三极管放大电路范文

时间:2023-02-21 00:07:34

三极管放大电路

三极管放大电路范文第1篇

三极管构成的放大器要做到不失真地将信号电压放大,就必须保证三极管的发射结正偏、集电结反偏,以常用的NPN型共射放大电路为例,主流是从集电极到发射极的电流I,偏流就是从基极到发射极的电流I。相对于主电路而言,为基极提供电流的电路就是所谓的偏置电路。偏置电路往往有若干元件,其中有一个重要电阻,往往要调整这个电阻的阻值,以使集电极电流的大小在设计的规范之内。这个要调整的电阻就是偏置电阻。简而言之,偏置电阻就是用来调节基极偏置电流,使三极管有一个适合的静态工作点。也就是说让放大器有一个正常的工作电压,这就与动物一样,要动物想活,你必须要给它食物,让它有活动的能力。给三极管一个偏值电压就是这个目的,让三极管无论何时都能处于放大状态。如果没有偏值电压三极管将在信号的正半周处于放大工作状态(但此时信号电压将要大于二极管的开启电压否则没放大的能力),当信号处于负半周时由于加入的是负电压所以三极管没放大的能力,为了让三极管有放大的能力就要从电源那接一个偏置电路为它提供偏置电压,但是接一个偏置电阻会存在很多缺点和不足,所以往往要接两个甚至两个以上的电阻来提供合适的偏置电压,让偏置电压处于放大状态的中间位置。这个点就是三极管中重要的静态工作Q点。让动态的信号在Q点上下移动,并且不会进入饱和区和截止区。这就是加偏置电阻的目的。

对于静态工作点,不仅关系到放大电路对输入信号能否不失真地放大,而且对放大电路的性能指标有重大影响。因此,应该选择合适的、稳定的静态工作点。这可以通过稳定偏置电路或电流源电路来实现。

下面集中介绍几种偏置电路。

第一种是固定偏置放大电路。

如图所示的电路是最基本的固定偏置电路。

固定偏置电阻的值可以使这个三极管的偏置电流固定在一个范围内,而往往为了精确调整这个三极管的静态工作点,还要加上一个可变微调电阻来调整。我们仅以NPN的共发射极放大电路为例来说明一下放大电路的基本原理。下面的分析仅以NPN型硅为例。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流),并且基极电流有很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做电流的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流I的变化,I的变化被放大后,导致了I很大的变化。如果集电极电流I是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号。把共发射极放大器集电极静态电压设计为电源电压的一半,可以获得最大输出电压动态范围。这也是设计共发射极放大器的基本原则。

当环境温度升高时,虽然I为常数,但β和I的增大会导致I的上升。可见,电路的温度稳定性较差。只能用在环境温度变化不大,要求不高的场合。

第二种是分压式射极偏置电路。

如图所示的电路是广泛采用的一种电流负反馈分压式偏置电路。下面来分析一下该电路。

这种电路组中的R、R和R是组成放大电路的偏置电路,其中R为上偏置电阻,提供基极偏流I,R为下偏置电阻,对流经R的电流起分流作用,R为发射极电阻,起电流负反馈作用,C为发射极交流旁路电容。

分压式射极偏置电路稳定静态工作点原理是:当温度上升时,由于三极管参数(I、β)的影响,使I增大,发射极电位V=IRe亦随之增大。又因为极基电位V为固定值,必然导致加到发射结的正偏电压V减小,I随之减小,促使I减小。这样就牵制了I的增大,从而使I基本不随温度变化,稳定了静态工作点。这种自动调节过程为直流电流负反馈。R越大,直流负反馈的作用就越强,I温度稳定性也就越好。

第三种是集电极―基极偏置电路。

下图为集电极―基极偏置电路,它是利用电压负反馈作用来稳定静态工作点的,称为电压负反馈偏置电路。

集电极―基极偏置电路稳定静态工作点原理是:当温度上升时,由于三极管参数的影响,使I增大,集电极负载电阻R上的电压降随之增大,导致V减小,I减小,促使I减小。这样就牵制了I的增大,从而使I基本不随温度变化,稳定了静态工作点。这种调节过程称为直流电压负反馈。集电极―基极偏置电路不适合R值很小的放大电路。

第四种是温度补偿偏置电路。

下图是温度补偿偏置电路,这种电路是利用热敏元件(如热敏电阻、半导体二极管等)的温度特性来补偿放大器件的温度特性,以减小放大电路静态工作点的温度漂移,达到稳定静态工作点的目的。包括热敏电阻补偿电路和二极管补偿电路等。这里就简单介绍一下热敏电阻补偿电路。

上面两个电路均利用热敏电阻R进行温度补偿。R具有负温度系数,其阻值随着温度的升高而减小。

射极偏置电路在较宽的温度变化范围内都能稳定静态工作点,而且更换β值不同的三极管也具有稳定静态工作点的效果;集电极―基极偏置电路能够克服三极管的I和V的温度特性对I的影响,但不利于克服β变化对I的影响;采用热敏电阻补偿,需通过实验来选配合适的R值及特性,也可使静态工作点稳定;二极管补偿,可在一定程度上进一步提高静态工作点的稳定性。

在实际的放大电路中,加合适的偏置电路是保证放大器正常工作的重要条件。这里有两个原因。首先是由于BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小。如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0A)。如果我们事先在基极上加上一个合适的电流,那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0A,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。另外偏置电路一定要做得好一点才行,否则有还会有失真现象出现。

