放射性废水处理辐射防护设计

时间:2022-07-20 08:17:11

放射性废水处理辐射防护设计

1多源放射性分析方法

进行γ射线的屏蔽计算时,必须合理地处理源和屏蔽体的几何模型,正确选取相应的参数,以及对多次碰撞、吸收、射线能谱和角分布随贯穿厚度的变化等影响因素进行仔细分析并加以修正.否则,计算得到的屏蔽体厚度与实际所需的会有较大出入,也无法得到正确的剂量分布场.由于实验装置的净化设备较多、放射性核素的分布较分散,净化设备在截留放射性物质后会成为众多体源,并且γ射线与物质作用时会发生散射效应,因此在进行辐射防护工作时必须考虑到装置周围空间各个部分的剂量水平.传统的计算方法可针对单一点源、线源、面源和体源情况,对空间中某一关心点进行剂量估算,但本实验装置布局较复杂,过滤设备作为体源的同时又会将周围射线散射到其它方向,因此若要得到装置周围空间中连续的剂量分布,必须在进行辐射防护设计时建立实验场所的数值模型,对粒子在空间中的输运过程进行模拟,帮助辐射防护的设计工作.MCNP是由美国LosAlamos实验室设计的大型多功能蒙特卡罗粒子输运程序,可用于解决中子、光子、电子等粒子在空间中的输运问题.本文根据实验装置自身的设计及周围的环境状况,建立了符合实际情况的数值模型,经过计算机模拟,得出了较详细的估算结果.在对结果数据进行整理后,使用Matlab制作了实验装置的剂量分布场,可直观对剂量场进行分析,给出了具体的低放实验的防护设计方案,并为中放实验的防护设计工作提供了指导性的依据.

2剂量模拟

在进行模拟前需要得到各项参数,包括实验装置的空间三维参数、源项参数及各设备的材质等.

2.1三维参数

经过实验现场的多次复合后,最终确定了构建三维模型所需的基础参数.为便于构建曲面方程,在采集各设备的空间参数后,制作了装置的三维模型,同时也可检验构建模型使用参数的准确性.

2.2源项分析

本次实验过程中使用的模拟废水含235U、137Cs和90Sr三种放射性核素,其中137Cs衰变时会产生较强的外照射,对周围的人员造成外照射影响.因此,在进行剂量模拟时需要明确源项的活度浓度和质量浓度,并且结合装置的工艺参数,估算出实验装置各净化设备放射性物质的残留量.在确定参数时,各吸附净化装置中放射性物质的残留量参照137Cs的总使用量来估算,管路中放射性物质的量参照单次实验最大量来估算,具体情况根据各设备和管路自身的设计进行分析计算确定.

2.3其他参数分析

除对源项进行详细分析外,还要明确周围环境的其他各项可能影响辐射剂量水平的因素,包括实验装置所处三废处理大厅的平面布局、实验装置自身的平面布局、各净化设备和储罐的材质及厚度等.

2.4模拟计算结果与分析

在得到具体的实验装置的三维参数、源项参数及周围环境参数后,便可开始构建三维模型,然后填充源项,对实验装置进行模拟.

3辐射防护设计

对于外照射的影响主要从受照时间、照射距离、屏蔽设施三方面来进行控制.在较易实现的情况下,控制受照时间和照射距离显然是最经济合理的方式.在前两种方式都无法实现或不易实现的情况下,应进行适当的屏蔽,使外照射影响降至辐射剂量管理限值之下.根据模拟结果可知,剂量最高值出现在2号吸附柱表面区域,剂量水平约为3.16×10-3mSv/h~5.0×10-3mSv/h.由于存在实际工况变动及其他未知情况的可能性,应对剂量管理限值增加一个30%的安全系数,因此,可将职业人员和公众的辐射剂量管理限值再降低30%,即职业人员辐射剂量管理限值为1.4mSv/a,公众辐射剂量管理限值为0.7mSv/a.三废处理大厅墙外的剂量率仍参考执行2.5μGy/h.首先应从控制受照时间和受照距离的方面来考虑辐射防护的设计.由于本实验装置的特殊性,让工作人员与装置保持一定的距离是不太现实的,因此只能从控制受照时间的角度来进行分析.根据模拟结果,在保证工作人员操作的前提下来划定几个区域的停留时间,图4中红色虚框以内、实验装置车体以外的部分为①号区域;黑色虚框以内、实验装置车体以外的部分为②号区域;黑色虚框以外至三废处理大厅内的边界处为③号区域.按照受照时间来控制受照剂量的方法是可行的,因此,只要实验装置对三废处理大厅外的外照射影响在标准限值以内的话,则可认为实验装置对周围的外照射影响是可接受的.职业人员及公众的年工作时间按照2000h来估算.由表5可知,工作人员在3号区域内是不限制停留时间的,在1号区域内年工作时间不得超过280h.如果同一名职业人员或公众在不同区域内都有停留时间,则可将停留时间换算为剂量值来进行累计,当累计剂量超过相关要求时则不能继续操作.原则上公众不能进入该区域,但实验过程中可能会有相关专家或技术人员对实验装置进行操作.因此为了保护有关公众,将公众的停留时间也进行了限定,同时还便于管理.

4结论

移动式放射性废水处理实验装置中的各净化设备在截留放射性核素后成会为众多体源,且分布较分散,很难使用简单的点源或体源计算公式计算出周围的辐射剂量水平.由于实验需要,又不能对装置进行整体屏蔽,因此须找到合适的方法估算出实验装置周围的剂量分布,从而为辐射防护设计提供依据.MCNP可解决中子、光子、电子等粒子在空间中的输运问题,在临界计算、辐射防护等领域已有较成熟的应用,因此本文通过创建实验装置的三维模型,利用MCNP模拟出了移动式放射性废水处理实验装置周围的空间剂量,给出了剂量场的分布,并结合相关标准规定制定出现场防护方案,为后续的中放实验及应用于环境中的车载移动式放射性废水处理装置的辐射防护提供指导性的依据.

作者:曲鹏 单位:南华大学

上一篇:电子信息工程人才培养探索 下一篇:安装工程造价教学的思考