逆变电源范文

时间:2023-02-28 07:32:44

逆变电源

逆变电源范文第1篇

1引言

近年来,我国上海、广州和北京等城市引进的地铁车辆上,辅助电源均采用了静止式辅助逆变电源。广州地铁和上海地铁2#线为IGBT辅助逆变电源;北京“复八线”为GTO热管散热器自冷式辅助逆变电源。因此开发和研制地铁车辆静止式辅助逆变电源实现国产化是发展我国城市轨道交通的必然趋势。静止式辅助逆变电源与传统的电动发电机组供电方式的比较如下:

(1)静止式辅助逆变电源直接从地铁动车第三轨受电,经过DC/DC斩波变换后向三相逆变器提供稳定的输入电压,通过VVVF变频调压控制,逆变器输出三相交流电压向负载供电,对于多路输出电源,电路采用变压器隔离形式。这种辅助逆变电源的优点是输出电压品质因数好、电源使用效率高、工作性能安全可靠。

(2)传统地铁辅助电源通常采用旋转式电动发电机组的供电方案。电动机从DC750V第三轨受电,发电机输出三相交流电压向负载供电,对于直流DC110V和DC24V部分用电设备,仍需通过三相变压器和整流装置提供电源。这种供电方式机组体积大、输出容量小、效率低,电源易受直流发电机组工况变化的影响,输出电压波动大,可靠性差。

2地铁车辆辅助电源系统方案比较

下面针对DC750V地铁车辆上几种常用的辅助逆变电源电路结构方案,进行分析和比较。211直接逆变方式图1是地铁车辆辅助逆变电源最简单的基本电路结构形式。开关元器件通常可采用大功率GTO,IGBT或IPM。辅助逆变电源采用直接从第三供电轨受流方式,逆变器按V/f等于常数的控制方式,输出三相脉宽调制电压向负载供电。这种电路的特点是电路结构简单、元器件使用数量少、控制方便,但缺点是逆变器电源输出电压容易受电网输入电压的波动影响,输入与输出不隔离,输出的电压品质因数差、谐波含量大、负载使用效率低。

212斩波降压逆变方式

斩波降压加逆变方式的辅助电源电路结构如图2所示。此电路主要由单管DC/DC斩波器、二点式逆变器、三相滤波器、隔离变压器和整流电路组成。逆变器输出经过三相滤波后,输出稳定的正弦三相交流电压,作为驱动空调机、风机等三相交流负载电源,同时三相交流电压经变压器和整流后,可实现电源的多路直流输出。其特点如下。

(1)三相逆变器输出电压不受输入电网电压波动的影响,DC/DC斩波的闭环控制可以保持逆变器输入电压的恒定。

(2)每台辅助逆变电源斩波器只需一只大功率高压IGBT元件,逆变器可以采用较低电压的IGBT元件。

(3)由于逆变器输入电压恒定,对于只要求CVCF控制的逆变器来说,只需要一定数量的梯波输出,即可保证逆变器输出稳定的脉宽调制电压,谐波含量小于5%。

(4)斩波器分散布置在每台车的电源上,机组结构统一。对于供电网,虽然每台电源斩波的开关频率相同,但它们之间的斩波相位差是随机的,同样可实现斩波器多相多重斩波作用。

(5)隔离变压器的使用实现了电网输入与输出负载之间的电气隔离。

213两重斩波降压逆变方式

与单管直接DC/DC斩波降压逆变方式的辅助电源电路基本相同,两重斩波器替代了DC/DC单管斩波器,开关元器件可采用GTO、IGBT或IPM。电路结构原理图如图3所示。其特点如下。

(1)采用两重斩波器,当上、下两个斩波器控制相位互相错开180°时,可以使斩波器的开关频率相应提高一倍,因而可大大减小滤波装置的体积和重量,降低逆变器中间直流环节电压的脉动量,提高辅助逆变电源的抗干扰能力。

(2)两重斩波器闭环控制起到了稳压和变压作用,因此可提高逆变器的输出效率。

(3)两重DC/DC斩波器与单管斩波器相比,开关元器件和斩波器的附件多了一倍,但管子的耐压可降低一半,提高了元件的使用裕度和设备的安全可靠性。

(4)直流供电网与负载之间的变压器隔离以及相应设计的滤波器,可以保证逆变器输出的三相交流电压谐波最小,且可降低对负载过充电压的影响,提高负载的使用寿命。

214升降压斩波逆变方式

为升降压斩波加逆变的地铁辅助电源电路结构原理图,前级斩波由一个平波电抗器及两个开关管、二极管和储能电抗器构成,升降压斩波器本质上相当于两相DC/DC直流变换器,控制系统采用PWM控制方式。两个开关管交替通断,按输出电压适当地控制脉冲宽度,可以获得与输入电压相反的恒定直流输出电压。后级逆变输出由两点式三相逆变器和三相滤波器组成。斩波器和逆变器开关元器件可采用GTO或IGBT,IPM等。此电路的特点是:电网电压的波动不影响斩波器输出电压的恒定稳定,当电网电压高于斩波器输出电压时,斩波器按降压斩波控制方式工作;当电网电压低于斩波器输出电压时,斩波器按升压斩波控制方式工作。两个开关管的交替导通和关断,提高了斩波开关频率,降低了储能电抗器体积和容量以及开关器件的电压应力,减小了输出电压的脉动量。

3地铁辅助逆变电源的开发与研制

铁道科学研究院机车车辆研究所早在20世纪80年代末,已开始采用先进的变流控制技术和新型大功率GTO和IGBT元器件,开发车载电源产品。先后研制出大功率GTO斩波器、两象桥式IGBT斩波器、驱动大功率直线电机和地铁车辆的车载IGBT逆变器。1999年研制客车DC600V供电系统的空调逆变电源,并于当年6月在铁道部四方车辆研究所通过了性能试验,9月在武昌车辆段K79/80上装车运行。

2000年开发研制出用于内燃机车和电力机车的空调逆变电源,该产品已在南昌内燃机务段和邵武电力机务段装车运行考核。2002年针对北京“复八线”地铁车辆进口辅助逆变电源的技术条件,铁道科学研究院机车车辆研究所研制开发出了DC750V国产化地铁车辆辅助电源工程化机组,并通过铁道部产品质量监督检测中心机车车辆检验站的型式试验。开发研制的DC750V地铁辅助电源总容量为40kVA,主要负荷为照明、换气扇、司机室空调机组和车辆DC110V,DC24V控制电源。考虑到电源的可靠性和车辆上多路电源的随机多重性,电源主电路采用单管斩波降压逆变电路,大功率IGBT开关元件和热管散热方式。控制采用斩波和逆变双闭环脉宽调制控制技术,保证了电源三相交流输出电压稳定性好、谐波含量低。其主要技术参数见表1。

这种地铁辅助电源具有如下特点。

(1)辅助电源斩波器采用斩波闭环控制方式,保证输入电压变化时,逆变电源中间直流环节的电压稳定。

(2)输出逆变器的开关频率设定为214kHz,采用了谐波抑制方法,有效地抑制了输出电压、电流谐波含量和对输出高频隔离变压器冲击,提高了逆变器的功率因数和负载的使用效率。

(3)采用三相滤波装置和隔离变压器,实现了输入与输出、交流负载和直流输出电源之间的电气隔离。

(4)采用变频启动方式,电器负载的启动电流冲击小,有利于延长负载设备的使用寿命。

(5)控制系统采用了MC80C196十六位单片机作为主控制单元,具有实施控制、保护、自诊断、自恢复、故障存储、LED指示灯和汉字显示、数据传输、指令接收等功能。

(6)控制系统设有短路、过压、欠压、过流、过热、接地等故障保护功能,保护信号消失后自动恢复运行,提高了地铁辅助逆变电源的安全性和可靠性。

(7)主控制单元使用箱式插板结构,便于维修、检修及更换设备。为适应机车运行中的冲击大、振动大等特点,机箱采用金属框架结构,具有较高的机械强度和良好的电磁屏蔽效果。

4结论

(1)采用静止辅助逆变电源代替传统的直流发电机组供电装置,已是地铁与轻轨城市轨道交通发展的必然趋势。

(2)静止辅助逆变电源方案的选择,应结合国内电力电子技术的发展、元器件的使用水平以及国外地铁电动车组辅助逆变电源的发展方向,研制和开发出适合我国城市轨道交通地铁和轻轨车辆的辅助逆变供电系统。

(3)地铁静止辅助逆变电源的研制成功标志着我们已具备了开发和生产国产化地铁辅助电源的能力。

参考文献

[1]菊池高弘.日本铁道车辆用新型逆变器[J].国外铁道车辆,2000,37(5):23—26.

