机电一体化控制系统的设计应用

时间:2022-06-08 05:49:01

机电一体化控制系统的设计应用

【摘 要】机电一体化又称为机械电子学,随着计算机技术和机械制造技术的不断提升,机电一体化系统获得了空前的发展,通过机械与微电子技术的紧密结合,将简单的辅助操作设备变成了具有自主分析、判断能力的智能化机电设备。对机电一体化控制系统的研究有利于提升系统的智能化水平,不断提升机电一体化设备的自主分析能力,改善设备运行性能。本文通过介绍机电一体化控制系统的组成、原理、分类及应用现状,探讨机电一体化控制系统的设计应用前景。

【关键词】机电一体化;控制系统;原理;分类;应用;分析

0.引言

机电一体化技术是将机械技术、电工电子技术、微电子技术、信息机电一体化技术传感器技术、接口技术、信号变换技术等多种技术进行有机地结合,并综合应用到实际中去的综合技术,是现代化的自动生产设备几乎可以说都是机电一体化的设备。

控制系统在机电一体化系统中处于核心地位,主要用于信息处理和动作控制,通过计算机接口与外部设备和相应驱动设备相连接,协调机电一体化系统各部位的运转。

1.控制系统的组成及工作原理

控制系统由控制装置、执行机构、被控对象和传感与检测装置组成,各设备之间通过标准接口连接,形成控制回路。主要工作方式为:首先输入指定信号,设置控制参数,并通过传感与检测装置接收外界信号,然后传递至控制器进行信息处理,将分析结构传递至执行机构,执行机构进行动作运转,将指定作用于被控对象,使得被控对象处于控制器设计状态,最终通过被控对象输出被控参数,进而实现机电一体化系统控制的目的。

2.控制系统分类

2.1按照控制系统所依据的判断原则中是否存在被控对象的运行函数,可以将控制系统分为顺序控制系统和反馈控制系统

2.1.1顺序控制系统

其运行原理是:通过对时间、运行逻辑、外部条件等参数进行分析,输出具体的被控对象运行步骤,属于开环控制系统。优势在于操作简单、运行成本低、维护成本低,但是其操作精度过低,并且对外界环境的不利因素和干扰过于敏感。

2.1.2反馈控制系统

其运行原理是:通过传感器接收被控对象的运行状态参数,实时反馈给控制器,然后进行运行状态调整,属于闭环控制系统。虽然该结构的运行成本高且维修复杂,但是该系统的运行精度高、且动态调整性能好,对外界干扰的抵抗能力也较强。

2.2按照控制系统输出信号的变化规律可将控制系统分为镇定控制系统、随动控制系统和程序控制系统

(1)镇定控制系统的特点在于不受外界干扰,输出信号维持系统设定参数,主要用于恒温系统、恒定速度系统等机电一体化系统的控制。

(2)随动系统即跟踪系统,特点在于系统的输出信号可以在一定范围内进行任意变化,不需遵循一定的规律,因此信号输出不存在固定函数,设备的动作需要无间断的进行精确指令发送,对系统的运行和分析能力要求极高,常用于瞄准设备、无定向探测设备等。

(3)程序控制系统即过程控制系统,特点在于按照提前设定的函数进行输出信号的变化,信号的输出属于预先设定信号,但是信号的变化按照固定函数进行,常用于车床等预先已知动作变化规律的机电一体化设备中。

3.机电一体化控制系统原则

机电一体化控制系统的种类繁多,但是其控制基本特点及原则都是一致的。主要有以下三方面:

3.1准确性

在进行系统调控过程中,输出制定与设计指令之间的偏差不能超出允许范围内,并且在不影响控制稳定性的基础上不断减小误差。准确度决定着加工产品的精度,也关系着控制系统的最终效果。

3.2稳定性

保持系统稳定的意义在于保障产品质量与预期设计相同,并且在外界存在干扰的情况下,不会引起产品质量降低。尤其是闭环控制系统的反馈机制,容易受到参数不匹配的影响,导致系统震荡进而影响工作能力。