三极管放大电路范文第2篇

关键词:放大电路;波形失真;图解法;综合分析法

中图分类号:TP331文献标识码:A文章编号:1009-3044(2012)17-4210-02

放大电路中波形失真的分析是放大器中的主要教学内容之一,也是整个模拟电路课程的重点和难点教学内容之一。如何组织这一部分内容的教学,才能使学生既牢固掌握放大器放大输入信号的物理过程,又能使学生熟练掌握放大电路波形失真的判断方法。经过多年的教学实践,笔者在这一部分内容的教学中,采取以下的教学方法:首先较详细地介绍图解法的内容,使学生通过图解法掌握放大器放大输入信号的物理过程,并通过图解法建立波形失真的概念,以及电路参数对Q点与波形失真的影响。让学生初步掌握放大电路波形失真的判断,在讲完放大电路的三种组态以后,然后概括放大电路波形失真的两种情况及其判断方法。在实际教学中,根据学生反馈信息,教学效果较好,现总结如下,不妥之处请批评指正。

1放大电路中波形失真的两种情况

v的波形失真情况(顶部或底部失真已知)判断电路是饱和还是截止失真。2)电路的组态、管型、及参数已知,判断电路的输出波形是顶部还是底部失真。

2放大电路波形失真的分析方法——综合分析法(简称综合法)

综合法的特点是将工作点对波形失真的影响和电路中输出电压与输入电压之间的相位关系结合起来对波形失真进行分析判断的,利用综合法分析放大器输出波形是先出现底部或顶部失真分两步进行。

1)根据给定电路的组态决定输出电压与输入电压之间的相位关系。

2)根据

3小结

通过近几年的理论教学,利用综合分析法讲解三极管放大电路波形失真分析,学生普遍反映对三极管放大电路波形失真的判断较容易,真正做到了化难为简,在分析具体电路时得心应手。

参考文献:

[1]杨泰朋,苏静,黄友锐.单管交流放大电路实验中的问题分析[J].实验室科学,2010(4):103-104.

[2]魏文.晶体管放大器静态工作点稳定性的判定方法[J].电气电子教学学报2008(4):18-20.

三极管放大电路范文第3篇

关键词: Multisim; 三极管; 放大电路; 模拟电子电路

中图分类号: TN702?34 文献标识码: A 文章编号: 1004?373X(2013)04?0123?04

0 引 言

放大电路是构成各种功能模拟电路的基本电路,能实现对模拟信号最基本的处理――放大[1],因此掌握基本的放大电路的分析对电子电路的学习起着至关重要的作用。三极管放大电路是含有半导体器件三极管的放大电路,是构成各种实用放大电路的基础电路,是《模拟电子技术》课程中的重点内容。在课程学习中,一再向学生强调,放大电路放大的对象是动态信号,但放大电路能进行放大的前提是必须设置合适的静态工作点,如果静态工作点不合适,输出的波形将会出现失真,这样的“放大”就毫无意义[1]。什么样的静态工作点是合适的静态工作点;电路中的参数对静态工作点及动态输出会产生怎样的影响;正常放大的输出波形与失真的输出波形有什么区别;这些问题单靠课堂上的推理及语言描述往往很难让学生有一个直观的认识。在课堂教学中引入Multisim仿真技术,即时地以图形、数字或曲线的形式来显示那些难以通过语言、文字表达令人理解的现象及复杂的变化过程,有助于学生对电子电路中的各种现象形成直观的认识,加深学生对于电子电路本质的理解,提高课堂教学的效果[2]。实现在有限的课堂教学中,化简单抽象为具体形象,化枯燥乏味为生动有趣,充分调动学生的学习兴趣和自主性 [3?4]。

1 Multisim 10简介

Multisim 10 是美国国家仪器公司(NI公司)推出的功能强大的电子电路仿真设计软件,其集电路设计和功能测试于一体,为设计者提供了一个功能强大、仪器齐全的虚拟电子工作平台,设计者可以利用大量的虚拟电子元器件和仪器仪表,进行模拟电路、数字电路、单片机和射频电子线路的仿真和调试[5?6]。

Multisim 10 的主窗口如同一个实际的电子实验台。屏幕中央区域最大的窗口就是电路工作区,电路工作窗口两边是设计工具栏和仪器仪表栏。设计工具栏存放着各种电子元器件,仪器仪表栏存放着各种测试仪器仪表,可从中方便地选择所需的各种电子元器件和测试仪器仪表在电路工作区连接成实验电路,并通过“仿真”菜单选择相应的仿真项目得到需要的仿真数据[7?8]。

2 三极管放大电路的仿真分析

本文以图1所示的阻容耦合三极管单级放大电路作为分析对象,分别进行静态分析和动态分析。静态分析将分析电路的直流工作情况,动态分析将分析电路对交流信号的放大情况。

根据实验电路图,在Multisim 界面下模拟连接电路,确定电路中的各元器件参数,使用Multisim 虚拟仪器进行在线测量[9]。与理论分析一样,仿真分析时应遵循“先静态,后动态”的原则[1]。首先获取电路的静态工作点数据,再输出电路的动态输出情况。这里将利用 “直流工作点分析”功能读取静态工作点数据,利用虚拟仪器“示波器”观察三极管的输入/输出波形。

2.1 仿真分析的理论依据

分析图1所示电路,可求得其静态工作点估算表达式:

