浅谈低应变检测技术在桥梁桩基检测中的应用

时间:2022-09-02 05:49:04

浅谈低应变检测技术在桥梁桩基检测中的应用

摘 要:在桥梁工程建设中,桩基是桥梁的主要部分,它承受由桥梁上部结构传递的巨大荷载,其质量的好坏,直接影响桥梁使用的耐久性和安全性。本文简要介绍了桩基动力检测法的定义、类别、特点及相关检测手段,并对低应变检测技术的工作原理以及相关数据的采集与处理情况予以简单论述,以期了解低应变检测技术在桥梁桩基检测中的具体运用情况。

关键词:低应变检测技术;桩基检测;工作原理;运用情况

前 言

由于环境影响、土层性质差异以及施工工艺的局限,对于桩基这种高隐蔽性的工程而言,要想确保其质量达到标准是有一定困难的,施工过程中难免会出现离析、夹泥、缩颈、断裂等缺陷,这些缺陷不同程度地影响了基桩的质量进而影响到上部结构物的安全,因此对桥梁桩基予以检测是相当必要的。只有借助桩基检测技术真正了解桩基工程的具体情况,才能使桩基工程真正达到相关的质量标准与安全标准。

1 桩基动力检测技术的定义、分类及特点

桩基动力检测技术是指采用铁锤去重力击打桩顶,借助传感器去测量桩身的应力、应变,结合桩周土的具体情况并经过分析、拟合去了解基桩的施工质量及承载力的一种检测手段。桩基动力检测技术通常分为两类,一类为高应变检测技术,另一类为低应变检测技术。其中高应变检测技术是指击打在桩顶上的作用力相对较大,导致所获得的打击作用力和原本方案设计中的预估极限值相差不大;一般而言,高应变检测技术比较常用的几种分析方法有动力打桩公式法、凯斯法、曲线拟合法等,其主要功能在于测试桩基的承载力。低应变检测技术是指击打在桩顶上的作用力非常小,应力波仅在桩身内传递,不会导致桩周土松动。一般情况下,低应变检测技术相当常用的几种方法为应力波反射法、动力参数法以及水电效应法等,其主要功能在于测试桩基的完整性。由于桩基检测技术具备着成本低廉、速度快、轻巧简便且普及率广的特点,使得其在桥梁工程领域中得到了广泛使用。

2 低应变检测技术

在桩基检测技术的定义与分类中,我们了解到低应变检测技术包含几种常用的检测方法,但最为常用的便是应力波反射法,本文笔者简要介绍有关低应变反射波法的相关内容,具体如下:

2.1 低应变反射波法的工作原理

应力反射波法就是借助应力波在桩身中的具体传播与反射情况对桩基予以检测的一种检测手段,其具体工作原理是:因为桩基和桩身四周的土之间存在着不同的波阻抗差,一旦桩顶遭遇瞬间施力,其所激发的多数应力波都会在桩基内进行传播,传播至桩顶以下1至2倍桩径外可视为平面波,如果桩基中具备波阻抗差,那么这些应力波便会分成两类,一种为反射波,另一种为透射波,此时,透射波接着往下传播直至桩底返回,而反射波则会逆向传播至桩顶,安装在桩顶的传感器接受到信息,针对这些信息,结合相关施工资料与检测经验可判明该桩基是否达到了质量与安全标准。

2.2 低应变检测的准备工作

(1)对桩基工程的所有资料进行收集,比如该工程什么时候开工的;其工艺如何;混凝土强度怎么样;桩身有多长等等,进行桩基检测前必须对桩基的具体情况作充分的了解,尽可能打有准备之战,以防误判。

(2)实地检查桩基工程的具体情况,了解具体的施工工艺,现场应对桩头作全盘观察,看是否存在泥泞情况,并作简单击打,看看其潮湿度如何,是否清理到了坚硬的混凝土,了解桩头的疏松度怎么样,如果桩头有泥泞情况或浮浆未清除彻底情况出现,必须对其予以清理,确保桩头清洁平整且完好。

(3)借助砂轮对桩基进行打磨,一般在普通的桩基检测中必须打磨的光面为3~4个,且这些光面的直径最好处于8~10cm左右,而且还需对那些露头的钢筋作简单处理,令其往外侧倾倒,如果钢筋外露较长的,尤其是已经绑扎好钢筋笼的,为防止锤击时钢筋产生次生震荡,可在钢筋根部包裹土团或者砂团。之后,在光面上设置传感器,确保安装位置能真正检测到全部的反射波信号。

