竹原纤维的研究进展

时间:2022-08-22 02:45:02

竹原纤维的研究进展

摘要:

不同于工艺日趋成熟的竹浆粘胶纤维和竹炭纤维,竹原纤维作为一种新型原纤维素纤维,其独特的杀菌、除臭、抗紫外线等理化性能在纺织行业中有着广泛的应用。其细度、可纺性方面的改善在近年也有了相关进展,竹原纤维和改性竹原纤维的各种新制备方法等加工工艺与应用也逐渐成为纺织行业研究的新焦点。

关键词: 竹原纤维;理化性能;制备工艺

1 前言

不同于近年来市场上所见的竹浆粕纤维和竹炭纤维,竹原纤维是一种真正意义上的环保天然纤维。竹原纤维吸放湿性能优异,具有天然抗菌和抗紫外线等保健功能。竹中含有一种天然物质“竹醌”,“竹醌”具有天然的抗菌、抑菌、防螨、防虫及能产生大量负离子的特性。经中国纺织纤维质量检测中心及上海微生物研究所检测,“竹醌”在24h内能杀灭75%的大肠杆菌、金黄色葡萄球菌和巨大芽孢杆菌。另外,竹原纤维中还含有叶绿素铜钠,具有良好的除臭功能,因此,竹原纤维有着良好的技术与市场发展前景,可广泛应用于纺织品服装领域。竹纤维是以数百根单纤维聚集成纤维束的形式分散在竹茎内,单独将单纤维分离出来较为困难。原生竹纤维的一般提取过程:(1)先去除竹节部分,将其分割成适当长度,再去掉外皮;(2)用压榨机将竹片压碎,破坏其柔细胞组织;(3)用2%~3%的NaOH水溶液煮沸2h;(4)水洗后再行压榨,破坏柔软的柔细胞组织,便于与纤维束分离;(5)在水槽中充分水洗,使纤维束与柔细胞分离;(6)过滤后即得浆粕状竹纤维,干燥后用搅拌机短时间搅拌便开纤成单纤维。竹原纤维制取过程中为避免单纤维发生脆化,必须确保原竹未经干燥,整个制取过程必须维持湿润状态[1-3]。

目前,有关竹纤维束应用于纺织上已有大量报道,并有相关产业应用,竹纤维用于复合材料制备也进入了起步阶段。但天然竹纤维成分中半纤维素和木质素含量很高,且单纤维较短,脱胶难度较大,影响了纤维的可纺性,此外在满足机械性能的条件下,竹纤维束的提取即是影响竹纤维复合材料应用开发的技术难点之一。针对可纺性的改善、细度改善以及各种制备与改性竹原纤维的方法也正在成为行业研究的新焦点。

2 竹原纤维的相关研究进展

2.1 新方法与工艺制备竹原纤维和改性竹原纤维

黄慧[4]等人采用10%碱处理、软化+1%碱煮和酸+1%碱煮等3种不同的预处理工艺提取获得竹纤维束,利用光学显微镜和X射线衍射法分别比较3种工艺下竹纤维束的微观形态和结晶结构。证明了竹材组织结构呈一定规律性,通过较低碱预处理后采用机械工艺可提取竹材中的纤维束。提取竹纤维束为黄褐色丝状物,并有一定柔韧性,长可达30cm以上,直径范围100μm~200μm。碱处理浓度高有利于竹纤维束分离。研究结果表明,低碱处理可分离提取竹纤维束,提取的竹纤维束为黄褐色丝状,直径范围为100μm~200μm;微观形态下,竹纤维束横截面呈蜂窝状,纵面呈多根柱形紧密排列状。3种工艺中,10%碱常温处理分离竹纤维最易,分离效果最好,残留基质粘附最少。由竹材经3种工艺提取的竹纤维束,结晶结构未改变,但相对结晶度均较原竹材有所提高。

张袁松[5]等人用闪爆—碱煮联合工艺的天然竹纤维提取,对闪爆压力、保压时间、碱浓度、碱煮时间这4个因素的单因素试验均采用联合脱胶,经研究表明闪爆—碱煮联合脱胶技术对天然竹纤维脱胶效果明显,纤维表面比较光滑,纤维直径明显减小。闪爆压力、保压时间和碱浓度是影响闪爆—碱煮联合脱胶效果的重要因素。在闪爆压力为0.8MPa、保压时间为15min、NaOH质量浓度为4g/L、碱煮90min的条件下,脱胶效果比较理想,纤维得率为77.16%,纤维的半纤维素和木质素含量分别下降41.61%和31.94%,纤维素含量从40.51%提高到63.59%,处理后纤维分散程度高,柔软性好,纤维拉伸强度接近麻类工艺纤维。