由理论分析可知,当利用三极管单级放大电路对交流小信号进行放大时,如果为电路设置了合适的静态工作点Q,就能保证三极管在整个信号周期内均工作在放大区,放大输出的信号就不会失真。若Q点偏高,三极管会在输入信号的正半周因集电极电位[UC]低于基极电位[UB]而饱和,集电极电流[IC]因此会出现顶部失真,而放大电路输出的信号则会出现底部失真。若Q点偏低,三极管会在输入信号的负半周因发射结电压[UBE]低于导通电压[UON]而截止,基极电流[IB]及集电极电流[IC]因此会出现底部失真,而放大电路输出的信号则会出现顶部失真[10]。三极管在直流电源及外电路的共同作用下静态工作点是否合适,可由[UBEQ],[UCEQ]的取值进行判断。

(1)若[UBEQ]的取值为三极管2N222A的导通电压[UON],约在0.6~0.7 V之间,且[UCEQ]的取值接近于[VCC]的[12]时,能保证三极管在整个信号周期均能工作在放大区,输入信号被放大一定倍数后在输出端不失真的输出,且输出与输入反向。

(2)若[UBEQ]的取值为三极管2N222A的导通电压[UON],但[UCEQ]的取值小于[UBEQ]时,三极管此时已经饱和,在输入信号的正半周会一直处于饱和状态,输出信号因此出现底部失真现象。

(3)若[UBEQ]的取值小于三极管2N222A的导通电压[UON],但[UCEQ]的取值接近于[VCC]时,三极管此时基本处于截止状态,在输入信号的负半周会一直处于截止状态,输出信号因此出现顶部失真现象。

2.2 仿真分析

在图1所示电路中选择节点电压[U1(UB)],[U6(UC)],[U5(UE)]作为“直流工作点分析”的三个电路变量,据此计算[UBEQ],[UCEQ]的值,并判断晶体管此时的工作状态。

获得静态工作点数据后,通过电阻[R1],[R2]为电路输入频率为1 kHz、幅值为500 mV的正弦信号[ui],此时三极管上真正的输入信号应为电阻[R2]两端获得的动态小信号[uR2],其幅值低于10 mV,符合实验电路交流小信号的要求。三极管的动态输出信号为负载[RL]两端的输出电压[uRL],用双踪示波器显示实时的输入信号[uR2]及输出信号[uRL]的波形,验证上述分析的结果。

由式(1)~式(3)可知,可调电位器[Rp]的取值将影响各静态工作点的取值,仿真过程中通过修改电路元件[Rp]的参数改变基极电阻,观察各项静态工作点数据及输出波形因此产生的变化。

2.2.1 合适的静态工作点

当[Rp=91 kΩ]时得到如图2(a)所示的直流工作点数据,可得三极管三个极此时的电位:

图2(b)所示即为此时的输入输出波形,从波形图看出,输入与输出反相,[uRL]正负半周对称,[uR2]的信号峰值约为9.75 mV,[uRL]的信号峰值约为101.78 mV,[uRL]实现了对输入信号[uR2]不失真的放大,符合理论分析的结果。

2.2.2 静态工作点偏高

由式(1)~式(3)可知,当[Rp]减小时,三极管基极电位[UBQ]会升高,发射极电流和集电极电流会增大,则集电极电阻[Rc]上的压降及发射极电阻[(Re1+Re2)]上的压降会增大,使得[UCEQ]减小,电路的静态工作点上移,接近三极管的饱和区。

三极管放大电路范文第4篇

【关键词】仿真软件 仿真 三极管基本放大电路

在传统的模拟电子技术的教学过程中,学习三极管的输入、输出特性;分析基本放大电路的静态工作点和动态性能指标,既是重点也是难点。老师觉着难教,难表述,学生觉着难理解,太抽象,即便是以实践的方式进行讲解,也会因为学生们使用电子仪器不熟练、电子信号太小易受干扰等原因而屡屡受挫。

现在,我们在教学的过程中,利用仿真软件的仿真功能,对理论教学进行补充,使学生能将理论与“实际”相结合,加深对理论的理解。

下面就电子仿真技术在《电子技术基础》课程中的具体应用进行简要分析。

一、三极管输入、输出特性曲线的分析

在传统的教学中,三极管输入、输出特性曲线需要学生利用实验进行测试,测得数据后学生需自己描点画线才能得到曲线。该测试过程繁杂,又很容易受到外界干扰而能得到正确的结果。现采用仿真方式,快捷又直观,学生很容易理解。

按图1所示的三极管特性曲线测试电路利用Protel99 se软件绘出电路,通过仿真技术,得到三极管的输入特性曲线如图2所示。图中,横坐标为UBE,纵坐标为IB。

三极管的输出特性仿真曲线如图3所示。图中横坐标为UCE,纵坐标为IC。

二、静态工作点测试及放大倍数的确定

(一)静态工作点

在放大电路中,静态工作点是保证三极管正常放大的外部条件,合理设置静态工作点,直接关系到电路的放大质量与效果。

静态工作点靠电路参数来决定。如果是让学生们靠自己的计算来认识这一点,所需要进行的运算非常繁琐,要占用大量的演算时间。而采用电子仿真对三极管直流工作状态进行分析,可随时改变电路的参数,且无需调整,很快就可以输出仿真结果。

例如,共发射极放大电路如图4所示,选择三极管的基极、集电极和发射极的电流和电压作为输出,其仿真输出的结果如图5所示。

当改变电路中电阻Rb的阻值,使其分别为200KΩ和1MΩ时,仿真输出结果如图6(a),(b)所示。

根据图3(a)的输出结果,当R1=200KΩ时,三极管的

(二)电路的放大倍数

电路的电压放大倍数与三极管的输人电阻、三极管的集电极电阻、负载电阻以及三极管的电流放大倍数β直接有关。

在图4所示电路给定参数的情况下,电路仿真的输入与输出的波形如图7所示,电路的放大倍数约为80。当修改负载电阻RL时,电路仿真的输入与输出的波形如图8所示,电路的放大倍数约为150。可见负载电阻的改变,也改变了电路的电压放大倍数。