[2]第三代IGBT和智能功率模块应用手册[M].三菱电机,1996.

[3]SIV使用说明书[Z].东洋电机制造株式会社,1998.

[4]吴忠,李红,左鹏,等.自然采样SPWM逆变电源的谐波分析及抑制策略[J].电网技术,2001,24(4):1—5.

逆变电源范文第2篇

【关键词】逆变电源 应用 技术革新

在现在的生产企业中,电源系统具有非常重要的作用,此系统质量的优劣,能够决定企业的生产效益,因此一定要引起相关工作者的重视。而在所有电源系统的性能方面,要数逆变电源最高,它诞生于上世纪的六十年代末,在问世以后,就占据了大部分的市场资源。与其他电源系统相比,逆变电源不但具有很强的稳定性,同时在质量方面也具有极强的优势,因此得到了很多企业的青睐,那么下面我们以逆变电源的发展历程为角度,来具体的讨论一下是如何对它进行技术革新的。

1 逆变电源的发展

电力电子器件的发展,推动了逆变电源的技术革新脚步。具体说来,一共分为三个阶段:

首代逆变电源的逆变器开关器件,选用的是晶闸管,因此又被叫做可控硅逆变电源,这种类型逆变电器的诞生,很好的代替了旋转型变流机组的地位,并在企业的生产过程中体现出了非常显著的作用。不过因为这代逆变电源并不具备自关断的功能,所以就只能通过加大换流电路来关断可控硅逆变电源。另外,换流电路的结构比较繁琐,而且体积也很大,还会发出很强的噪音,因此这些弊端,很大程度的影响了逆变电源的发展。

第二代逆变电源的逆变开关电器,考虑到上一代的弊端问题,因此选用了自关断器件。而进入到上世纪七十年代末以后,自关断器件得到大量的生产,这也因此大幅度的提升了逆变电源的质量,这也同时让其动态特性也得到了明显的加强。其中主要的产品有可关断晶闸管、电力晶体管等等。

第三代逆变电源则是在质量上取得了巨大的突破,其主要的原因在于利用了实时反馈控制技术。此项技术主要是根据第二代逆变电源中所存在的不足,所进行的具有针对性的改良,主要是让逆变电源增强了对非线性负载的适应能力。第三代逆变电源目前的发展势头良好,不过并不是特别的完善,仍需要进一步的发展。

2 应用

2.1 光伏发电

由于能源危机已经成为了一个无法回避的重要的问题,因此当今社会更加重视可持续发展战略。尤其是油气资源的进一步减少,和转变期过程当中对环境造成的破坏,让很多的国家意识到开发新能源的重要意义,而若想实现这个目标,关键在于如何对太阳能进行利用,并制定出实之有效的战略方案,而在此期间,光伏发电受到了很多的关注。太阳能是用不尽的,利用电池列阵,可以把太阳能转换成直流电,然后再利用逆变系统,转换成交流电,这样的话,就能够并入电网,从而让用户使用到电。而这就是光伏发电。

2.2 风力发电

风能对环境不会造成污染,而且还是再生资源,因此得到了很多国家的关注。而通常所说的风力发电,就是将风能转化为机械能,然后再将机械能转变为电能。而在运用期间,由于风力、风速 的关系,让交流电变的不是很稳定,因此很难并入电网,而这给风力发电的发展造成了十分不利的影响。不过若是采用逆变技术的话,那么就会得到极好的改善:首先要利用整流,让交流变的稳定一些,这样就会形成直流电;之后经过逆变,直流电就会变成交流,并且还会具有稳定性,如此一来,就可以并入电网,并最终让用户得以使用到。

3 技术革新

3.1 PWM软开关技术

此项技术,主要是通过采取输出电压的脉宽的方式,把直流电压转变为幅值相等的交流脉冲电压,这样的话就可以很好的对交流脉冲电压进行控制。想要让PWM软开关技术完成控制任务的方法有很多种,比如用电压或者电流来对PWM进行控制等等。同时,该项技术还能够加强开关器件的工作效率,尤其是能够达到20kHz的开关频率,在效果上会体现的更加明显。

此项技术的基本想法是:在传统的PWM变换器上安装一个谐振网络,并且这个谐振网络必须要由功率开关构成。当开关进行转变的时候,谐振网络就开始工作,因为谐振过程并不会消耗太长的时间,所以不会让PWM技术受到影响。但有一点需要明确的是,因为谐振网络的关系,势必会对谐振造成一定的消耗,同时让电路也会受到干扰,这样就会使得PWM软开发技术在应用方面具有一定的局限性。不过由于PWM软开发技术是目前完成电力电子高频化的最有效方式,因此该项技术一定会很好的加强逆变器的性能。

3.2 多电平技术

尽管PWM技术非常的重要,但是对谐振具有很大的消耗,这是该项技术的一个非常明显的弊端。在这种情况下,相关研究人员变研发出了多点平逆变技术,而且已经慢慢的变成了电力领域发展的主流。而此项技术的主要目标在于,让电路的拓扑结构得以改变,从而确保逆变开关能够在低频的环境下工作,这样的话,就可以很好的降低开关应力,并最终得以让逆变器的输出效果得到明显的提升。

3.3 并联技术

若想加强电源系统的稳定性,就一定要采用并联技术。而此项技术在得到推广以后,就取得了迅速的发展。它在改变系统工作效率方面取得了非常显著的效果。根据电网能量转换的特性来看,主要的拓扑结构包括独立以及交互式并联系统、独立直流电源和共同直流电源并联系统及电压源。此外,若想保证每个逆变器的电压幅值能够保持在正常的范围以内,并让频率之间维持同步,那么最好采取集中、分散、主从以及无互连线分散的电流控制方式。

4 结语

由于科技的进步,让电源技术得到了很大程度的发展,种类也逐渐的增多了起来,因此这也让逆变电源得到了极为广泛的运用。而逆变电源一共经历了三个阶段的发展历史,取得了非常显著的效果,目前,已经进入到了技术革新的阶段,并且在PWM软开关技术、多电平技术以及并联技术等方面的发展上都取得了很好的效果。因此,在今后的工作中,相关工作者更是要积极努力,开创崭新的技术革新工作,从而让我国的逆变电源的发展水平迈向一个新的高度。

参考文献:

[1]孙立军.逆变电源的发展与技术革新[J].农业科技与装备,2012,09:56-58.

[2]李瑞荣.PWM逆变器谐波分析及特定消谐法研究[D].太原科技大学,2015.