同时,张袁松[6]团队还以慈竹为研究对象,对常压下乙酸脱除天然竹纤维中的木质素进行了探讨。以反应温度、乙酸体积分数、催化剂硫酸体积分数和反应时间为单因子,考察这些因素对天然竹纤维木质素脱除率的影响。结果表明:影响因素从大到小依次为反应温度、催化剂硫酸体积分数、乙酸体积分数和反应时间。正交试验结果表明,乙酸在脱除天然竹纤维木质素的过程中也脱除了部分半纤维素和纤维素。在乙酸脱除天然竹纤维木质素的过程中,脱除木质素的同时也脱除了部分半纤维素和纤维素,脱除率为木质素脱除率>半纤维素脱除率>纤维素脱除率,木质素被大部分脱除而纤维素只脱除了一小部分。结合木质素脱除率、半纤维脱除率和纤维素脱除率,得到了最佳工艺条件,即90℃、乙酸体积分数88%、硫酸体积分数0.3%、反应时间3h,在该条件下木质素的脱除率达到55.84%。

关明杰[7]等人,从纺织材料学[8]出发,研究了竹纤维的性能。用实验室自制,细度范围为793tex~1445tex的竹纤维对几种不同仿生螺旋结构竹纤维束的纵向拉伸性能进行测试分析,结果表明:平行均布、单螺旋、双螺旋A、双螺旋B 型竹纤维束的拉伸强度分别为11.5MPa、51.7MPa、52.2MPa和56.1MPa;螺旋结构能够消除纤维束中的强度薄弱点,改善纤维束中各根纤维的结合,同时纤维束各层螺旋角的逐渐变化也有利于拉伸强度的提高。单螺旋、双螺旋A、双螺旋B型竹纤维束的拉伸弹性模量分别为9659MPa、5265MPa和491MPa,单螺旋竹纤维束的拉伸弹性模量优于双螺旋竹纤维束。宏观仿生螺旋结构提高了竹纤维束的拉伸强度,却降低了弹性模量。由螺旋纤维束的内层到外层,螺旋角的逐渐变化使得相邻层间的结合强度大为改善,避免了不同层面纤维力学性能的突变。

楼利琴[9]等人以自制平均线密度16.8dtex的竹原纤维为原料,用碱、漆酶、精练酶通过正交设计试验对竹原纤维进行纤细化处理,测定了处理后的竹原纤维细度变化率、木质素含量及强度。结果表明:精练酶去除木质素的效果比碱和漆酶处理好,木质素含量从原来的18.98%降为7.27%,处理后竹原纤维强度几乎没有损伤;碱去除木质素的效果比漆酶好,但强度损伤比漆酶处理大;生物酶脱胶方法有望成为竹原纤维脱胶加工的实际生产方法。

生物技术可以改变传统化学改性因大量使用化学助剂而严重污染环境的局面,同时使纤维性能得到改善,如纤维素酶对天然纤维织物进行抛光整理可改善其手感和柔软性。金文俊[10]等利用化学预处理结合纤维素酶的作用对竹原纤维进行改性,借助于扫描电镜、傅里叶红外吸收光谱、X-射线衍射等试验技术,研究处理前后竹原纤维的形态和内部结构变化。研究结果表明:酶处理切断并还原纤维素分子链为葡萄糖,同时也降解了部分半纤维素,使竹原纤维的结晶度降低;酶处理后的竹原纤维横截面微孔变大,纵面出现明显的侵蚀,裂纹有所增加;热稳定性基本不变。

2.2 竹原纤维在纺织中应用

用摩擦纺纱机纺织竹原纤维包芯纱具有芯纱与外包纤维双组分的特点,既可解决竹原纤维可纺性差的问题,又可提高竹原纤维纱的强力,提高产品的耐磨性。王显方[11]等人探讨竹原纤维摩擦纺包芯纱纺制方法及工艺优化,分析阐述了竹原纤维的特性,通过原料预处理,合理配置工艺参数,在摩擦纺纱机上开发出竹原纤维涤纶包芯纱,并利用正交试验优选了摩擦纺工艺参数。结果表明:竹原纤维涤纶48.6tex(68dtex)摩擦纺包芯纱较优的纺纱工艺参数为:分梳辊速度5000r/min,纺纱速度150m/min,摩擦辊速度5500r/min。毛雷[12]等针对纤维粗硬、可纺性差的特点,通过竹原纤维的预处理,提高其可纺性。采用原料混合的方式,各工序采用重定量、重加压、低速度的工艺路线,合理配置工艺参数,解决了梳棉成网困难、并条静电缠绕等问题,并注意保持各工序较高的相对湿度,使生产正常进行,成功试制出竹原/棉50/50的9.7tex混纺纱。

史丽敏[13]等人以线密度6.01dtex、长度80mm的竹原纤维和细度19.71μm~20.5μm(4.03dtex~4.27dtex)、长度70mm~120mm的羊毛为原料,在保证竹原纤维一定回潮率的前提下,成功纺制毛、竹(50/50)混纺纱线,并且依据针织面料流行趋势,结合毛、竹混纺织物优势互补的特点,设计并开发出了适合春夏季穿着的男装流行针织面料。面料色彩搭配与图案机理的设计不仅丰富了大众视觉,还打破了以往设计毛、竹混纺针织物的局限性。此外,还对毛、竹(50/50)混纺纱线的染色工艺进行了探讨,可为毛、竹混纺面料下游产品的进一步开发提供理论参考。此外,随着竹原纤维工艺的进步和纺织工业的发展,更加复杂的绢/苎麻/竹原纤维混纺物,如纬珠地平针组织、珠地平针横条组织、纬珠地组织、灰蓝珠地组织和纬平针组织的针织物的织造也有了相关报道[14]。