(三)认识设置合适静态工作点的必要性

通过仿真软件做仿真演示,让学生观察静态工作点设置不合适带来的影响,信号出现失真(截止失真和饱和失真),并从中学习改善失真现象的方法。

三、参数对放大倍数的影响

利用仿真软件的功能,可以在一个图上展示参数变化给放大倍数带来的影响,非常直观,学生能更好的理解知识要点。

通过以上讨论可知,电子仿真技术在《电子技术基础》课程中可以非常直观、逼真地进行演示操作,既避免了繁琐的理论计算,又可模拟实验中复杂的接线,还可克服仪表读数的不方便,使课堂教学既有理论讲解,又有实验操作的结果,给学生以近乎实际的、逼真的动感效果,生动形象,教学效果有了大幅度的提高。

参考文献:

三极管放大电路范文第5篇

关键词:晶体三极管 放大电路 非线形失真 解决办法

1 三极管的非线形失真

当我们用三极管对信号进行放大的时候,目的是对信号有一定比例地放大,如果不能按比例放大,放大后的信号与原信号相比就改变了性质,这种现象我们称之为信号失真,而这种失真是由于对原信号进行非线形放大而产生的,我们称为非线形失真。

2 非线形失真产生的原因及分类

2.1 截止失真 现在以npn型三极管为例说明晶体三极管的工作原理及失真原因的分析,三极管的结构和符号

三极管的发射节相当于一个二极管,而二极管具有单向导电性,其所加电压与通过电流与二极管的伏安特性相同。

只有加到发射节上的电压高与uon(开启电压)时,发射节才有电流通过,而当发射节被加反向电压时(只要不超过其反向击穿电压),只有很小的反向电流通过,我们认为这种情况下三极管处于截止状态,而在实际应用中,我们会遇到各种各样的信号需要放大,有较强的信号,有较弱的信号,也有反向的信号,根据pn节的特性,当加到发射节上的信号为较弱的信号(小于开启电压),或者是反向信号时,发射节是截止的,三极管是不能起到放大的作用,输出的信号,也出现严重的失真,此时的失真,称为截止失真。

2.2 饱和失真 在了解三极管的饱失真前,我们先了解一下三极管的饱和导通,我们知道,当三极管的的发射节被加正向电压且ube>uon,三极管的发射节有电流通过,以npn三极管为例,三极管的工作过程是这样的:当发射节加正向电压时,发射区通过扩散运动向基区发射 电子 ,形成发射极电流ie;其中一小部分与基区的空穴复合,形成基极电流ib,又由于集电极加反向电压,所以从发射极出来的大部分电子在集电极电压作用下通过漂移运动到达集电极,形成集电极电流ic。当集电极上加不同电压时,有三种情况:

2.2.1 集电节加反向电压,集电节反偏,此时,集电极有能力收集从发射极发射出的电子,三极管处于稳定的放大状态。如电路图3,三极管工作在如图5所示的放大区。

2.2.2 当集电极加正向电压,集电极正偏,此时,发射极发射电子由于而集电极收集电子不足,即使基极电流增大,发射极发射电子电流增大,由于集电极收集电子不足,集电极电流也不会增大,这种情况称为三极管的饱和导通,如图5所示的饱和区。饱和导通时,三极管对信号也失去了发放大作用,此时的三极管的失真称为饱和失真

2.2.3 当集电结所加电压为零,即ucb=0时,三极管出处于饱和放大的临界状态。

3 非线形失真的解决办法

3.1 截止失真的解决办法 当输入信号ui<uon时,如果没有附加电源,发射节是截止的,三极管不能进行放大作用,如果要是三极管导通,就要增加基极电位,使输入的信号同时增加某相同的电位,使要放大的输入信号都能满足大于uon,为此在基极增加一个静态电源vbb,使vbb+ui>uon,保证三极管导通。如下图所示:

3.2 饱和失真的解决办法

3.2.1 增加vcc 由于三极管饱和的根本原因是集电结收集 电子 的能力不足,所以增加vcc能够增强集电极收集电子的能力,但必须保证vcc在三极管的能承受范围内,在rc和管子不变的情况下,能够消除饱和失真 ⅰ

3.2.2 增加基极电阻rb以减小基极电流,从而集电极电流ic=βib,在集电极电阻rc和集电极电源vcc不变的情况下,由vce=vcc-βibrc得集电极电压变大,从而使集电极收集电子能力增强,消除饱和失

3.2.3 减小集电极电阻,在电路中其他参数不变的情况下,减小集电极电阻rc就减小了在rc上的压降由uce=vcc-βibrc知加在集电结的电压增大,也增强了集电极收集电子的能力,从而消除饱和失真

3.2.4 更换一只β较小的管子.在其他参数不变的情况下,换一只放大倍数较小的管子,由uce=vcc-βibrc知:在集电极电阻上的压降减小,也即增大了加在集电结的电位,增强了集电结收集电子的能力,从而消除饱和失真,同理由ⅰ式得β应满足

4 结论

三极管放大电路范文第6篇

1.1三极管饱和状态下的特点

要使三极管处于饱和状态,必须基极电流足够大,即Is≥IBs。三极管在饱和时,集电极与发射极间的饱和电压(Uces)很小,根据三极管输出电压与输出电流关系式

三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降UBEC=0.7V(锗管UBEC=-0.3V),而UCES=0见,UBE>0,UBC>0,也就是说,发射结和集电结均为正偏。