[3]赵飞.浅谈太阳能光伏系统中的逆变器(DC/AC)设计理念[J].山东工业技术,2015,22:69.

逆变电源范文第3篇

1  引 言

近年来, 我国上海、广州和北京等城市引进的地铁车辆上, 辅助电源均采用了静止式辅助逆变电源。广州地铁和上海地铁2# 线为igbt 辅助逆变电源; 北京“复八线” 为gto 热管散热器自冷式辅助逆变电源。因此开发和研制地铁车辆静止式辅助逆变电源实现国产化是发展我国城市轨道交通的必然趋势。静止式辅助逆变电源与传统的电动发电机组供电方式的比较如下:

(1) 静止式辅助逆变电源直接从地铁动车第三轨受电, 经过dc/ dc 斩波变换后向三相逆变器提供稳定的输入电压, 通过vvvf 变频调压控制, 逆变器输出三相交流电压向负载供电, 对于多路输出电源, 电路采用变压器隔离形式。这种辅助逆变电源的优点是输出电压品质因数好、电源使用效率高、工作性能安全可靠。

(2) 传统地铁辅助电源通常采用旋转式电动发电机组的供电方案。电动机从dc750v 第三轨受电, 发电机输出三相交流电压向负载供电, 对于直流dc110v 和dc24v 部分用电设备, 仍需通过三相变压器和整流装置提供电源。这种供电方式机组体积大、输出容量小、效率低, 电源易受直流发电机组工况变化的影响, 输出电压波动大, 可靠性差。

2  地铁车辆辅助电源系统方案比较

下面针对dc750v 地铁车辆上几种常用的辅助逆变电源电路结构方案, 进行分析和比较。211  直接逆变方式图1 是地铁车辆辅助逆变电源最简单的基本电路结构形式。开关元器件通常可采用大功率gto , igbt 或ipm 。辅助逆变电源采用直接从第三供电轨受流方式, 逆变器按v/ f 等于常数的控制方式, 输出三相脉宽调制电压向负载供电。这种电路的特点是电路结构简单、元器件使用数量少、控制方便, 但缺点是逆变器电源输出电压容易受电网输入电压的波动影响, 输入与输出不隔离, 输出的电压品质因数差、谐波含量大、负载使用效率低。

图1  直接逆变辅助电源电路结构原理图

212  斩波降压逆变方式

斩波降压加逆变方式的辅助电源电路结构如图2 所示。此电路主要由单管dc/ dc 斩波器、二点式逆变器、三相滤波器、隔离变压器和整流电路组成。逆变器输出经过三相滤波后, 输出稳定的正弦三相交流电压, 作为驱动空调机、风机等三相交流负载电源, 同时三相交流电压经变压器和整流后, 可实现电源的多路直流输出。其特点如下。

(1) 三相逆变器输出电压不受输入电网电压波动的影响, dc/ dc 斩波的闭环控制可以保持逆变器输入电压的恒定。

(2) 每台辅助逆变电源斩波器只需一只大功率高压igbt 元件, 逆变器可以采用较低电压的igbt 元件。

(3) 由于逆变器输入电压恒定, 对于只要求cvcf 控制的逆变器来说, 只需要一定数量的梯波输出, 即可保证逆变器输出稳定的脉宽调制电压, 谐波含量小于5 % 。

(4) 斩波器分散布置在每台车的电源上, 机组结构统一。对于供电网, 虽然每台电源斩波的开关频率相同, 但它们之间的斩波相位差是随机的, 同样可实现斩波器多相多重斩波作用。

(5) 隔离变压器的使用实现了电网输入与输出负载之间的电气隔离。

图2  斩波降压逆变方式电路结构原理图

213  两重斩波降压逆变方式

与单管直接dc/ dc 斩波降压逆变方式的辅助电源电路基本相同, 两重斩波器替代了dc/ dc 单管斩波器, 开关元器件可采用gto 、igbt 或ipm 。电路结构原理图如图3 所示。其特点如下。

(1) 采用两重斩波器, 当上、下两个斩波器控制相位互相错开180°时, 可以使斩波器的开关频率相应提高一倍, 因而可大大减小滤波装置的体积和重量, 降低逆变器中间直流环节电压的脉动量, 提高辅助逆变电源的抗干扰能力。

(2) 两重斩波器闭环控制起到了稳压和变压作用, 因此可提高逆变器的输出效率。

(3) 两重dc/ dc 斩波器与单管斩波器相比, 开关元器件和斩波器的附件多了一倍, 但管子的耐 压可降低一半, 提高了元件的使用裕度和设备的安全可靠性。

(4) 直流供电网与负载之间的变压器隔离以及相应设计的滤波器, 可以保证逆变器输出的三相交流电压谐波最小, 且可降低对负载过充电压的影响, 提高负载的使用寿命。

图3  两重斩波降压逆变方式电路结构原理图

214  升降压斩波逆变方式

图4 为升降压斩波加逆变的地铁辅助电源电路结构原理图, 前级斩波由一个平波电抗器及两个开关管、二极管和储能电抗器构成, 升降压斩波器本质上相当于两相dc/ dc 直流变换器, 控制系统采用pwm 控制方式。两个开关管交替通断, 按输出电压适当地控制脉冲宽度, 可以获得与输入电压相反的恒定直流输出电压。后级逆变输出由两点式三相逆变器和三相滤波器组成。斩波器和逆变器开关元器件可采用gto 或igbt , ipm 等。此电路的特点是: 电网电压的波动不影响斩波器输出电压的恒定稳定, 当电网电压高于斩波器输出电压时, 斩波器按降压斩波控制方式工作; 当电网电压低于斩波器输出电压时, 斩波器按升压斩波控制方式工作。两个开关管的交替导通和关断, 提高了斩波开关频率, 降低了储能电抗器体积和容量以及开关器件的电压应力, 减小了输出电压的脉动量。

图4  升降压斩波逆变方式电路结构原理图

3  地铁辅助逆变电源的开发与研制

铁道科学研究院机车车辆研究所早在20 世纪80 年代末, 已开始采用先进的变流控制技术和新型大功率gto 和igbt 元器件, 开发车载电源产品。先后研制出大功率gto 斩波器、两象桥式igbt 斩波器、驱动大功率直线电机和地铁车辆的车载igbt 逆变器。1999 年研制客车dc600v 供电系统的空调逆变电源, 并于当年6 月在铁道部四方车辆研究所通过了性能试验,9 月在武昌车辆段k79/ 80 上装车运行。

2000 年开发研制出用于内燃机车和电力机车的空调逆变电源, 该产品已在南昌内燃机务段和邵武电力机务段装车运行考核。 2002 年针对北京“ 复八线” 地铁车辆进口辅助逆变电源的技术条件, 铁道科学研究院机车车辆研究所研制开发出了dc750v 国产化地铁车辆辅助电源工程化机组, 并通过铁道部产品质量监督检测中心机车车辆检验站的型式试验。开发研制的dc750v 地铁辅助电源总容量为40 kva , 主要负荷为照明、换气扇、司机室空调机组和车辆dc110v , dc24v 控制电源。考虑到电源的可靠性和车辆上多路电源的随机多重性, 电源主电路采用单管斩波降压逆变电路, 大功率igbt 开关元件和热管散热方式。控制采用斩波和逆变双闭环脉宽调制控制技术, 保证了电源三相交流输出电压稳定性好、谐波含量低。其主要技术参数见表1 。

