β-hexadecanoyl-12-oleanen-11-one)数据一致。

化合物10 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz) δ:3.20(1H,dd,J=10.5,5.5 Hz,H-3),5.29(1H,s,H-11),0.96(3H,s,H-23),0.87(3H,s,H-24),1.07(3H,s,H-25),0.73(3H,s,H-26),0.81(3H,s,H-27),0.76(3H,s,H-28),0.89(3H,d,J=6.5 Hz,H-29),0.83(3H,d,J=6.5 Hz,H-30);13C-NMR(CDCl3,125 MHz) δ:39.4(C-1),28.4(C-2),79.3(C-3),39.5(C-4),44.5(C-5),19.3(C-6),18.1(C-7),40.1(C-8),151.2(C-9),37.9(C-10),116.3(C-11),36.9(C-12),36.9(C-13),37.8(C-14),29.4(C-15),36.3(C-16),43.1(C-17),52.1(C-18),20.3(C-19),28.3(C-20),59.8(C-21),30.9(C-22),27.6(C-23),16.0(C-24),25.4(C-25),15.5(C-26),15.2(C-27),14.1(C-28),22.3(C-29),23.1(C-30)。以上数据与文献[13]报道的羊齿烯醇(fernenol)数据一致。

化合物11 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz) δ:3.24(1H,dd,J=11.5,3.5 Hz,H-3),5.37(1H,d,J=2.5 Hz,H-7),0.97(3H,s,H-23),0.86(3H,s,H-24),0.73(3H,s,H-25),0.99(3H,s,H-26),0.90(3H,s,H-27),0.75(3H,s,H-28),0.90(3H,d,J=6.5 Hz,H-29),0.83(3H,d,J=6.5 Hz,H-30);13C-NMR(CDCl3,125 MHz) δ:36.2(C-1),27.9(C-2),79.4(C-3),39.1(C-4),50.9(C-5),24.3(C-6),116.3(C-7),145.3(C-8),48.1(C-9),35.5(C-10),16.2(C-11),32.5(C-12),36.4(C-13),41.7(C-14),30.5(C-15),37.0(C-16),43.0(C-17),54.3(C-18),20.2(C-19),28.4(C-20),59.7(C-21),30.8(C-22),27.7(C-23),14.8(C-24),13.0(C-25),21.2(C-26),24.2(C-27),14.2(C-28),22.3(C-29),23.1(C-30)。结合化合物10和文献[14]的数据,归属了化合物的碳谱数据,以上数据与文献[15]报道的fern-7-en-3β-ol的数据一致。

化合物12 白色粉末,EI-MS m/z 426(M+・)。1H-NMR(CDCl3,500 MHz)δ:3.18(1H,dd,J=11.5,5.0 Hz,H-3),0.97(3H,s,H-23),0.76(3H,s,H-24),0.83(3H,s,H-25),1.03(3H,s,H-26),0.94(3H,s,H-27),0.79(3H,s,H-28),4.69(1H,d,J=2.0 Hz,H-29a),4.57(1H,br s,H-29b),1.68(3H,s,H-30);13C-NMR(CDCl3,125 MHz)δ:38.9(C-1),27.6(C-2),79.1(C-3),39.0(C-4),55.5(C-5),18.5(C-6),34.5(C-7),41.0(C-8),50.6(C-9),37.3(C-10),21.1(C-11),25.3(C-12),38.2(C-13),43.0(C-14),27.6(C-15),35.7(C-16),43.2(C-17),48.5(C-18),48.2(C-19),151.1(C-20),30.0(C-21),40.2(C-22),28.1(C-23),15.5(C-24),16.3(C-25),16.1(C-26),14.7(C-27),18.2(C-28),109.5(C-29),19.5(C-30)。以上数据与文献[7]报道的羽扇豆醇(lupeol)数据一致。

[参考文献]

[1] 刘朝兰, 司民真.药用植物追风箭的红外光谱分析[J].光散射学报, 2010, 22(1):72.