三极管饱和后,C、E间的饱和电阻RcEs=UcEs/Ics,UcEs很小,Ics最大,故饱和电阻RcEs很小。所以说三极管饱和后C、E问视为短路,饱和状态的NPN型三极管等效电路如图1所示。

1.2三极管截止状态下的特点

要使三极管处于截止状态,必须基极电流IS=0,此时集电极IC=ICEO≈0(ICEO穿透电流,极小),根据三极管输出电压与输出电流关系式UCE=EC-ICRC,集电极与发射极间的电压UCE≈EC。

三极管截止时,基极电流IB=0,而集电极与发射极间的电压UCE≈Ec。可见,UBE0,UBC<0,也就是说,发射结和集电结均为反偏。

三极管截止后,C、E间的截止电阻Rce=UcE/Ic,UcEs很大,等于电源电压,Ics极小,C、E间电阻RcE很大,所以,三极管截止后C、E间视为开路,截止状态的NPN型三极管等效电路如图1b。

1.3三极管放大状态下的特点

要使三极管处于放大状态,基极电流必须为:0UBE=0.7V(绪管)UBE=-0.3V,三极管在放大状态时,集电极与发射极间的电压UCE>1以上,UBE>0,UBC<0,也就是说,发射结正偏,集电结反偏。

三极管在放大状态时,IB与Ic成唯一对应关系。当IB增大时,Ic也增大,并且IB增大一倍,Ic也增大一倍。所以,Ic主要受IB控制而变化,且Ic的变化比IB的变化大得多,即集电极电流Ic=β×IB。

三极管三种工作状态的特点如表1所示。

2确定电路中三极管的工作状态

(1)利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。

例题:图2所示放大电路中,已知EC=12V,β=50,R1=1kΩ,Rb=220kΩ,Rc=2KΩ,其中R.为输入耦合电容在该位置的等效阻抗。问:①当输入信号最大值为+730mV,最小值为-730mV时,能否经该电路顺利放大?②当β=150时,该电路能否起到正常放大作用?

分析:当向三极管的基极输入正极性信号时,其基极电流会增大,容易进入饱和状态:当向三极管的基极输入负极性信号时,其基极电流会减小,容易进入截止状态。因此,解决输入信号送入放大电路能否顺利放大,主要是检查最大值(一般为正极性)的输入信号、最小值(一般为负极性)的输入信号是否引起放大电路中三极管进入了饱和状态、截止状态,如果两种输入信号都没有使三极管进入饱和、截止状态,那么该范围的输入信号送入放大电路后能被顺利放大。如果两种输入信号使三极管进入饱和或截止状态,则不能顺利放大,会引起信号饱和失真或截止失真。

解1:

①当最大值信号(Ui=+730mV)输入时,假设会引起放大电路的三极管进入饱和状态,则等效电路如图2所示。

根据以上计算可知:IB②当最小值输入信号(Ui=-730mV)输入时。假设会引起放大电路的三极管进入截止状态,则等效电路如图3所示。

根据KVL定律(绕行方向、参考电流方向如图3),-EC+IRC+IRi+UIi=0,所以,I=(EC-Ui)/(RC+Ri)=[12-(-0.73)/](1000+220000)-58μA,Uce=IRC+EC-58μA×220000+12V=-0.76V

可知:Ube<0,根据三极管截止状态的条件UBE≤0,假设成立,即当最小值输入信号(Ui=-730mV)输入时,放大电路的三极管处于截止状态。综上所述,当最大值为730mV,最小值为-730mV的输入信号输入时,该放大电路不能顺利放大。

根据以上计算可知:IB>IBs,根据三极管饱和状态的条件IB≥IBs,可知,电路中的三极管处于饱和状态,即该电路不能起到正常放大作用。

(2)根据三极管发射结和集电结偏置情况,可以判别其工作状态:

对于NPN三极管,当Ube≤0时,三极管发射结处于反偏工作,则Ib≈0,三极管工作在截止区;

当晶体三极管发射结处于正偏而集电结处于反偏工作时,三极管工作在放大区,Ic随Ib近似作线性变化;

当发射结和集电结均处于正偏状态时,三极管工作在饱和区,Ic基本上不随Ib而变化,失去了放大功能。

截止区和饱和区是三极管工作在开关状态的区域。

那么各种状态UbeUbcUce有没有个固定的电压值呢?

不同的材料,PN结的势垒电压不一样,锗管约0.3V,硅管约0.7V,不同的制造工艺,不同的型号也有少量差别,但是基本是这个量级。要知道准确值,必须查看输入特性曲线(类似于二极管正向特性曲线)。

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。

三极管的饱和情况。像图4,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。

如果我们在图4中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里的了。三极管有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多。

摘要:对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。三极管是一个电流控制元件:它可以通过小电流控制大电流。根据其电流的大小可以判定不同的工作状态。

三极管放大电路范文第7篇

关键词:三极管 工作状态 应用

中图分类号:TN32 文献标识码:A 文章编号:1672-3791(2014)03(b)-0106-01

半导体三极管是电子电路的重要元件,它在不同的外部条件下表现出不同的工作状态,从而具有多种不同的功能,因此得到了广泛的应用。

1 三极管的工作状态

三极管在电路中一般表现出三种工作状态:截止状态、放大状态和饱和状态。

1.1 截止状态

当加在三极管发射结的电压小于PN结的导通电压时,基极电流为零,三极管处于截止状态。实际上为了使三极管可靠地截止,常使UBE≤0,此时发射结和集电结均处于反向偏置状态,[1]集电极和发射极之间相当于开关的断开状态。