表1  地铁辅助电源装置主要技术参数

这种地铁辅助电源具有如下特点。

(1) 辅助电源斩波器采用斩波闭环控制方式, 保证输入电压变化时, 逆变电源中间直流环节的电压稳定。

(2) 输出逆变器的开关频率设定为214 khz , 采用了谐波抑制方法, 有效地抑制了输出电压、电流谐波含量和对输出高频隔离变压器冲击, 提高了逆变器的功率因数和负载的使用效率。

(3) 采用三相滤波装置和隔离变压器, 实现了输入与输出、交流负载和直流输出电源之间的电气隔离。

(4) 采用变频启动方式, 电器负载的启动电流冲击小, 有利于延长负载设备的使用寿命。

(5) 控制系统采用了mc80c196 十六位单片机作为主控制单元, 具有实施控制、保护、自诊断、自恢复、故障存储、l ed 指示灯和汉字显示、数据传输、指令接收等功能。

(6) 控制系统设有短路、过压、欠压、过流、过热、接地等故障保护功能, 保护信号消失后自动恢复运行, 提高了地铁辅助逆变电源的安全性和可靠性。

(7) 主控制单元使用箱式插板结构, 便于维修、检修及更换设备。为适应机车运行中的冲击大、振动大等特点, 机箱采用金属框架结构, 具有较高的机械强度和良好的电磁屏蔽效果。

dc750v 地铁辅助电源额定负载试验波形如图5 ~ 图8 所示。

图5  输入电压与输出电压的稳态波形

图6  输出电压、电流波形

图7  中间环节电压起动、稳态、停止过程

4  结 论

(1) 采用静止辅助逆变电源代替传统的直流发电机组供电装置, 已是地铁与轻轨城市轨道交通发展的必然趋势。

(2) 静止辅助逆变电源方案的选择, 应结合国内电力电子技术的发展、元器件的使用水平以及国外地铁电动车组辅助逆变电源的发展方向, 研制和开发出适合我国城市轨道交通地铁和轻轨车辆的辅助逆变供电系统。

(3) 地铁静止辅助逆变电源的研制成功标志着我们已具备了开发和生产国产化地铁辅助电源的能力。

图8  输出电压、电流起动、稳态、停机过程

参考文献

[ 1 ]  菊池高弘. 日本铁道车辆用新型逆变器[j ] . 国外铁道车辆, 2000 , 37(5) : 23 —26.

[ 2 ]  第三代igbt 和智能功率模块应用手册[m] . 三菱电机, 1996.

[ 3 ]  siv 使用说明书[ z] . 东洋电机制造株式会社, 1998.

[ 4 ]  吴 忠, 李 红, 左 鹏, 等. 自然采样spwm 逆变电源的谐波分析及抑制策略[j ] . 电网技术, 2001 , 24(4) : 1 —5.

逆变电源范文第4篇

近年来,我国上海、广州和北京等城市引进的地铁车辆上,辅助电源均采用了静止式辅助逆变电源。广州地铁和上海地铁2#线为IGBT辅助逆变电源;北京“复八线”为GTO热管散热器自冷式辅助逆变电源。因此开发和研制地铁车辆静止式辅助逆变电源实现国产化是发展我国城市轨道交通的必然趋势。静止式辅助逆变电源与传统的电动发电机组供电方式的比较如下:

(1)静止式辅助逆变电源直接从地铁动车第三轨受电,经过DC/DC斩波变换后向三相逆变器提供稳定的输入电压,通过VVVF变频调压控制,逆变器输出三相交流电压向负载供电,对于多路输出电源,电路采用变压器隔离形式。这种辅助逆变电源的优点是输出电压品质因数好、电源使用效率高、工作性能安全可靠。

(2)传统地铁辅助电源通常采用旋转式电动发电机组的供电方案。电动机从DC750V第三轨受电,发电机输出三相交流电压向负载供电,对于直流DC110V和DC24V部分用电设备,仍需通过三相变压器和整流装置提供电源。这种供电方式机组体积大、输出容量小、效率低,电源易受直流发电机组工况变化的影响,输出电压波动大,可靠性差。

2地铁车辆辅助电源系统方案比较

下面针对DC750V地铁车辆上几种常用的辅助逆变电源电路结构方案,进行分析和比较。211直接逆变方式图1是地铁车辆辅助逆变电源最简单的基本电路结构形式。开关元器件通常可采用大功率GTO,IGBT或IPM。辅助逆变电源采用直接从第三供电轨受流方式,逆变器按V/f等于常数的控制方式,输出三相脉宽调制电压向负载供电。这种电路的特点是电路结构简单、元器件使用数量少、控制方便,但缺点是逆变器电源输出电压容易受电网输入电压的波动影响,输入与输出不隔离,输出的电压品质因数差、谐波含量大、负载使用效率低。

图1直接逆变辅助电源电路结构原理图

212斩波降压逆变方式

斩波降压加逆变方式的辅助电源电路结构如图2所示。此电路主要由单管DC/DC斩波器、二点式逆变器、三相滤波器、隔离变压器和整流电路组成。逆变器输出经过三相滤波后,输出稳定的正弦三相交流电压,作为驱动空调机、风机等三相交流负载电源,同时三相交流电压经变压器和整流后,可实现电源的多路直流输出。其特点如下。

(1)三相逆变器输出电压不受输入电网电压波动的影响,DC/DC斩波的闭环控制可以保持逆变器输入电压的恒定。

(2)每台辅助逆变电源斩波器只需一只大功率高压IGBT元件,逆变器可以采用较低电压的IGBT元件。

(3)由于逆变器输入电压恒定,对于只要求CVCF控制的逆变器来说,只需要一定数量的梯波输出,即可保证逆变器输出稳定的脉宽调制电压,谐波含量小于5%。

(4)斩波器分散布置在每台车的电源上,机组结构统一。对于供电网,虽然每台电源斩波的开关频率相同,但它们之间的斩波相位差是随机的,同样可实现斩波器多相多重斩波作用。

(5)隔离变压器的使用实现了电网输入与输出负载之间的电气隔离。

图2斩波降压逆变方式电路结构原理图

213两重斩波降压逆变方式

与单管直接DC/DC斩波降压逆变方式的辅助电源电路基本相同,两重斩波器替代了DC/DC单管斩波器,开关元器件可采用GTO、IGBT或IPM。电路结构原理图如图3所示。其特点如下。

(1)采用两重斩波器,当上、下两个斩波器控制相位互相错开180°时,可以使斩波器的开关频率相应提高一倍,因而可大大减小滤波装置的体积和重量,降低逆变器中间直流环节电压的脉动量,提高辅助逆变电源的抗干扰能力。

(2)两重斩波器闭环控制起到了稳压和变压作用,因此可提高逆变器的输出效率。

(3)两重DC/DC斩波器与单管斩波器相比,开关元器件和斩波器的附件多了一倍,但管子的耐压可降低一半,提高了元件的使用裕度和设备的安全可靠性。

(4)直流供电网与负载之间的变压器隔离以及相应设计的滤波器,可以保证逆变器输出的三相交流电压谐波最小,且可降低对负载过充电压的影响,提高负载的使用寿命。

图3两重斩波降压逆变方式电路结构原理图

214升降压斩波逆变方式

图4为升降压斩波加逆变的地铁辅助电源电路结构原理图,前级斩波由一个平波电抗器及两个开关管、二极管和储能电抗器构成,升降压斩波器本质上相当于两相DC/DC直流变换器,控制系统采用PWM控制方式。两个开关管交替通断,按输出电压适当地控制脉冲宽度,可以获得与输入电压相反的恒定直流输出电压。后级逆变输出由两点式三相逆变器和三相滤波器组成。斩波器和逆变器开关元器件可采用GTO或IGBT,IPM等。此电路的特点是:电网电压的波动不影响斩波器输出电压的恒定稳定,当电网电压高于斩波器输出电压时,斩波器按降压斩波控制方式工作;当电网电压低于斩波器输出电压时,斩波器按升压斩波控制方式工作。两个开关管的交替导通和关断,提高了斩波开关频率,降低了储能电抗器体积和容量以及开关器件的电压应力,减小了输出电压的脉动量。

