浅析无线电测向在军用和民用方面的技术及应用

时间:2022-07-07 04:55:06

浅析无线电测向在军用和民用方面的技术及应用

【摘 要】随着科学技术的发展,无线电技术在军用和民用方面的应用越来越广泛。由于无线电间的相互干扰使得寻找无线电发射源成为了无论军用或民用中最重要的技术工作。本文就是主要通过使用无线电测向设备测定电波来波方向的过程,而着重介绍了无线电测向技术的基本原理,并且归纳出常用的几种测向基础体制,在此基础上阐述了其在军用和民用领域的应用。

【关键词】无线电测向 测向设备 测向体制 军用和民用

1 无线电系统探测辐射源的基本原理

随着科学技术的快速发展,现在无线电测向已经越来越广泛的被运用在民用和军用设施之中。无线电事业近年来突飞猛进,给人们带来了极大的便利。无线电测向系统主要由测向天线、输入匹配单元、接收机和方位信息处理显示四个部分组成。其中测向天线是电磁场能量的探测器、传感器,它也是能量转化器,主要利用感应空气中传播的电磁波能量以及幅度、相位、到达时间等等信息来变成交流的电信号,馈送给接收机;输入匹配单元从而实现天线甚至是接收机的匹配传输与转变。接收机的作用包括选频、下变频、无失真放大和信号解调;而方位信息处理显示部分的任务就是检测、比较、计算、处理和显示方位信息。

测向机示向度就是指在测向过程里显示的测向读数。测向站是由测向设备、通信系统和附属设备三个方面构成。其中测向站是担任专门执行测向任务的专职单位,它可以分成固定站和移动站两种形式。

无线电测向主要是利用无线电波在几个位置不同的测向站组网来测向,用测向站的示向度进行交汇。短波的单台定位,主要是在测向的同时测定来波仰角,再利用仰角、电离层来计算距离,从而用示向度和距离粗步可以判断台位。

不过在实际操作上要确定辐射源的具置,还需要完成从远到近的分布交测,从而再实现具体确定辐射源的具置。

2 无线电测向系统的主要分类

目前,根据天线系统从来波信号取得信息和对信息处理系统的技术不同主要可以分成两类:一是标量测向,不过它仅仅可以获得和使用到来波信号相关的标量信息;另一种测向方法即是矢量测向,它可以依据它得到的矢量信息数据从而同时获得和使用电磁波的幅度与相位信息。

两种测向方法相比较而言,标量测向的系统历史悠久,应用也更加广泛。最简单的幅度比较式标准测量系统就是旋转环形测向机,这种系统主要对垂直的极化波方向图成8字形。在军用方面,大多数采用比较式的标量测向系统,其测向天线和方向图都是采用了某种对称的形式,如:阿尔考克测向机和沃特森-瓦特测向机以及各种使用旋转角度的圆形天线阵测向机;其中有干涉仪测向机和多普勒测向机是属于相位比较的标量测向系统。而对于矢量测向系统,例如:空间谱估计测向机。它就是矢量系统的数据采集,它的前端就用多端口天线阵列和至少同时利用了两部以上幅度、相位一样的接收机,然后它再根据相应的数学模型和算法,用计算机来解答。矢量系统主要依据天线和接收机数量和后续的处理能力,它主要可以分辨两元甚至多元波长和来波方向。

3 无线电测向体制分类

利用不同的测向原理,现在主流的测向机制可以分为以下几种:

3.1 幅度比较式测向体制

幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向阵或者测向天线的特性,对不同方向来波接收信号幅度的不同来测定来波方向。

幅度比较式的测向体制原理应用十分广泛,主要可以体现在:环形天线测向机、间隔双环天线测向机、旋转对数天线测向机等等,这些是属于直接旋转测向天线和方向图的;交叉换天线测向机、U型天线测向机、H型天线测向机等,都属于间接旋转测向天线方向图。间接旋转测向方向图,是通过手动或电气旋转角度来实现的。手持或者佩戴式测向机也是属于幅度比较式测向体制。

3.2 沃特森-瓦特测向体制

沃特森-瓦特测向机实际上也是幅度比较式测向体制,不过它是利用计算求解或者显示正反切值而不是采用直接或者间接旋转天线方向图。正交的测向天线信号,主要是分别经过两部幅度、相位特性相同的接受机来进行变频和放大的,最后求解或者是显示反正切值,从而解出或者显示来波方向。

单信道的沃特森-瓦特测向机就是将正交的测向天线信号,分别由两个低频率信号来调解,再由单信道 接收机来变频、放大,从而解调出方向信息信号,最后求解或显示正反切值,最后来确定出来波方向。

3.3 干涉仪的测向体制

干涉仪测向体制的测向原理是:利用电波在行进中,从不同方向来的电波到达测向天线阵时在空间上各测向天线单元接受的相位不同,从而相互间的相位差也不同,最后由测定来确定来波相位和相差,即可确定来波方向。