1.2 放大状态

当三极管的发射结正向偏置,且加在发射结的电压大于PN结的导通电压,集电结反向偏置时,三极管处于放大状态。这时基极电流的微小变化,会引起集电极电流的较大变化,三极管具有电流放大作用。

1.3 饱和状态

当三极管的发射结正向偏置,且加在发射结的电压大于PN结的导通电压,集电结也正向偏置时,三极管处于饱和状态。这时基极电流较大,集电极电流也较大,但集电极电流不再随着基极电流的变化而变化,三极管失去电流放大作用,集电极与发射极之间的电压很小,相当于开关的导通状态。

2 三极管不同状态下的应用

2.1 三极管放大状态下的应用

三极管处于放大状态时具有电流放大作用,利用这一特点,三极管常用在模拟放大电路中。

三极管对小信号实现放大作用时,基本放大电路有三种不同的连接方式:共发射极接法、共基极接法和共集电极接法。

在共发射极接法中,常用的放大电路有固定式偏置电路、分压式偏置电路和带有射极电阻的固定式偏置电路。固定式偏置电路静态工作点不太稳定,受温度的影响,输出信号容易产生失真,故在实际中常采用分压式偏置电路以稳定静态工作点。电路如图1所示。

共发射极接法放大电路因其电压放大倍数比较高,而得到广泛的应用,在多级放大电路中,多用作中间级。

在共集电极接法中,负载接在发射极,输出电压从发射极输出,因此,叫射极输出器。因输出电压与输入电压同相,输出信号跟随输入信号的变化而变化,因此,射极输出器又称为射极跟随器或电压跟随器。射极跟随器的电压放大倍数略小于1,没有电压放大作用,但有一定的电流放大作用和功率放大作用。在多级放大电路中,射极输出器作为输入级可减轻信号源的负担,作为输出级可提高放大电路的带负载能力,作为中间级起阻抗变换作用,使前后级共发射极放大电路阻抗匹配,实现信号的最大功率传输。[2]

在共基极接法中,交流信号从发射极输入,从集电极输出。该电路没有电流放大作用,但具有电压放大作用,而且其频率特性比较好,一般多用于高频或宽频带放大电路及恒流源电路。

2.2 三极管截止和饱和状态下的应用

三极管处于截止状态时相当于开关的断开状态,处于饱和状态时相当于开关的导通状态,利用这种开关特性,三极管常用在数字电路中。

在稳定状态下,三极管只能工作在饱和区或截止区,它的输出端要么处于高电位,要么处于低电位,即要么有信号输出,要么无信号输出。实际应用时,由于三极管需要频繁地在断开和闭合状态之间进行切换,因此为了提高开关速度,常使三极管工作在浅饱和区状态。

三极管的开关特性常见的具体应用有:用于彩色电视机、通信设备的开关电源;用于驱动电路,驱动发光二极管、蜂鸣器、继电器等器件;用于彩色电视机行输出管;用于开关电路、高频振荡电路、模数转换电路、脉冲电路、低频功率放大电路、电流调整等;在冶金、机械、纺织等工业自动控制系统中,光电开关可作指示信号,指示加工工件是否存在或存在的位置。[3]

开关三极管因其寿命长、安全可靠、没有机械磨损、开关速度快、体积小等特点,得到越来越广泛的应用。

掌握了三极管的各种工作状态,了解了三极管的基本应用,在分析和设计更复杂电路时,就能灵活运用。

参考文献

[1] 袁明文,谢广坤.电子技术[M].哈尔滨:哈尔滨工业大学出版社,2013:11.

[2] 李仁华,冯.电子技术[M].北京:北京理工大学出版社,2010:44.

三极管放大电路范文第8篇

关键词:三极管;电流控制;工作状态

中图分类号:TN文献标识码:A文章编号:1672-3198(2008)11-0389-02

1 三种工作状态的特点

1.1 三极管饱和状态下的特点

要使三极管处于饱和状态,必须基极电流足够大,即Is≥IBs。三极管在饱和时,集电极与发射极间的饱和电压(Uces)很小,根据三极管输出电压与输出电流关系式Uce=Ec-IcRc,所以IBS=ICSβ=Ec-UCESβ≈EcBRC

三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降UBEC=0.7V(锗管UBEC=-0.3V),而UCES=0见,UBE>0,UBC>0,也就是说,发射结和集电结均为正偏。

三极管饱和后,C、E间的饱和电阻RcEs=UcEs/Ics,UcEs很小,Ics最大,故饱和电阻RcEs很小。所以说三极管饱和后C、E问视为短路,饱和状态的NPN型三极管等效电路如图1所示。

1.2 三极管截止状态下的特点

要使三极管处于截止状态,必须基极电流IS=0,此时集电极IC=ICEO≈0(ICEO穿透电流,极小),根据三极管输出电压与输出电流关系式UCE=EC-ICRC,集电极与发射极间的电压UCE≈EC。

三极管截止时,基极电流IB=0,而集电极与发射极间的电压UCE≈Ec。可见,UBE0,UBC

三极管截止后,C、E间的截止电阻Rce=UcE/Ic,UcEs很大,等于电源电压,Ics极小,C、E间电阻RcE很大,所以,三极管截止后C、E间视为开路,截止状态的NPN型三极管等效电路如图1b。

1.3 三极管放大状态下的特点

要使三极管处于放大状态,基极电流必须为:0

UBE=0.7V(绪管)UBE=-0.3V,三极管在放大状态时,集电极与发射极间的电压UCE>1以上,UBE>0,UBC

三极管在放大状态时,IB与Ic成唯一对应关系。当IB增大时,Ic也增大,并且IB增大一倍,Ic也增大一倍。所以,Ic主要受IB控制而变化,且Ic的变化比IB的变化大得多,即集电极电流Ic=β×IB。

三极管三种工作状态的特点如表1所示。

2 确定电路中三极管的工作状态

(1)利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。

例题:图2所示放大电路中,已知EC=12V,β=50,R1=1kΩ,Rb=220kΩ,Rc=2KΩ,其中R.为输入耦合电容在该位置的等效阻抗。问:①当输入信号最大值为+730mV,最小值为-730mV时,能否经该电路顺利放大?②当β=150时,该电路能否起到正常放大作用?