竹原纤维有着很好的抗菌性能,天然竹在制成竹浆粘胶纤维过程中经受了一系列化学和物理的加工,性能与竹原纤维有较大改变,原有的一些天然特性也必然遭到破坏,纤维的除臭、抗菌、防紫外线功能会有不同程度的下降。池田善光[15]对竹浆粘胶纤维的抗菌性能进行了研究,结果表明:竹浆粕试样并不具有抗菌性能。张慧等人[16]以巨大芽孢杆菌(革兰氏阳性菌)和黑曲霉(真菌中的霉菌)为菌种原料对竹原纤维抑菌性能的影响因素做了系统研究。采用吸收法对所制取的竹原纤维进行单因子试验,并通过计算抑菌率来评价其抑菌效果,研究对抑菌性能产生影响的因素。试验得出:回潮率、接种后培养时间及竹屑都对竹原纤维的抑菌性能有很大影响。

3 结语

当前粘胶纤维工艺已基本成熟,市场上所谓的竹纤维面料、服装也多是竹浆粕纤维产品或竹浆粕纤维混纺产品,同时由于大量使用化学助剂,导致所生产出的“竹纤维”发生改性,使其不再具有或基本不具备天然竹原纤维的优良特性。因此竹原纤维的技术发展趋势表现为:一是改善可纺性,这是竹原纤维应用的根本和前提;二是改善细度,向细旦或超细旦方向发展, 并改善均匀度,为纺高支纱打下基础;三是混纺,特别是与天然纤维、差别化化纤混纺,生产出具有特色的高档新型面料。在可预见的将来,竹原纤维、改性竹原纤维的制备和竹原纤维入纱纺织依然是纺织行业亟待解决的问题。不仅如此,竹原纤维的产业化还存在技术和市场两方面的风险,因为是一项新产品,其生产标准和质量标准有待探讨;新产品的问世,在消费者市场仍需要有一个认识和接受的过程,并且在价格上将受到价格相对低廉的化纤等产品的激烈挑战。

参考文献:

[1]张世源.竹纤维及其产品加工技术[M]. 北京:中国纺织出版社,2008: 32-43.

[2]张大省,周静宜,付中玉,赵莉. 从“竹纤维”的命名说起[J]. 纺织导报, 2010(3): 61-63.

[3]张毅. 竹原纤维的产业化探讨与生产实践[J]. 纺织导报,2010(3): 48-51.

[4]黄慧,孙丰文,王玉,等. 不同预处理对竹纤维束提取及其结构的影响[J].林业科技开发,2012, 26(4): 60-63.

[5]张袁松,谢吉祥,李晓龙,等. 基于闪爆—碱煮联合工艺的天然竹纤维提取[J].纺织学报, 2012, 33(10): 56-61.

[6]张袁松, 蒋瑜春,胡福强,等. 乙酸脱除天然竹纤维木质素的研究[J]. 丝绸, 2012, 49(7): 1-5.

[7]关明杰,崔海星,孙敏洋,等.竹材宏观自仿生纤维束的拉伸性能分析[J].林业科技开发,2012 26(5): 31-34.

[8]李世红,周本濂,郑宗光,等.一种在细观尺度上仿生的复合材料模型[J].材料科学进展, 1991, 5(6): 543-546.

[9]楼利琴,黄锐镇.竹原纤维碱和酶处理的纤细化效果研究[J].丝绸2010(1): 5-8.

[10]金文俊,蒋耀兴,管翔.纤维素酶处理对竹原纤维结构的影响[J].丝绸2010(3): 8-10.

[11]王显方,宋永生.竹原纤维涤纶摩擦纺包芯纱工艺优化[J].棉纺织技术, 2013, (4): 34-37.

[12]毛雷,刘辉.9.7tex竹原纤维棉纤维混纺纱的试纺[J].棉纺织技术2010(10): 51-53.

[13]王晓春,李秋宇,王越平,等.毛/竹混纺针织面料的设计与开发[J].毛纺科技, 2007(1): 14-18.

[14]敖利民,李向红,马军. 绢/苎麻/竹原纤维混纺针织物的刺痒感研究[J].上海纺织科技, 2008(9): 54-55.

[15]池田善光. 竹の特とその用途[J].学会, 2009,65(1): 45-48.

[16]张慧,沈兰萍,宗亚宁.竹原纤维抑菌性能影响因素探究[J].上海纺织科技,2012(10): 24-26.

(作者单位:贵州省纤维检验局)

上一篇:体育活动失败的益处 下一篇:房地产税改革为何启而难动