图4升降压斩波逆变方式电路结构原理图

3地铁辅助逆变电源的开发与研制

铁道科学研究院机车车辆研究所早在20世纪80年代末,已开始采用先进的变流控制技术和新型大功率GTO和IGBT元器件,开发车载电源产品。先后研制出大功率GTO斩波器、两象桥式IGBT斩波器、驱动大功率直线电机和地铁车辆的车载IGBT逆变器。1999年研制客车DC600V供电系统的空调逆变电源,并于当年6月在铁道部四方车辆研究所通过了性能试验,9月在武昌车辆段K79/80上装车运行。

2000年开发研制出用于内燃机车和电力机车的空调逆变电源,该产品已在南昌内燃机务段和邵武电力机务段装车运行考核。2002年针对北京“复八线”地铁车辆进口辅助逆变电源的技术条件,铁道科学研究院机车车辆研究所研制开发出了DC750V国产化地铁车辆辅助电源工程化机组,并通过铁道部产品质量监督检测中心机车车辆检验站的型式试验。开发研制的DC750V地铁辅助电源总容量为40kVA,主要负荷为照明、换气扇、司机室空调机组和车辆DC110V,DC24V控制电源。考虑到电源的可靠性和车辆上多路电源的随机多重性,电源主电路采用单管斩波降压逆变电路,大功率IGBT开关元件和热管散热方式。控制采用斩波和逆变双闭环脉宽调制控制技术,保证了电源三相交流输出电压稳定性好、谐波含量低。其主要技术参数见表1。

逆变电源范文第5篇

关键词:逆变电源;DSP;SPWM;PID控制;保护电路

中图分类号:TM464 文献标识码:A 文章编号:1009-2374(2011)04-0106-02

随着新能源产业的发展,对逆变电源输出特性和稳定性的要求也越来越高。而目前的逆变电源的控制趋势是往数字化发展,数字化可以实现电路的简化,输出特性和效率的提高。本文设计并研制了1kw样机,实验结果表明在减少谐波和提高响应速度方面具有优越性。

一、逆变器原理和结构

逆变系统电能变换主要由二部分组成:前级的DC-DC变换器以及后级的DC-AC变换器。前级需要将地输入的直流电压升压直420V以上,通过直流母线的连接,再利用DC-AC变换器将直流输入转变成220VAC的交流输出。DC-DC升压部分选择推挽结构,DC-AC逆变部分采用全桥逆变结构。

核心控制电路使用TMS320F28023,输出SPWM控制信号,控制后级驱动芯片。

图1为逆变电源主体结构图:

DC-DC升压部分采用推挽结构,通过输出互补两路的PWM信号控制开关管,通过高频变压器进行升压到420V。图2为推挽升压示意图:

逆变部分采用全桥结构,同样利用DSP输出PWMgg号,驱动后级驱动芯片,实现对开关管的控制,通过输出的滤波整形,达到正弦波输出。该电路主体结构如图3所示。

二、SPWM的实现方法

在采样控制理论中有一个重要结论:冲量相等而形状不同的脉冲,加在具有惯性环节上,其效果基本相同。基于这个理论,将一组幅度相等,宽度不等的脉冲,使脉冲的中点和相对的正弦等分的中点重合,且使脉冲面积和相应的正弦部分冲量相等,就可以得到一组SPWM波形。如果把期望的目标波形作为调制信号,把受调制信号作为载波,通过对载波的调制可以得到期望的SPWM波。

(一)SPWM调制模式下ZVS的实现

由于开关频率的提高,传统硬开关模式存在以下一些主要问题:开关损耗问题,容性开通问题和感性关断问题,二极管反向恢复问题,引起整体电路EMI问题。而软开关ZVS技术在这个方面能够有效的防止或者减少以上问题的产生。理想状态下ZVS开通过程是:电压下降到零后,电流再缓慢上升到通态值,开通损耗近似为零。因功率管开通前电压已下降到零,其结电容上的电压即为零,故解决了容性开通问题,同时二极管已经截止,其反向恢复过程结束,因此二极管的反向恢复问题亦不存在。关断过程为:电流先下降到零,电压再缓慢上升到断态值,所以关断损耗近似为零。由于功率管关断前电流已下降到零,即线路电感中电流亦为零,所以感性关断问题得以解决。图4为ZVS软开关示意图。

(二)SPWM软件控制实现

产生SPWM的方法有硬件法和软件法,其中的软件法是通过实时计算来生成SPWM波,利用DSP实现软件法而且其电路简单通用,可编程能力强,是性价比最好的SPWM生成方法。虽然软件法要求建立数学模型而且对MCU的运算能力要求高,但是DSP的特点在于运算能力强大,同时提供专用的PWM通道,因此是理想的控制处理器。

三、PlD控制

PID控制的特点是控制方式简单,参数易于整定。但是在逆变电源上运用PID却是存在很大的不足:如果控制策略中采用简单的输出电压瞬时值反馈,负载为非线性负载时,动态性能将不会令人满意。若采用庞大的模拟控制电路,将使得控制系统的可靠性下降,而且也不易于参数的整定。针对传统的PID控制的种种不足,引入DSP控制芯片,利用DSP的运算能力可以得到改善。

四、保护电路

逆变电源的基本结构除上述的升压,逆变电路和控制电路外,还有系统保护电路。

蓄电池充放电控制电路:当蓄电池的电压过高时,将停止充电,相反,当蓄电池的电压过低时,太阳能电池输出电压就对蓄电池充电。负载短路保护:承受负载短路的电路保护,当负载发生短路时切断电源。反接保护:承受负载、太阳能电池组件或蓄电池极性反接的电路保护。雷击保护:承受在多雷区由于雷击引起的击穿保护,防止雷击击穿。欠压保护:当蓄电池电压低于“欠压点”时,为了避免过放电而损坏蓄电池,设备将自动切断逆变输出。过载保护:如果交流输出功率超过额定功率时,设备将自动切断逆变输出。

五、实验技术参数

通过1kW样机的制作,对样机进行容性负载的实验,在太阳能板输入电压为:40-60VDC的条件下,输出电压达到:2204±10%VAC,输出频率:50±0.5%Hz,输出波形畸变度:≤5%,功率因数:≥0.7,输出效率:≥91%。基本满足行业标准,验证了本系统的可行性。

六、结 语

相对普通单片机而言,以DSP作为主控芯片,能够充分利用其强大的运算能力,在减少谐波和提高响应速度方面具有优越性,满载最高效率达到92%,可以看出DSP在逆变电源的运用上,有着强大的优越性,适用于对输出特性要求较高的场合。

参考文献:

[1]李宏,王崇武,现代电力电子技术基础[M],机械工业出版社,2008

[2]徐科军,陶维青,汪海宁,DSP及其电气与自动化工程应用[M],北京航空航天大学出版社,2010

[3]林渭勋,现代电力电子技术[M],机械工业出版社,2006

逆变电源范文第6篇

关键词:地铁车辆;辅助电源;节能

辅助电源系统是车辆牵引控制系统的重要组成部分。SIV为车辆客室空调机组及通风装置、空压机、电加热器、交流照明等交流负载提供三相与单相交流电源;充电机为车载各系统控制电路、直流照明、电动车门及车载信号与通信设备提供直流电源并给蓄电池组充电。辅助电源系统工作的安全性、可靠性对车辆正常运营具有重要影响。在车辆设计的前期就需要对系统的构成、容量范围、功能与性能要求等进行计算、分析和对比,选择合适的系统及设备、合适的参数来构成最优的辅助供电系统,满足车辆运营要求、降低系统的全寿命周期成本。