分析:当向三极管的基极输入正极性信号时,其基极电流会增大,容易进入饱和状态:当向三极管的基极输入负极性信号时,其基极电流会减小,容易进入截止状态。因此,解决输入信号送入放大电路能否顺利放大,主要是检查最大值(一般为正极性)的输入信号、最小值(一般为负极性)的输入信号是否引起放大电路中三极管进入了饱和状态、截止状态,如果两种输入信号都没有使三极管进入饱和、截止状态,那么该范围的输入信号送入放大电路后能被顺利放大。如果两种输入信号使三极管进入饱和或截止状态,则不能顺利放大,会引起信号饱和失真或截止失真。

解1:

①当最大值信号(Ui=+730mV)输入时,假设会引起放大电路的三极管进入饱和状态,则等效电路如图2所示。

根据以上计算可知:IB

②当最小值输入信号(Ui=-730mV)输入时。假设会引起放大电路的三极管进入截止状态,则等效电路如图3所示。

根据KVL定律(绕行方向、参考电流方向如图3),-EC+IRC+IRi+UIi=0,所以,I=(EC-Ui)/(RC+Ri)=[12-(-0.73)/](1000+220000)-58μA,Uce=IRC+EC-58μA×220000+12V=-0.76V

可知:Ube

根据以上计算可知:IB>IBs,根据三极管饱和状态的条件IB≥IBs,可知,电路中的三极管处于饱和状态,即该电路不能起到正常放大作用。

(2)根据三极管发射结和集电结偏置情况,可以判别其工作状态:

对于NPN三极管,当Ube≤0时,三极管发射结处于反偏工作,则Ib≈0,三极管工作在截止区;

当晶体三极管发射结处于正偏而集电结处于反偏工作时,三极管工作在放大区,Ic随Ib近似作线性变化;

当发射结和集电结均处于正偏状态时,三极管工作在饱和区,Ic基本上不随Ib而变化,失去了放大功能。

截止区和饱和区是三极管工作在开关状态的区域。

那么各种状态Ube Ubc Uce有没有个固定的电压值呢?

不同的材料,PN结的势垒电压不一样,锗管约0.3V,硅管约0.7V,不同的制造工艺,不同的型号也有少量差别,但是基本是这个量级。要知道准确值,必须查看输入特性曲线(类似于二极管正向特性曲线)。

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。

三极管的饱和情况。像图4,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。

如果我们在图4中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

三极管放大电路范文第9篇

【关键词】三极管;集成电路;应用

一、半导体三极管

半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。它最主要的功能是电流放大和开关作用。三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管;另一种是PNP型的三极管。三极管的种类很多,并且不同型号各有不同的用途。按频率分:高频管和低频管;按功率分:小功率管,中功率管和的功率管;按功能分:开关管和放大管。

二、三极管的放大作用

三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。三极管有一个重要参数就是电流放大系数β。当三极管的基极上加一个微小的电流时,在集电极上可以得到一个注入电流β倍的电流,即集电极电流。集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。把一只小功率可控硅和一只大功率三极管组合,就可得到一只大功率可控硅,其最大输出电流由大功率三极管的特性所决定。

三、三极管的选用

三极管的种类很多,用途各异,恰当、合理地选用三极管是保证电路正常工作的关键。首先根据电路对三极管进行选用,在不同的电子产品中,电路各有不同,如高频放大电路、中频放大电路、功率放大电路、电源电路、振荡电路、脉冲数字电路等等。由于电路的功能不同,构成电路所需要的三极管的特性及类型也不同,功率驱动电路应按电路功率、频率选用功率管。如高频放大电路所需要的是高频小功率管,也可选用超高频低噪声小功率管。其次可根据三极管主要性能优势进行选用,一只三极管一般有十多项参数,有的是具有自动增益控制、高频低噪声;有的特点是开关速度快、频率特性好;有的是噪声系数小、功率增益高、特性频率高。对于特珠用途的三极管除满足上述的要求外,还必须满足对特殊管的参数要求。如选用光敏晶体管时,就要考虑光电流、暗电流和光谱范围是否满足电路要求。最后根据整机的尺寸合理选择三极管的外形及其封装。由于三极管的外形有圆形的、方形的、高简形的、扁平形等,封装又可分为金属封装、塑料封装等,尤其是近年来采用了表面封装三极管,其体积很小,节约了很多的空间位置,使整机小型化,并大大降低了成本。