[2] 田亮.鞭打绣球及云南兔儿风的化学成分研究[D].北京:中国协和医科大学, 2004.

[3] 甘茂罗, 林生, 张艳玲, 等.微花藤脂溶性化学成分及其神经保护与钾通道阻断活性[J].中国中药杂志,2011, 36(9):1183.

[4] Lu Y Q, Zhang C F, Zhang M.Chemical constituents of Ixeris sonchifolia[J].Chin Pharm Sci, 2007(16):214.

[5] 邓, 陆崇玉, 郭大乐, 等.细罗伞化学成分研究[J].中药材, 2011, 3(34):380.

[6] 刘青, 刘珍伶, 田.荫生鼠尾草植物中的三萜类化学成分研究[J].西北植物学报, 2007, 27(6):1141.

[7] 李泠泠, 孙珍, 尚小雅, 等.小蓟三萜类化合物成分的研究[J].中国中药杂志, 2012, 37(7):951.

[8] 赵越平, 汤海峰, 蒋永培, 等.墨旱莲化学成分的研究[J].中国药学杂志, 2002, 37(1):17.

[9] Hiroyuki A,Yoko A.Fern constituents:pentacyclic triterpenoids isolated from Polypodium niponicum and P.formosalem[J].Phytochemistry,1983,22:1801.

[10] Gonzalez A G, Fraga B M, Gonzalez P, et al.13C NMR spectra of olean-18-ene derivatives[J].Phytochemistry, 1981, 21:1919.

[11] Chiang Y M, Kuo Y H.New peroxy triterpenes from the aerial roots of Ficus microcarpa[J].J Nat Prod, 2001, 64:436.

[12] 欧阳明安, 汪汉卿, 苏军华, 等.苦丁茶冬青化学成分的结构研究[J].天然产物研究与开发, 1997, 3(9):19.

[13] Chakravarty A K.Unamblguous assignment of 13C chemical shifts of some hopane and migrated hopane derivatives by 2D NMR[J].Tetrahedron, 1994, 50(9):2865.

[14] Ascenso J R, Ferreira M J U.Assignment of carbon-13 and proton nuclear magnetic resonance spectra of madeirane triterpenes[J].Magn Reson Chem, 1997, 35:643.

[15] Hiroyuki A, Tomoko A.Ericaceous constituents:seventeen triterpenoids isolated from the buds of Rhododendron macrocepalum[J].Chem Pharm Bull, 1984, 32(1):369.

Triterpene compounds of Ainsliaea yunnanensis

LI Jin-jie1, WANG A-li1, YUAN Zhen-zhen1, WU Chun-yan1, YANG Li-hong2, SHANG Xiao-ya1*

(1.Beijing Union University, Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing 100191, China;

2.Heilongjiang Institude for Food and Drug Control, Harbin 150001, China)

[Abstract] The compounds of Ainsliaea yunnanensis were isolated and purified by various kinds of column chromatography methods and their structures were determined by spectroscopic data analysis.Twelve compounds were obtained from the petroleum ether of ethanolic extract of A.yunnanensis and elucidated as bauerenyl acetate(1), bauerenol(2), α-amyrin(3), ψ-taraxasterol(4), β-amyrin(5), echinocystic acid(6), multiflorenol(7), 3β-hydroxy-olean-18-ene germanicol(8), 3β-hexadecanoyl-12-oleanen-11-one(9), fernenol(10), fern-7-en-3β-ol(11), and lupeol(12).All compounds were isolated from this genus for the first time except compound 1, 3, 5 and 10, and they were all isolated from this plant for the first time.

[Key words] Ainsliaea yunnanensis; chemical constituents; triterpenes

doi:10.4268/cjcmm20132224

上一篇:安徽泥河铁矿床地质特征探讨 下一篇:黄芩对干旱复水的生理生态响应