1、直接逆变方式

直接逆变辅助电源电路结构原理是地铁车辆辅助逆变电源最简单的基本电路结构形式。开关元器件通常可采用大功率GTO,IGBT或IPM。辅助逆变电源采用直接从第三供电轨受流方式,逆变器按V/f等于常数的控制方式,输出三相脉宽调制电压向负载供电。这种电路的特点是电路结构简单、元器件使用数量少、控制方便,但缺点是逆变器电源输出电压容易受电网输入电压的波动影响,输入与输出不隔离,输出的电压品质因数差、谐波含量大、负载使用效率低。

2、斩波降压逆变方式

斩波降压加逆变方式的辅助电源电路结构主要由单管DC/DC斩波器、二点式逆变器、三相滤波器、隔离变压器和整流电路组成。逆变器输出经过三相滤波后,输出稳定的正弦三相交流电压,作为驱动空调机、风机等三相交流负载电源,同时三相交流电压经变压器和整流后,可实现电源的多路直流输出。其特点如下。三相逆变器输出电压不受输入电网电压波动的影响,DC/DC斩波的闭环控制可以保持逆变器输入电压的恒定。每台辅助逆变电源斩波器只需一只大功率高压IGBT元件,逆变器可以采用较低电压的IGPT元件。由于逆变器输入电压恒定,对于只要求#+#,控制的逆变器来说,只需要一定数量的梯波输出,即可保证逆变器输出稳定的脉宽调制电压,谐波含量小于5%。斩波器分散布置在每台车的电源上,机组结构统一。对于供电网,虽然每台电源斩波的开关频率相同,但它们之间的斩波相位差是随机的,同样可实现斩波器多相多重斩波作用。隔离变压器的使用实现了电网输入与输出负载之间的电气隔离。(图一)

3、两重斩波降压逆变方式

与单管直接DC/DC斩波降压逆变方式的辅助电源电路基本相同,两重斩波器替代了DC/DC单管斩波器,开关元器件可采用GTO或IGBT。其特点是采用两重斩波器,当上、下两个斩波器控制相位互相错开180°时,可以使斩波器的开关频率相应提高一倍,因而可大大减小滤波装置的体积和重量,降低逆变器中间直流环节电压的脉动量,提高辅助逆变电源的抗干扰能力。两重斩波器闭环控制起到了稳压和变压作用,因此可提高逆变器的输出效率。两重DC/DC斩波器与单管斩波器相比,开关元器件和斩波器的附件多了一倍,但管子的耐压可降低一半,提高了元件的使用裕度和设备的安全可靠性。直流供电网与负载之间的变压器隔离以及相应设计的滤波器,可以保证逆变器输出的三相交流电压谐波最小,且可降低对负载过充电压的影响,提高负载的使用寿命。

4、升降压斩波逆变方式

升降压斩波加逆变的地铁辅助电源的前级斩波是由一个平波电抗器及两个开关管、二极管和储能电抗器构成,升降压斩波器本质上相当于两相DC/DC直流变换器,控制系统采用PWM控制方式。两个开关管交替通断,按输出电压适当地控制脉冲宽度,可以获得与输入电压相反的恒定直流输出电压。后级逆变输出由两点式三相逆变器和三相滤波器组成。斩波器和逆变器开关元器件可采用GTO或IGBT,IPM等。此电路的特点是:电网电压的波动不影响斩波器输出电压的恒定稳定,当电网电压高于斩波器输出电压时,斩波器按降压斩波控制方式工作;当电网电压低于斩波器输出电压时,斩波器按升压斩波控制方式工作。两个开关管的交替导通和关断,提高了斩波开关频率,降低了储能电抗器体积和容量以及开关器件的电压应力,减小了输出电压的脉动量。

综上所述,采用静止辅助逆变电源代替传统的直流发电机组供电装置,已是地铁与轻轨城市轨道交通发展的必然趋势。静止辅助逆变电源方案的选择,应结合国内电力电子技术的发展、元器件的使用水平以及国外地铁电动车组辅助逆变电源的发展方向,研制和开发出适合我国城市轨道交通地铁和轻轨车辆的辅助逆变供电系统。地铁静止辅助逆变电源的研制成功标志着我们已具备了开发和生产国产化地铁辅助电源的能力。

参考文献:

[1]李红,自然采样逆变电源的谐波分析及抑制策略[J],电网技术,2011

逆变电源范文第7篇

关键词:绝缘栅双极晶体管;中频逆变电源;驱动;正弦波脉宽调制

引言

400Hz中频电源在工业、国防、航海、航空等领域中应用非常广泛。目前在我国,400Hz中频供电系统大多为中频机组,体积大,噪音高,效率低,管理不便。我们研制了一台用绝缘栅双极晶体管(IGBT)做为主功率开关器件的400Hz正弦波中频逆变电源,它具有体积小,重量轻,噪音低,转换效率高,工作可靠,使用方便等优点,是中频机组的理想替代新产品。

IGBT是新一代复合型电力电子器件,它的控制级为绝缘栅控场效应晶体管,输出级为双极功率晶体管,因而它兼有两者的优点而克服了两者的缺点,如高的输入阻抗;高的开关频率;很小的驱动功率;通态压降小;电流密度大等。

图1

1系统组成及工作原理

1.1逆变电源主电路

正弦波中频逆变电源的主电路构成如图1中的上半部分所示,图中K1为空气开关。L为EMI滤波器,用以滤掉电网中的干扰和消除逆变电源对电网的干扰。K2,K3,K4为接触器,K2的作用是在系统启动时接通电源,在故障时切断主电源,其辅助触点K2′用来在停机或保护电路动作时使滤波电容C1及C2上贮存的能量通过电阻R2快速放掉,以便检修或避免掉电时电容C1及C2中聚积的能量还未放完,逆变桥中同桥臂上下主功率IGBT因驱动脉冲电平不确定发生同时导通而损坏。接触器K3和电阻R1构成软起动电路,其作用是在系统启动时,通过电阻R1缓慢地对电容C1及C2充电,防止直接启动时由于电容器C1及C2上初始电压为零,导致整流桥模块承受过大的电流冲击而损坏,当电容C1及C2上的电压充到一定值时,接触器K3动作,其触点将电阻R1短接。K4用于将电源输出与负载隔开,等系统启动成功后再将负载接通,以保证电源系统顺利启动及保护用电设备。滤波电容C1及C2用来对整流后的电压进行滤波,以保证提供给逆变桥的电压为平直的直流电压。R3及R4分别并于C1及C2两端,以保证C1及C2各承受主电路中直流电压的一半。S为霍尔电流传感器,对逆变电源的直通及短路保护提供一取样信号。V1~V4为4只IGBT,构成桥式逆变电路。C3及C4用来抑制IGBT通断过程中因电路中电感的存在引起的尖峰脉冲电压Ldi/dt,保证主功率开关器件IGBT不因承受过高的尖峰脉冲电压而击穿损坏。L1,L2,C5构成输出滤波器,把逆变桥输出的按正弦波规律变化脉宽的高频脉冲波还原成中频正弦波输出,并经变压器T1隔离后为负载提供合适幅值的电压。