3.3快速性

快速性的含义是系统消除偏差值的速度以及处理异常信号的速度必须快,因为当系统存在偏差值时会导致系统无法运行或产品质量降低,因此必须在短时间内快速消除系统偏差,保障系统稳定性。

4.机电一体化设计应用及发展方向

4.1机电一体化控制系统设计应用

机电一体化控制系统在机械制造业中应用广泛,典型的设计应用有以下几点:

(1)挖掘机的制造过程中,通过模拟控制理论及控制系统,检测液压系统中泵的输油压力、控制压力和其它参数,进而将运行参数输入到控制系统中,调整挖掘机控制器工作方式,实现控制系统的设计应用。

(2)压缩机的制造过程中,通过控制系统检测震动轮内部偏心块震动曲线,进而分析震动轮加速度,通过傅里叶变换等方式,求解地面压实数据,最终实现压缩机工作模式调整的目的。

(3)在国外的大型起重机械制造领域,已经开始使用控制系统的模糊控制功能,将实践经验和理论操作参数项结合,通过微处理技术使得控制系统可以像人工操作一样自如,效率和安全性能更高。

4.2机电一体化控制系统应用方向

机电一体化控制系统实现了机电设备的智能化发展,随着光学、通信、微电子以及机械等技术的发展,控制系统的发展方向也不断细化,此外,人工智能、光纤和神经网络技术的出现,也大幅提升了机电一体化控制系统的性能。当前,机电一体化控制系统的应用发展方向主要有以下几个方面:

4.2.1模块化

模块化系统设备的模块化属于机电一体化发展的重要进步,由于当前整个一体化系统设备来自于不同的生产厂家和设备制造商,因而需要对信号接口、转换接口、电气接口等连接部位进行标准设定,而模块化使得单独控制设备得以通用于任何一个机电一体化系统中,为行业发展和交流扫除了设备参数不同的障碍。

4.2.2智能化

智能化的发展得益于人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新技术的发展,赋予机电一体化控制系统自主分析和控制能力,极大的解放了生产力,降低了操作繁琐程度。但是,这一目标的实现需要高标准的硬件设备和高速运转的计算机技术来支撑。

4.2.3网络化

网络的发展使得科技的传播范围不断扩展,对于机电一体化控制系统而言,只要机电一体化控制系统的性能足够优越,便能够迅速的被国际市场所认可,因此,不断扩张的市场规模有利于刺激行业的进步和科研的深入探索,进而实现机电一体化控制系统性能的快速提升。

4.2.4环境化

环保化工业的发达给人们生活带来了巨大变化。一方面,物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是,人们呼吁保护环境资源,回归自然。绿色产品概念在这种呼声下应运而生,绿色化是时代的趋势。绿色产品在其设计、制造、使用和销毁的生命过程中,符合特定的环境保护和人类健康的要求,对生态环境无害或危害极少,资源利用率极高。设计绿色的机电一体化控制产品,符合当前的环保要求。机电一体化产品的绿色化主要是指设备在使用时不会对环境产生污染,设备报废后能够回收利用。

5.结束语

当前机电一体化控制系统已经在机械设备制造行业广泛使用,其优越的性能和便捷的操作使得用户在进行机电设备选择是更倾向于此类设备。虽然机电一体化控制系统的发展已经非常完备,各类辅助设备和控制软件也非常的完善,但是应该看到当前实际应用中的不足与缺陷,从最优化角度出发,将机电一体化控制系统继续的细分和具体化,面向各具体领域,开发针对性强、实用性高的一体化设备控制系统。对机电一体化控制系统的研究也应立足当前,不断提升计算机技术与机械制造技术,为我国机电一体化控制系统的发展贡献应有的力量。

【参考文献】

[1]胡玉琴.机电一体化控制系统设计方案研究[J].科技与生活,2011(9):203-203.

[2]韦朝阳.机电一体化控制系统的干扰处理[J].华东科技.学术版,2012(8):291-291.

[3]袁芳.机电一体化控制系统设计研究[J].中国科技博览,2011(28):80-80.

上一篇:齿轮传动机构装调维修中应注意的问题分析 下一篇:浅谈人工生态湖与节约型园林建设