(4)检测时间的安排尽量是桩身已达到28d龄期,只有在相近龄期情况下检测到的数据才可以用于分析桩基工程的整体质量情况与安全水平,如果龄期相差较大,尤其有短龄期检测的情况,其检测结果不具备整体分析比较的条件,在笔者实际检测工作中不到龄期检测的情况是常遇的,这就需要结合地区检测的经验来分析判断。

2.3 数据收集

2.3.1 如何挑选震源与传感器

要想借助反射波手段,一定得具备震源,如果击打方式不同,主要是锤质的不同,其所生成的作用曲线也会存在差异,可见,要想检测到真正有用的反射信号,必须挑选最适宜的震源。通常情形下,桥梁桩基一般为长桩,其击震源最好具备相当宽的脉冲,在实际工作中笔者基本采用的是尼龙质的锤头,效果良好。

2.3.2 如何挑选传感器

对于桩基检测技术而言,传感器是收集信号最为核心的设备,因此我们不仅需选用质地较好的传感器,而且还需在设置时,使其和桩体紧密连接,以确保传感器能够接收到最为正确的波形曲线,便于数据分析。现在的低应变检测基本都是采用加速度传感器,笔者实际工作对于传感器的安装通常都采用橡皮泥,效果优于黄油。

2.3.3 使用力棒(锤)时需掌握好力度与角度

在桩基低应变检测中使用力棒(锤)时必须对击打力度与角度予以全盘把握,尽可能使击打力不会对反射波曲线形成影响,我们要求锤击角度必须垂直,击打力度可根据桩长情况适度调整,每次锤击后必须迅速提锤,不能将锤压在桩头,一般情况下,应当提前对抡锤人员作相关的培训指导。

3 数据处理

3.1 完整桩

当前,低应变反射波法还具备着一定的局限,还存在不少因素对转、挖孔桩的缺陷反射情况形成一定的负面影响。通常完整桩基应当具备三方面因素,即:具备正常的波速、存在明确的桩底反射信号及波形曲线无缺陷信号。

3.2 考虑钢护筒对曲线所形成的影响

桥梁桩基与建筑桩基的最大区别是施工的场地条件不一样,桥梁桩基相当部分在水上施工,一般钢护筒均沉的较深,少部分工地钢护筒直径大于桩径,成桩后形成大头桩,如此一来,便形成桩缩颈的情形,而反射波对于这一情况会当作缺陷反应在桩基检测曲线中,因此,对于传感器所收集的数据进行分析处理时,需特别注意,必须排除这一情况,以免误判。

3.3 考虑钢筋笼对曲线所形成的影响

如果桩身并非全部采用钢筋笼,由于具备钢筋笼的位置与不具备钢筋笼的位置会形成不同的波阻抗差,那么其所形成的反射波曲线也会出现差异,一般情况下,由于具备钢筋笼的位置所含有的钢量大,因此其比不具备钢筋笼的位置更易反应出其具体缺陷情况。

4 依据处理数据分析桩基具体情况

(1)分析整个桩基的完整度,依据施工工艺与地层情况对桩基的大致情况进行初步判断;

(2)借助定量分析软件去分析并判断桩基是否存在缺陷,如果仅仅依靠肉眼观察,其所获数据与实际情况会相差非常大;

(3)对整个桥梁桩基工程中的所有检测到的曲线予以分析,总结出该工地桩身所存在的相同点与差异处,根据分析所有桩身的具体情况去判断整个桩基工程的具体情况。

5 低应变检测技术存在的问题

低应变检测技术在实际的检测分析中仍旧需要借助检测人员的实践经验,对于深长桩的底部缺陷的检测力所不能及,一般检测长度不宜超过30m,同时桩身四周的土层情况对于反射波曲线也存在着一定的影响,因此在桩基工程中使用低应变检测技术仍旧存在着一定的局限性。

6 结束语

综上所述,对于桩基工程的检测技术而言,尽管低应变检测技术是一种使用范围相对较广的技术,方便快捷,成本较低,给桥梁工程领域带来了极大的便利,但同时它在实际工作中仍旧存在着一定的不足之处,要求我们不断对其进行总结改进,并进一步结合钻芯取样等手段使低应变检测更为有效。

参考文献

[1]张剑明.低应变动测在桩基检测中的应用[J].交通科技与经济,2006.

上一篇:电气竖井安装质量控制探析 下一篇:市政园林工程大树的移植技术探讨