逆变电源主电路的工作原理可归纳如下:三相(或单相)交流市电经EMI滤波器滤波后,由整流桥模块U整流,再经电容滤波,加至由IGBT构成的桥式逆变电路,该直流高压经逆变电路逆变为脉宽按正弦波规律变化的高频脉冲波,再由输出滤波器滤掉高频谐波,得到中频正弦波,最后由变压器隔离、变压(升压或降压)后提供给负载。SPWM脉冲波由主控制电路产生并根据输出反馈电压和反馈电流来改变脉冲波的宽度,从而保证输出电压的稳定。

1.2主控制电路

主控制部分的原理框图如图2所示。它采用INTEL公司的16位单片机87C196MC作为控制核心。该单片机主要用于控制和数据处理,并具有脉宽调制信号输出端口。在控制算法上采用模糊控制算法。单片机产生载频为20kHz的SPWM脉冲信号,由脉宽调制信号输出端口输出,通过驱动电路加到IGBT的栅极,控制逆变电路正确工作,同时,根据电压和电流的反馈值调整SPWM脉冲信号的脉宽以保持输出信号幅度的稳定。为了保证系统安全可靠地运行,充分发挥单片机的强大控制功能,由主控制电路对系统的关键器件和关键参数,例如过压、欠压、过流、过载、输出短路、过热等进行实时监控,实现对系统工作状态的自诊断并对故障进行相应的声光报警。由于采用了16位单片机作为系统的控制核心,控制快速准确,使系统具有响应快,运行稳定、可靠的特点。

1.3驱动电路

IGBT的栅极驱动电压可由不同的驱动电路提供,选择驱动电路时,应考虑驱动电路的电源要求,器件关断偏置的要求,栅极电荷的要求,耐固性要求,保护功能等因素。驱动电路的性能不仅直接关系到IGBT器件本身的工作性能和运行安全,而且影响到整个系统的性能和安全。

德国西门康(SEMIKRON)公司生产的SKM系列IGBT功率模块,在芯片制造工艺、内部布局、基板选择等方面有独到之处,不必使用RCD吸收电路,SOA(安全工作区)曲线为矩形,不必负压关断,并联时能自动均流,短路时电流自动抑制,开关损耗不随温度正比增加,正温度特性曲线。鉴于此,选用西门康公司的SKM系列IGBT作为逆变电源的主功率开关器件。为充分利用IGBT的优良性能,保证系统能安全可靠地工作,驱动电路也选用西门康公司的SKHI系列驱动器。该系列驱动器只需一个非隔离的+15V电源;具有高dv/dt容量;保护功能完善;故障记忆,通过ERROR信号告知控制系统;上下互锁,避免同一桥臂两只IGBT同时开通;栅极电阻外部可调,使得使用不同功率容量的IGBT时都能工作于较高的开关频率,并得到高的转换效率。

作为电压型控制的IGBT不需要栅极驱动电流,但由于栅极输入端有一个大电容,使在驱动时形成一很窄的脉冲栅极驱动电流,且IGBT容量越大,该脉冲电流的峰值越大,例如,200A/1200V的IGBT的开通电流的脉冲峰值约达到1.5A。SKHI驱动器既能承受这种高峰值栅极电流又不降低VGE。为?高开通和关断速度,减少驱动器损耗,SKHI驱动器的输出级采用MOSFET对管以减少连接线路上的电阻。影响开关速度的另一个重要因素是栅极电阻RG,减小RG可以降低IGBT的开关损耗,但由于杂散电感的存在,使得IGBT关断时的集射极间的尖峰电压增大,SKHI驱动器将RG分成RGON和RGOFF(见图3),这样两个参数可分别控制,并可根据IGBT容量的不同,分别调整RGON和RGOFF,以获得最佳驱动效果。

过流保护是驱动电路具有的重要功能之一,SKHI采用监测IGBT集射极电压VCE来测控过流,原理图见图4。VCE测控电路同时监视栅极输入信号和集射极电压,当输入信号为高电位,并且在3~5μs后,VCE较正常饱和值(3.5~5.5V)高,则认为过流,关断脉冲信号,给出故障报警信号。这是一种较先进的过流测控方式。

SKHI驱动器是针对IGBT和MOS特性而设计的,是性能较为完善的一种驱动器。

1.4辅助控制电路

辅助控制电路的作用是根据主控电路发出的控制信号,依次控制接触器K2,K3,K4的吸合及分断,保证主电路依正确的顺序加电,在保护电路工作时切断主电路的供电电源。辅助控制电路还为风扇提供电源。

1.5显示及按键控制电路

显示及按键控制电路的功能是在主控电路的控制下,显示系统的工作状态,如电压、电流、频率等,并可通过按键改变输出电压的幅度(改变范围为额定输出电压的±10%)和输出电压的频率(400Hz±30Hz)。当系统出现故障时对故障进行显示和报警,报警信号包括过流、过载、短路、过热、输入过压欠压、驱动报警等。

1.6软件控制

在算法上采用SPWMT和PID算法以及模糊控制逻辑、动态查表法,使系统响应更快,保护功能更强,可靠性大大提高。

1.7其他

采用关键器件降额设计,软启动设计、自动保护设计等措施,保证电路在环境应力较大的情况下能可靠工作;采用可靠性热设计、三防处理、结构件加固处理等办法,保证产品在恶劣的气候应力和机械应力条件下的可靠性;对于舰载装备配套的本产品,采用复合型减震器和导向件结构,保证产品的抗冲击、抗振动性能。强化产品的绝缘设计,确保产品的安全性。

2实用效果

根据上述正弦波中频逆变电源方案,已成功开发出系列正弦波中频逆变电源,经实测在额定负载时输出正弦波的失真度<3%,MTBF>20000h,各项技术指标均达到设计要求。通过了海装电子部组织的专家鉴定,还通过了中国电子产品可靠性与环境试验研究所质量检测中心(即信息产为部五所)的可靠性和电磁兼容性鉴定、环境试验检测。电源经海军多个部队和基地、军工单位、研究所的实际使用,取得了令人满意的效果。

3结语

1)大功率IGBT因具有工作频率较高,驱动电路功率小,工作损耗小等优点,加之有专用的驱动电路可使驱动电路的设计简化,可靠性提高,因此,可方便地用于变频电源中。

2)在正弦波逆变电源系统中应用16位单片机87C196MC来产生系统所需的SPWM脉冲信号,是非常方便实用的,可使硬件电路大大简化,可靠性提高,同时可利用单片机的强大控制功能,实时地对系统的关键器件和关键参数进行监控,实现对系统工作状态的自诊断。

3)大功率IGBT逆变器的保护电路设计对其可靠工作具有非常重要的作用,应充分重视。IGBT模块的吸收电容C3及C4须选用低感电容,如聚丙烯电容或类似的低介电损耗膜的电容,安装时应尽可能地靠近模块。

4)正弦波逆变电源输出正弦波的失真度与输出滤波器的参数有密切关系,设计中应合理地选取滤波器的截止频率,并照顾逆变电源最高输出频率的需要,滤波电感及电容应满足

式中:fc为滤波器的截止频率,取值为最高输出频率的5~10倍。

逆变电源范文第8篇

关键字:调速系统;逆变

基金项目:宝鸡职业技术学院科研基金资助(2011017Y)

1.引言

印花是纺织行业不可缺少的一环,其质量直接影响布匹的品质与档次,所以如何提高印花设备功能与质量,就成为企业面临的问题,在此主要讨论印花设备的电气控制。

2.印花设备

印花设备常见的有滚筒印花、型板印花、筛网印花、数字印花等,其各自有不同的优缺点,本文主要讨论的是筛网印花中的平网,虽然这种设备不适合大规模生产,但是适合印制多品种和高档次的产品,印花设备工作时其动作过程用框图描述为下图1 。

