浅谈桥梁工程中大体积混凝土裂缝成因及控制措施

时间:2022-08-20 07:38:12

浅谈桥梁工程中大体积混凝土裂缝成因及控制措施

摘 要:随着大体积混凝土结构在桥梁工程应用日益增多,混凝土开裂经常困扰着桥梁工程技术人员。为了进一步加强对混凝土桥梁裂缝的认识,防止危害结构的裂缝产生,笔者结合自己多年工作经验对大体积混凝土产生裂缝原因进行分析,并对防控措施进行了探讨。

关键词:桥梁工程 大体积混凝土 裂缝 控制

一、大体积混凝土裂缝及成因

1大体积混凝土的裂缝分类

大体积混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝三种。贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。它切断了结构的断面,可能破坏结构的整体性和稳定性,其危害性是较严重的;而深层裂缝部分地切断了结构断面,也有一定危害性;表面裂缝一般危害性较小。

但出现裂缝并不是绝对地影响结构安全,它都有一个最大允许值。处于室内正常环境的一般构件最大裂缝宽度≤0.3mm;处于露天或室内高湿度环境的构件最大裂缝宽度≤0.2mm。对于地下或半地下结构,混凝土的裂缝主要影响其防水性能。一般当裂缝宽度在0.1~0.2mm时,虽然早期有轻微渗水,但经过一段时间后,裂缝可以自愈。如超过0.2~0.3mm,则渗漏水量将随着裂缝宽度的增加而迅速加大。如出现超过0.3mm贯穿全断面的裂缝,将大大影响结构的使用,必须进行化学灌浆加固处理。

大体积混凝土施工阶段所产生的温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但抗拉能力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝。这种裂缝的宽度在允许限值内,一般不会影响结构的强度,但却对结构的耐久性有所影响,因此必须予以重视和加以控制。

2产生裂缝的主要成因有以下几方面:

水泥水化热的影响:

水泥水化过程中放出大量的热,且主要集中在浇筑后的7d左右,一般每克水泥可以放出 500J 左右的热量,如果以水泥用量350Kg/m3~550 Kg/m3计算,每m3混凝土将放出17 500KJ~27 500KJ的热量,从而使混凝土内部温度升高(可达70℃左右,甚至更高)。尤其对于大体积混凝土,这种现象更加严重。因为混凝土内部和表面的散热条件不同,混凝土中心温度很高,这样就会形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当拉应力超过混凝土的极限抗拉强度时混凝土表面就会产生裂缝。

外界气温湿度变化的影响:

大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部温度是由浇筑温度、水泥水化热的绝热温升和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温度梯度。如果外界温度下降过快,会造成很大的温度应力,极易引发混凝土的开裂。另外,外界的湿度对混凝土的裂缝也有很大影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。

混凝土的收缩:

混凝土在空气中硬结时体积减小的现象称为混凝土收缩。混凝土在不受外力情况下的这种自发变形,受到外部约束时(支承条件、钢筋等),将在混凝土中产生拉应力,使得混凝土开裂。引起混凝土的裂缝主要有塑性收缩、干燥收缩和温度收缩等三种。在硬化初期主要是水泥石在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。

其他因素的影响:

水泥中的碱与活性骨料中的活性氧化硅起化学反应也会产生裂缝。根据国内外调查资料,工程实践中结构物的裂缝原因,属于由变形变化(温度、湿度、地基变形)引起的约占80%以上,属于荷载引起的约占20%左右。在大体积混凝土工程施工中,由于水泥水化热引起混凝土浇筑内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。

