机电一体化技术的应用范围

时间:2022-07-22 03:23:59

机电一体化技术的应用范围

摘要:如今的机械工程领域,因为微电子与计算机技术的全面应用,机械工业正朝着机电一体化方向发展,使机械工业的技术构架、功能及生产方式等模式有了翻天覆地的变化,也使工业生产逐渐侧重于“机电一体化”。现阶段,一些发达国家都在全面推广机电一体化技术。此技术已被运用于很多领域,同时以蓬勃的生机向前发展,这不但从根本影响了科技和经济的发展,而且影响了机电一体化的发展趋势。

关键词:机电一体化;柔性制造机制;机器人;交流传动技术

1机电一体化的主要技术

常规的机电一体化涵盖了软件与硬件2类基础技术。硬件即由机械自身、传感设备、参数处理模块及驱动模块等所构建。为了与计算机进行有效传输,我们就要使相关参数传输达到标准化和规格化。接口择取相同指标、规格,不仅可以方便信息的传递和维修,同时还可以方便设计。现阶段,相关技术工作者正侧重于开发低投资、高速串行的接口,进而规避光导纤维、信号电缆非接触化与光藕设备的大容量化等问题。而软件和硬件一定要相互制衡,统一发展。为了降低软件的研制投资,深化生产维修的有效性,我们要试着将软件予以指标化处理,将内置程序指标化、软件程序固化、程序模块化,以及大范围应用软件工程等。现阶段,机械设备大多是以钢铁材料为基本结构的,为了可以有效减轻质量,我们要对产品的基本结构予以简配举措,因此可以利用非金属合成耗材。只有在减轻机械质量的前提下,才可以使驱动系统趋于微型化,进而提高其速率,这样可以最大化地降低能耗,提高作业的有效性。以传感设备为基点,从提高精确度、灵敏度等方面入手,在此基础上要确保其具有较强的抗干扰性。机电一体化,即在主功能、信息处理功能和控制功能上渗透进电子技术,把机械设备和电子化设计与软件有机地结合在一起,所组建的系统的统称。从宏观上分析,机电一体化包括技术和产品2个基本点,是依附于群体技术有机融合的一种拓展性技术,并非单纯的机械技术或微电子技术的结合。机电一体化技术的核心功能即替代体力劳动。

2机电一体化技术的应用范围

计算机集成制造系统的实现并非现有各分散模式的随机排列,而是全局动态的一种配置手段。其挣脱常规系统间的束缚,以构建核心的基础去控制物流和信息流,达到从经营决策直至产品开发管理的全套组合。企业集成水平的提高能够使相关生产要素间的配置得到全面深化,相关生产要素的潜能能够被全面挖掘。而柔性制造机制即为计算机化的制造模式,其通过计算机、数控机床、机器人及自动运行车等构建。柔性制造机制能够随心所欲地根据装配系统的需要,生产柔性制造机制范围内的一切工件,尤其适用于类型繁杂和中小批量生产的离散零件。同时,机电一体化技术也被机器人研发领域所应用。我们都知道,第1代机器人即示教再现机器人,其仅可依附于示教予以重复运动,对工作条件与作业目的的改变不具备适应性和应变能力;第2代机器人则装置了一系列前沿的传感元件,可以搜集作业条件与操作目标的基本信息,经计算机运算及分析,作出相应的判断,同时对动作予以反馈,其倾向于低级智能,已被一些基础行业所应用;而第3代机器人则为智能化机器人,其具有一系列感知功能,能够予以烦琐的逻辑思维,在此基础上评定并作出相应的举措。电力电子技术和微电子技术的持续发展,交流传动技术也得到了全面的应用。由于交流传动的优势,交流传动技术慢慢取代了电气传动技术,进而实现数字化目标,同时达到了矢量控制的目的,提升了系统功能的有效性。对于开放式控制系统来说,其基本是对一类指标信息交换规程进行支持,达成共识,能够对相关指标予以设计的系统,可以对各厂家产品进行兼容,具有优异的资源共享。开放式控制系统主要就是利用工业通信网络实现各控制设备、管理计算机互联的集成,通过控制室控制设备和现场总线仪表的互联,实现控制与测量的一体化。对于分布式控制系统而言,其主要就是利用一台中央计算机指挥若干台面进行现场测控与智能控制。在实际工作中,分布式控制系统主要就是依附于计算机对生产过程予以集中监视及管理,进而确保生产环节的顺利完成,达到预期的生产目标。与集中式控制系统相比,分布式控制系统的功能更强大,且具有较高的稳定性,是未来大型机电一体化系统的主要发展内容。在钢铁行业中,机电一体化要依附于微处理机,将微机、工控设备及参数传输等技术进行有效配置,择取组装合并的举措,为深化系统的一体化奠定良好的基础,提高系统控制的有效性和稳定性。近年来,机电一体化技术已被应用于煤炭企业,其对煤矿设备的电动机、传动机制、工作设备及制动系统等的在线运行情况予以实时监控,发生故障后可以自动报警,同时精准地指出故障区域。因此,应用机电一体化技术可以改善操作人员的工作环境,提高设备的工作有效性,降低相关装置的维护检查工作量,减少维修耗资,延长装置的使用周期。很多引进的机械工程均择取了电子控制的自动变速技术,此技术可以依附于外负荷的改变状态自行调节传动系的传动参数,这不仅使发动机功率最大限度地被利用,提高了燃油的利用率,同时还方便了操作程序,降低了工作者的劳动强度。为从根本避免翻车及断臂事故的发生,从实质上提升作业的稳定性,目前一些前沿的起重设备都被安装了电子控制的力矩限制装置。为实现无人驾驶,铺平了道路,使工程设备能够在危险区域工作。而电子系统的稳定性即为工程机械十分重要的一项性能标准。因为工程机械通常处于露天工作的状态,经常会遭受暴晒、雨淋,而且在作业过程中还存在振动及外在的电磁干扰,工作条件可想而知,所以对电子控制系统的基本要求为:可以在-40~80℃的条件下稳定工作,同时要具备较强的抗老化性和抗干扰性。

3总结

总的来说,机电一体化技术的侧重点即替代体力劳动。不过发展至机电一体化机制后,微电子设备不仅能够替代个别机械部件发挥功能,同时还能够加设相对前沿的功能,其中包括自动检测、自动处理参数和自动调节等。机电一体化从根本推动了机械工业的变革,让常规的机械设计举措和设计理念发生了翻天覆地的变化。全面研究前沿的机电一体化产品,不仅是优化常规机械装置的先决条件,还是促进机械产品更新换代及推动机械工业全面发展的有效举措。

参考文献:

[1]罗凤曼,谢志萍,郑向华.高职高专机电一体化专业课程体系的构建[J].成都电子机械高等专科学校学报,2011(02).

[2]罗辑,杜柳青,袁冬梅,等.机电一体化技术在机械工程上的应用及发展趋势[J].机床与液压,2014(01).

作者:刘伟杰 马峰 刘相蕊 单位:西安西电高压开关操动机构有限责任公司

上一篇:法治化建设下的法律援助分析 下一篇:光机电一体化实训系统设计分析