我们至少需要在空间架设三副分开的测向天线的准确的单值确定出电磁波的来波方向。干涉仪测向主要是在正负180度范围里单值的测量相位,当天线间距比较小时候,相位差的分辨能力就会收到限制,天线间距大于0.5个波长的时候就会引起相位模糊。利用沿着每个主基线来插入一个或者多个附加真元来提供附加的相位测量数据,用这些附加项为数据就可以解决主基线相位测量的模糊问题从而来解决上述的矛盾。这种变基线的方法已经被当代干涉仪测向机所广泛使用。而相关干涉仪测向,它是在测向天线阵列工作频率范围内和360度的方向里,利用一定的规律设点,并且同时在频率间隔和防卫间隔上建立样本群。这样,在测向的时候,就可以把测得的数据和样本群来相关运算和插值处理,最后得到来波信号方向。

3.4 多普勒测向体制

多普勒测向体制主要是利用电波在传播的时候,遇到的与它相对运动的测向天线时,被接受的电波信号产生多普勒效应,来测定多普勒效应产生的频移最后来确定来波的方向。

我们必须采用测向天线和被测电波间的相对运动来得到多普勒效应产生的频移。一般来说我们在测向天线接收场里,用足够高的速度运动来实现,当测向天线作圆周运动的时候,我们利用来波信号的相位受到正弦调制。通过多普勒频移f与0点参考频率相比较,即可得来波方向角。

3.5 乌兰韦伯尔测向体制

乌兰韦伯尔测向体制的测向原理是采用大基础测向天线阵,在圆周上面架设多副测向天线,来波信号可以经过可旋转的角度计、移相电路、合差电路形成合差方向图,最后再利用测向找到方向。以民用的40副测向天线阵元为例,角度计瞬间可与12副天线元耦合,进而分别利用移相补偿电路把信号相位对齐,这样就可以形成旋转的等效直线天线阵,12副天线分为两组,每组6副,进而两组间可以经过合差电路的相加减形成合差方向图。测向以合差方向图来找来波方向,在来波方向里,用两组天线信号均处在来波等相位位面上,两组天线信号大小相等,差方向图输出相减为零,合方向图时,为一组天线信号输出的二倍。

3.6 空间谱估计测向体制

空间谱估计测向体制的测向原理:在已知坐标的多元天线阵里,测量单元或多元电波场的来波参数,经过多信道接收机变频、放大来得到矢量信号,把采样量化为数字信号阵列,送给空间谱估计器,再运用确定的算法求出各个电波的来波方向、仰角、极化等参数。

空间谱估计测向体制的特点是空间谱估计测向技术可以实现对几个相干波同时测向,这是其它测向体制所不具有的。它可以实现在同信道中对同时存在的多个信号进行超分辨测向。空间谱估计测向仅仅利用很少的信号采样,就可以精确测向,它的测向准确度比传统的测向体制高了很多。并且测向场地要求不高,可以实现天线阵元特性选择以及阵元位置的灵活性。

4 无线电测向在军用和民用领域的应用

随着无线电事业的飞速发展,无线电测向技术在民用和军用得到了极大的应用,但依靠传统仪器设备组成的无线电监测测向系统已不能满足当前各种新型、密集的无线电信号的监测和测向的要求,尤其是在电子作战中,无线电测向技术更是大显身手,要将干扰功率最大化加载在敌方的通信设备上,首先要求我们的是,测出敌方的通信所在地。从军用微波通信的特点看,其天线波束窄,电波方向性强,与军用战术电台广播发射的电波截然不同。所以高度数字化、集成化和数字处理技术应用,自动化、智能化、网络化和小型化,多信道的信号监测和测向就成为发展的潮流。因此,国内外的许多公司都研发或集成了较为先进的固定、车载、移动及手持式测向设备。有的公司可根据用户对设备性能及经济能力的要求进行相应设计,可组成单信道、双信道及多信道的相关干涉仪或其他体制的监测测向系统,并具备宽带扫描、本振共享、同步采样、信号识别、信号分析功能,系统测向功能极其强大,且测向速度快、灵敏度高、动态范围大、可靠性强,计算机自动控制,界面友好、直观,操作使用极为方便,大大提高了无线电技术人员测定无线电辐射源或无线电干扰的能力。

参考文献:

[1]刘利军.浅论无线电测向技术及其应用[期刊论文].中国高新技术企业,2009(7).

[2] 刘彩东,冯静忠.梁成松对无线电测向误差的分析与探讨[期刊论文].中国无线电,2009(5).

[3] 刘万洪,宋正来,候小江,韩健.LIU Wanhong.SONG Zhenglai.HOU Xiaojiang.HAN Jian 无线电通信测向中的极化误差分析[期刊论文].现代电子技术,2007,30(13).

[4] 徐子久,韩俊英.无线电测向体制概述[期刊论文].中国无线电管理,2002(3).

[5] 赛景波.杨元多普勒无线电测向系统[期刊论文].电子产品世界,2008(10).

[6] 岳新东.无线电测向和无线电干扰查处[学位论文].2008.

[7] 鄢恒聪.浅析主流无线电测向技术体制[期刊论文].中国无线电,2006(4).

[8] 胡刚.沈强空间谱估计测向系统及其实际应用[期刊论文].中国无线电,2010(5).

[9] 李欣,杨轶欢.LI Xin.YANG Yi-huan 无线电测向接收机的设计与实现[期刊论文]-哈尔滨理工大学学报.

上一篇:论淄博市小型水库土石坝防渗工程措施 下一篇:浅谈建筑楼面裂缝产生的原因及防治措施