二、大体积混凝土裂缝的控制措施

1大体积混凝土的配置原材料的选择

大体积混凝土所选用的原材料应注意以下几点:(1)粗骨料宜采用连续级配,细骨料宜采用中砂;(2)外加剂宜采用缓凝剂、减水剂;掺合料宜采用粉煤灰、矿渣粉等;(3)大体积混凝土在保证混凝土强度及坍落度要求的前提下,应提高掺合料及骨料的含量,以降低单方混凝土的水泥用量;(4)降低原材料的温度;(5)水泥应尽量选用水化热低、凝结时间长的水泥,优先采用中热硅酸盐水泥、低热矿渣硅酸盐水泥、大坝水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥等。但是,水化热低的矿渣水泥的析水性比其它水泥大,在浇筑层表面有大量水析出。这种泌水现象,不仅影响施工速度,同时影响施工质量。因析出的水聚集在上下两浇筑层表面间,使混凝土水灰比改变,而在掏水时又带走了一些砂浆,这样便形成了一层含水量多的夹层,破坏了混凝土的粘结力和整体性。混凝土泌水性的大小与用水量有关,用水量多,泌水性大;且与温度高低有关,水完全析出的时间随温度的提高而缩短;此外,还与水泥的成分和细度有关。所以,在选用矿渣水泥时应尽量选择泌水性的品种,并应在混凝土中掺入减水剂,以降低用水量。在施工中,应及时排出析水或拌制一些干硬性混凝土均匀浇筑在析水处,用振捣器振实后,再继续浇筑上一层混凝土。

2大体积混凝土的浇筑与振捣工艺

浇筑方案,除应满足每一处混凝土在初凝以前就被上一层新混凝土覆盖并捣实完毕外,还应考虑结构大小、钢筋疏密、预埋件的留设、混凝土供应情况以及水化热等因素的影响,常采用的浇筑方法有以下几种:(1)全面分层:即在第一层全面浇筑全部完毕后,再回头浇筑第二层,此时应使第一层混凝土还未初凝,如此逐层连续浇筑,直至完工为止。采用这种方案,适用于结构平面尺寸不宜太大,施工时从短边开始,沿长边推进比较合适。必要时可分成两段,从中间向两端或从两段向中间同时进行浇筑。(2)分段分层:混凝土浇筑时,先从底层开始,浇筑至一定距离后浇筑第二层,如此依次向前浇筑其他各层。由于总的层数较多,所以浇筑到顶后,第一层末端的混凝土还未初凝,又可以从第二段依次分层浇筑。这种方案适用于单位时间内要求供应的混凝土较少,结构物厚度不太大而面积或长度较大的工程。(3)斜面分层:要求斜面的坡度不大于1/3,适用于结构的长度大大超过厚度3倍的情况。混凝土从浇筑层下端开始,逐渐上移。混凝土的振捣也要适应斜面分层浇筑工艺,一般在每个斜面层的上、下各布置一道振动器。上面的一道布置在混凝土卸料处,保证上部混凝土的捣实。下面一道振动器布置在近坡脚处,确保下部混凝土密实。随着混凝土浇筑的向前推进,震动器也相应跟上。

3大体积混凝土养护时的温度控制措施

养护时大体积混凝土施工中一项十分关键的工作。养护主要是保持适宜的温度和湿度,以便控制混凝土内表温差,促进混凝土强度的正常发展及防止混凝土裂缝的产生和发展。根据工程的具体情况,应尽可能多养护一段时间,拆模经检测合格后应立即回土或在覆盖保护,同时预防近期骤冷气候影响,以控制内表温差,防止混凝土早期和中期裂缝。大体积混凝土的养护,不仅要满足强度增长的需要,还应通过人工的温度控制,防止因温度变形引起混凝土的开裂。

在混凝土养护阶段的温度控制应遵循以下几点:(1)混凝土的中心温度与表面温度之间、混凝土表面温度与室外最低气温之间的差值均应小于20℃;当结构混凝土具有足够的抗裂能力时,不大于25℃~30℃。(2)混凝土拆模时,混凝土的温差不超过20℃。(3)采用内部降温法来降低混凝土内外温差。内部降温法是在混凝土内部预埋水管,通入冷却水,降低混凝土内部最高温度。冷却在混凝土刚浇筑完时就开始进行。(4)保温法是在结构外露的混凝土表面以及模板外侧覆盖保温材料(如草袋、锯木、湿砂等),在缓慢的散热过程中,很混凝土获得必要的强度,以控制混凝土的内外温差小于20℃。(5)混凝土表层布设抗裂钢筋网片,防止混凝土收缩时产生干裂。

三、结束语

桥梁大体积混凝土的裂缝,只要我们在设计、施工工艺、材料选择及养护过程中,充分考虑各种因素,采取适宜的控制措施,还是完全可以避免危害结构的混凝土裂缝的产生。

上一篇:浅谈水库移民后期扶持工程项目建设 下一篇:浅谈某综合楼软土深基坑土钉支护施工