矿山测量数字化应用

时间:2022-08-21 01:24:54

矿山测量数字化应用

摘要:随着矿山生产的发展和科学技术的进步,矿山测量向工程型转化是矿山测量事业发展的必然。本文详细阐述了矿山测量数字化技术的应用。

关键词:数字矿山;矿山测量;地理信息

中图分类号:TD17文献标识码: A 文章编号:

引言

随着数字地球和数字中国等数字化的概念和体系建设,数字矿山近年来得到了足够的重视,也取得了较大的发展。矿业可持续发展过程必然是矿山测量工程化发展过程,也是多学科穿插重新组合形成新门类学科的过程。矿山测量工作者在矿山边坡工程、矿山地压控制,开采沉陷及采矿地表建设、岩石动力学问题等发挥较重要的决策职能。

一、数字化矿山的特征和基本组成

基于DM的定义,DM应具有以下六大特征:以高速企业网为“路网”;以采矿CAD(MCAD)、虚拟现实(VR)、仿真(CS)、科学计算(SC)与可视化(VS)为“车辆”;以矿业数据和矿业应用模型为“货物”;以真三维地学模拟(3DGM)和数据挖掘为“包装”;以多源异质矿业数据采集与更新系统为“保障”和以矿山GIS(MGIS)为“调度”。DM的最终表现为矿山的高度信息化、自动化和高效率,以至到无人采矿和遥控采矿。DM的基本组成可大致为采集系统、调度系统、功能系统、包装系统和核心系统五部分。

1、采集系统

负责数据采集与处理,包括测量、勘探、传感和文档四类基础数据采集子系统;其关键是所有数据的数字化。

2、调度系统

指MGIS,负责提供拓扑建立与维护、空间查询与分析、制图与输出等GIS基本功能,并进行数据访问控制、开放接口和生产调度与指挥管理等。

3、功能系统

负责提供各类专业模拟与分析功能,包括MCAD、VM、MS、SC、AI和SV等。

4、包装系统

负责提供3D空间建模工具、多源异质矿山数据的空间融合环境和数据过滤、组合与封装机制,包括3DGM和数据挖掘工具。

5、核心系统

负责统一管理数据和模型,决策分析与支持等。

二、矿山数字化测量技术

1、矿山测量任务

矿山测量因具有一定的的特殊性和多学科交叉性,曾单独为一个专业,它的发展和进步与三个方面密切相关:一是采矿技术和矿业工程的发展及要求;二是测绘科学技术与仪器设备的发展;三是其它学科的发展与影响。矿山测量工作者担负着矿山地面和地下三维空间的测量、定位与制图,矿体几何,储量管理及开采监督,开采沉陷观测及开采损害防护等任务。近十多年来,资源、环境、灾害和人口问题成为人类社会发展的四个重大问题。国内外资料表明,矿山测量工作者在矿区和工矿城市环境的动态综合监测,环境评价,及矿区环境信息管理,矿区开采信息管理系统,开采沉陷区综合治理等方面做了大量的工作,起到了重要作用。

目前,以3S为主导的空间信息技术将逐渐应用于矿山测量及矿山建设与生产中,对现代化采矿工业起到优质高效服务和辅助决策的作用。现代矿山测量的主要任务可概括为:在矿山勘测、设计、开发和生产运营阶段,对矿区地面和地下空间资源(以矿产资源和土地资源为主)和环境信息进行采集、存储、处理、显示、分析、利用,为合理有效的开发资源、保护资源、保护环境、治理环境服务,为工矿区可持续发展服务。

2、主要研究内容与目标

在数字矿山建设中,就矿山测量而言,除常规的矿井建设、生产中的测量任务之外,应特别重视以下的研究:矿图数字化与数字化成图—自动化矿山地学信息采集系统;矿山开采环境的综合评价与治理—矿山开采环境四维动态信息系统;GIS和GPS(全球定位系统)结合及其在矿山开采环境监测与治理中的应用—矿山开采环境实时监测系统;矿山环境信息系统的质量模型及其精度不确定性处理—矿山开采环境信息系统的误差分析系统。

2.1矿图数字化和数字化成图—自动化矿山地学信息系统

矿图数字化和数字化成图将成为矿山GIS数据采集的基本手段。实现数据采集自动化是降低矿山GIS成本的重要途径。综合利用不同的数据源(井上下测量、数字化矿图、地勘信息、航测遥感信息等)、建立适合矿山各类应用的基础地理空间信息数据库及分层信息(包括设备位置及属性信息),建立好矿山地学信息系统。同时注重模式识别和专家系统理论。研究的最终目标是实现矿图数据采集、识别和处理的自动化。