四、半导体三极管的管脚判别

在安装半导体三极管之前,首先搞清楚三极管的管脚排列。一方面可以通过查手册获得;另一方面也可利用电子仪器进行测量,下面讲一下利用万用表判定三极管管脚的方法。首先判定PNP型和NPN型晶体管:用万用表的R×1k(或R×100)档,用黑表笔接三极管的任一管脚,用红表笔分别接其他两管脚。若表针指示的两阻值均很大,那么黑表笔所接的那个管脚是PNP型管的基极;如果万用表指示的两个阻值均很小,那么黑表笔所接的管脚是NPN型的基极;如果表针指示的阻值一个很大,一个很小,那么黑表笔所接的管脚不是基极。需要新换一个管脚重试,直到满足要求为止。进一步判定三极管集电极和发射极:首先假定一个管脚是集电极,另一个管脚是发射极;对NPN于型三极管,黑表笔接假定是集电极的管脚,红表笔接假定是发射极的管脚(对于PNP型管,万用表的红、黑表笔对调);然后用大拇指将基极和假定集电极连接(注意两管脚不能短接),这时记录下万用表的测量值;最后反过来,把原先假定的管脚对调,重新记录下万用表的读数,两次测量值较小的黑表笔所接的管脚是集电极(对于PNP型管,则红表笔所接的是集电极)。剩下的当然就是发射极了。

按照现代的制造工艺来说,根据不同的掺杂方式在同一个硅片上制造出三个掺杂区域,并形成两个PN结,由此就构成了一个晶体管。三极管最大的优点就是能够放大信号,它是放大电路的核心元件,能够控制能量的转换,将输入的任何微小变化量不失真地进行放大输出。

参 考 文 献

[1]沈国良.电工基础[M].电子工业出版社

[2]李忠文.电工电子技术基础[J].化学工业

[3]赵保经.中国集成电路大全[M].国防工业出版社

三极管放大电路范文第10篇

关键词:三极管输出特性 阶梯信号 锯齿波信号 示波器

Two transistors output characteristics graphic circuit based on general oscilloscope

Song Weixing

Shaanxi university of technology, Hanzhong, 723001, China

Abstract: The simultaneous test on two transistors output characteristics could be realized by combination of the general oscilloscope and the two transistors output characteristics graphic circuit composed of rectangle wave generator, sawtooth wave generator, the binary-decimal counter, ladder waveform generator, analog switch, differential amplifiers and umming amplifier, by which can conveniently compare the similarities and differences between two transistors output characteristics. Under the conditions of lack of special testing equipments, adopting this method is also a convenient and practical way to test the the similarities and differences between two transistors output characteristics.

Key words: transistors output characteristics; stairstep singal; sawtooth signal; oscilloscope

晶体三极管的集电极电流Ic-集射极电压Uce的关系曲线称为输出特性曲线。这一特性曲线虽然可以利用专用的晶体管特性图示仪测得,但在缺少专用测试设备的条件下,借助通用示波器,结合特定组合的数模电子电路进行测试仍是一种方便、实用的方法[1]。

1 双簇型晶体三极管输出特性图示电路的构成

双簇型晶体三极管输出特性图示电路与示波器相结合既可以单独测试单只三极管的输出特性曲线,又可以同时测试两只三极管的输出特性曲线。为了测试三极管的输出特性,必须分别给每只三极管提供相互同步的基极阶梯电流及集射极扫描电压,并同时将三极管的集电极电流及集射极电压送至示波器Y通道与X通道进行显示;借助电子模拟开关交替地将两只三极管的集电极电流、集射极电压信号送至示波器的Y,X通道,便能使两只三极管的输出特性在示波器屏幕上交替显示[2]。

双簇型晶体三极管输出特性图示电路主要由矩形波与锯齿波产生、锯齿波放大与输出、十进制计数与分频、十阶梯产生与放大、 触发器、模拟开关、Ic取样放大、Uce放大与平移、Uce平移电压等电路组成,其构成如图1所示[3]。

图1 双簇型晶体三极管输出特性图示电路的构成

在图1中,矩形波与锯齿波产生电路产生同步的矩形波与锯齿波信号,锯齿波电压经放大输出级直接作为被测三极管的集射极扫描电压;矩形波则送至十进制计数器,计数器的二-十进制输出信号经加法运算后输出阶梯波,并以此作为被测三极管的基极驱动信号;计数器的预置脉冲即矩形波的10分频信号则作用于T'触发器,T'触发器输出信号又驱动电子开关按每10个阶梯转换一次,使两只被测三极管的输出特性按每10个阶梯交替一次的时序显示;双三极管输出特性曲线交替显示的关键是三极管集射极电压的显示必须在水平方向错开。在显示过程中,一三极管集射极电压的显示起点必须比另一三极管高出一定数值的电压,此电压可称为“Uce平移电压”,Uce平移电压产生电路则是为此而设置;Uce平移与放大电路用于三极管集射极电压的平移与放大;Ic取样放大电路用于三极管集电极电流的取样与放大;电子开关用于控制两只三极管的交替接入、三极管集电极电流Ic的取样、Uce平移电压的作用[4]。

2 电路原理与设计

双簇型晶体三极管输出特性图示电路如图2所示,其中Q5,Q6为被测晶体三极管。

图2 双簇型晶体三极管输出特性图示电路

2.1 矩形波与锯齿波产生电路

矩形波与锯齿波产生电路由U1、定时电容C3、恒流管Q1等元器件构成。电路结构采用555定时器的无稳态多谐振荡形式,由Q1构成的恒流源对电容C3充电,其放电经电阻R1,555定时器7脚到地,因此电容C3两端的电压为线性度良好的正向锯齿波。由于定时电容C3充电时间长放电时间短,故555定时器3脚输出占空比接近于1的矩形波。矩形波与锯齿波同由555定时器产生,所以两者在时序上能够严格地同步[5]。

上一篇:电流和电路范文 下一篇:集成电路设计与集成系统范文

友情链接