2.1.1三维可视化技术

三维可视化技术是对矿山数据建立模型并进行立体化描绘的技术手段,它将数据转化成可视的形象,具体能够表现矿体的空间位置、地形形态、矿井上下的操作演示,形象直观,能够增强工作人员的理解,增强开发过程中的精确度,并且能够增强矿山工作的安全性。实际运用中经常使用3DMAX和Maya设计软件。首先,要建立模型。就是通过软件中的点、线、面的合理配合与调度,根据相关数据,建立矿体的数字化模型,能够展现矿体的位置与形状,模拟开发工作的具体细节。其次,要对模型贴材质。通过第一步的建模,我们大致可以了解矿体的宏观形象,而贴材质就是要根据实际地行情况赋予模型具体的属性特征,像颜色、光泽、光滑度以及反射效果等等,通过这一步将大大增加模型的真实性。第三,进行渲染,主要就是给模型加上光照。模拟实际情况,合理安排光源的位置与光的强弱,将模拟的画面渲染出来。第四,制作动画。就是根据DV拍摄的实际情况,模拟动画场景,将静止的物体动态化。这一步可以实现对工作场景的动画模拟,监测可操作性,规避不必要的风险。

2.1.2数字化资料处理技术

在矿山测量工作中的数据处理,主要是指对数字、图形、以及文字和表格的处理,包括采集、处理及存储。在实际工作中主要是利用计算机对测量数据进行加工整理,制作电子化表格,并进行数据共享。在这个过程中要运用到专业化的数字处理软件,像VB等,这样能够有效建立数字数据库,并能够增强数字共享性及以维护性和易保存性。

2.2矿山开采环境的综合评价与治理—矿山开采环境四维动态信息系统

矿山开采环境综合评价与治理不仅包括传统的开采沉陷预测与安全开采方案评估,矿区塌陷区综合治理与动态环境评价、矿区土地管理与区域规划等内容,更重要的是采用GIS技术手段。针对矿山开采空间状态是随时间和生产发展而变化的特点,在现有GIS数据模型基础上,研究适用于矿山开采环境的空间和时间综合四维数据模型,建立有效的矿山地理信息系统。该系统应达到如下目标:

1)实现各类地质采矿条件下开采沉陷的四维动态模拟,为矿山开采沉陷的综合治理(建筑物保护、安全开采方案、保护煤柱设计,采动滑坡治理等)提供依据。

2)实现矿区生产管理的动态模拟,为主管部门提供决策咨询。

3)实现矿区土地资源(地面覆盖物、地下管道工程、塌陷区生态复垦)自动化管理,为矿区开采环境的综合评价与治理提供依据。

2.3GPS和GIS结合及其在矿山开采环境监测中的应用—矿山开采环境实时监测系统.GPS定位技术是美国自70年代初期开始研制的新一代卫星导航和定位系统。目前,我国已开始应用GPS定位技术。对于矿山开采环境研究而言,主要是采用GPS定位技术采集地面动态坐标数据,并采用GIS进行数据管理和空间分析,从而获得所需信息。最终达到直接采用GPS技术对GIS作实时更新,建立矿山开采环境的实时监测系统。

数字化技术的运用不仅能够提高矿山勘测的精确度,为进一步的数据处理提供基础,而且能够测设出符合生产产实际的开采方案,有效节省不必要的开采带来的资源浪费,最后,数字化技术能够全程监测并控制生产工作的顺利进行,提升矿产企业生产安全。

三、数字矿山及其战略意义

数字化矿山是采用现代信息技术、数据库技术、传感器网络技术和过程智能化控制技术等,在矿山企业生产活动的三维尺度范围内,对矿山生产、经营与管理的各个环节与生产要素实现网络化、数字化、模型化、可视化、集成化和科学化管理,根据实际的应用要求,建立矿山规划设计、矿山安全生产管理、矿山应急救援指挥、矿山经营管理、矿山办公自动化等应用系统。从而将企业的安全生产与经营管理业务流程数字化并加工成新的信息资源,迅速准确地提供给各层次的管理者及时掌握动态业务中的一切信息,以做出有利于生产要素组合优化的决策,使企业资源合理配置,从而使企业能够适应瞬息万变的市场经济竞争环境,求得最大的经济效益。特别是在矿山安全生产过程中的实时信息监测、收集、分析、预警、决策等方面发挥重大作用。

结束语

矿山测量工作是矿山生产建设的基础性工作,在整个矿山生产系统中是十分重要的。一直以来在矿山测量时都沿用传统的手工计算和绘图方法,但是随着现代计算机和通信技术的迅猛发展,传统的方法显然已经不能适应时代的变化,一味的固守反而会阻碍矿山测量工作的发展,因此加大数字化技术在矿山测量中的应用是必然趋势。

参考文献

[1]郭进伟,武先利.数字矿山系统分析与建模[J].煤炭经济研究,2009,(08).

[2]梅志恒,陈箐,龚君芳.数字矿山巷道三维管理的研究与设计[J].工业安全与环保,2009,(09).

上一篇:现代智能建筑的集中节能结构设计 下一篇:桥梁支座的设计和施工