其中导带运动要保证高精度这样才可以使印花定位准确,印花中的主要运动由变频器组成的闭环控制系统来控制,筛网的运动由液压活塞完成,其余的清洗由气缸控制,其核心是印花单元的变频调速。

3.调速系统的逆变电源原理

在此主要来看变频系统的PWM逆变电源分析,它的逆变电源模型如下图2。

功率管的作用相当于图中开关通断的作用,其状态一共有8种,它输出的线电压UAB,UBC,UCA与状态矢量[a b c]T关系见式(1)

图中电压UA、UB、UC电压与abc矢量关系见式(2)

这八个状态对应的八个矢量称为电压空间矢量,它们在空间中的分布如下图3,基本呈现出六边形的特点,方向指向各边的顶点。

从图中可以看出,由此电压产生的旋转磁场并不是圆形的,磁场在顶点中间大小发生变化,为了接近圆形我们可以通过增加开关状态来获得,这里使用将原有的矢量进行组合就可以得到更多的状态,这样基本可以看成一个圆。

其输出电压UOUT是原矢量的合成,即

这样基本可以使其大小基本一致,需要确定的就是图中的t1、t2,由上式得

可得时间t1、t2由式(3)确定

4.结论

本文介绍了印花设备基本结构、组成、分类,并对设备的运行过程进行分析,对系统的核心调速系统的逆变电源原理进行了推导分析。

参考文献

[1]. 马小亮.大功率交-交变频调速及矢量控制技术[M],北京:机械工业出版社

[2]. 冬雷,李永东.交流调速技术的发展与应用[J].电工技术杂志,2002. (8) 1~3.

[3]. 刘锋,崔纳新.双微机实现的矢量控制交流驱动系统[J].机电工程,1999.(4), 16~19.

作者简介

逆变电源范文第9篇

一、前言

介损试验是一项非常重要而且科学的预防性绝缘试验,通过此项试验能有效的发现绝缘受潮、脏污、老化等缺陷,摸清电气设备在工作状态下由于绝缘介质的原因而发热的情况,防止绝缘陷入劣化―损增―温升―加速劣化的恶性循环之中,从而最终达到减少供电事故发生的目的。此项试验从试验原理到试验方法都极具科学性与实用性。而且,在牵引供电历年的春防试验中,此项试验是唯一采用交流测量的非破坏性绝缘试验,所以,其重要性是显而易见的。

二、实际工作中存在的问题

从我们历年的现场试验来看,此项试验又有一些不足之处,那就是测试数据不稳(对同一设备的连续测量值差异较大),常常令人对测出的tgδ值不能理解。表一是某牵引变电所主变压器连续三年春防试验所测的20℃时介损值:

虽然上述数值都在合格范围内,但显然“高压―低压及地”的tgδ值逐年递减是不符合设备老化的正常逻辑的。由于经常遇到这种情况,对此,我们进行了专门的实验与分析。

三、原因分析

对同一设备我们分别采用牵引变电所1#所用变(引自牵引网)与2#所用变(引自铁路10KV电力供电系统)作为介质损耗测量仪的电源进行跟踪实验后发现:采用2#所用变后所测得的tgδ值更稳定、具可靠性;这两类交流电源的差异在于谐波。从试验理论上讲,tgδ=1/ωCR(并联等值电路公式)。对某一试品而言,C、R都是固定的,而=2πf,所以频率f对tgδ值有直接影响。众所周知:牵引供电系统是一个谐波污染相当严重的系统,谐波会造成工频正弦波的波形畸变,从而影响f值,使ω≠314,因此导致了tgδ的失真。

四、解决方案

为介质仪配备专用的逆变电源是解决这一问题的根本方法。由逆变电源为介损仪提高恒定、标准的工频电源来解决tgδ的失真问题。

图一为介损电源的原理框图流程:

我们可以把电瓶(蓄电池)的12V直流电转变成介损仪所需要的220V,50Hz的交流电源。基于高频逆变器相较于工频变压有转化效率高、噪声小、体积小,易于携带的特点,我们的专用电源采用高频逆变的方案。逆变器的系统结构如图2所示。逆变部分的系统结构分为两部分:

前级升压电路包括主电路,控制电路,驱动电路和欠压过压保护电路等。其作用是:功率开关把输入的直流电压变成脉宽调制的交流电压,然后利用推挽逆变器和高频变压器把交流电压升高,再用全波整流把交流电压转换成直流。

输出逆变电路包括主电路,控制电路,过流保护电路和交流反馈电路等。其作用是:用全桥变换器把高压直流逆变成所需交流电,经过低通滤波电路修正波形。

上述逆变系统是以PWM控制理论为基础的。用一系列等幅而不等宽的脉冲代替一个正弦半波。如图三所示的正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。

可以看出,各脉冲的宽度是按正弦规律变化的。根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。对于正弦波的负半周,也可以用同样的方法得到PWM波形。

按照以上设计进行仿真实验后的输出波形如图四:

仿真结果证明这个设计方案是可行的,最后输出的波形可以完全满足介损仪的工作要求。

五、结论

逆变电源范文第10篇

关键词:逆变电源;软开关;脉宽调制;FB-ZVZCS-PWM

0 引言

自20世纪80年代以来,软开关技术取得了较大的进展。在逆变器中,可以利用原有的电路,采用合适的控制模式,添加适当的电感和电容,从而实现功率器件的软开关。

软开关变换技术的实质是在主电路上增加储能元件L、C产生谐振,迫使功率器件上的电压或电流迅速降为零,从而提供理想的开关条件。

1 全桥移相软开关逆变电源主电路设计

主电路分为三个部分(见图1):

第一部分,输入整流滤波电路。二极管D1-D4组成输入整流电路(实际电路选用整流模块替代);C1为高频滤波电容,隔离电网与逆变电路之间的谐波干扰;电阻R2、R3和电容器组C2、C3组成滤波电路;R1为限流电阻,限制启动时的合闸浪涌电流;继电器K控制限流电阻切换,启动后闭合,把R1从主电路去除;电阻R10、R11、稳压管D9与电容C11组成延时电路,控制R1切换时间。

第二部分,逆变器。VT1-VT4为功率开关管IGBT(实际用两组半桥模块组成),与中频变压器TF1组成逆变器;电阻R4-R7、电容C4-C7与二极管D10-D13共同组成VT1-VT4的RCD吸收回路,减小IGBT开关过程电流、电压冲击。

第三部分,输出整流滤波电路。快速整流二极管模块D7、D8和直流电抗器L1组成单相全波整流滤波输出电路;R8、C8与R9、C9组成D7、D8的吸收回路。

2 全桥移相零电压零电流脉宽调制(FB-ZVZCS-PWM)变换器

全桥零电压零电流脉宽调制变换器使原边电流在箝位续流时间迅速衰减到零并保持,固定臂(VD3,VD4)的开关管是零电流开关,移相臂(VD1,VD2)的开关管是零电压开关。这样,一方面使IGBT很容易的用到全桥软开关变换器中,另一方面使变换器附加环路能量减少,占空比损失变小,副边寄生振荡降低,软开关切换负载范围增宽等优点 。

3 软开关变换器参数的设计

3.1 中频变压器的选择

中频变压器主要作用是电压变换、功率传递和实现输入、输出之间的隔离。根据软开关逆变电源技术参数要求对中频变压器提出如下技术要求:工作频率f为20kHz,变换器输入电压U为320V,变换器输出电压U0为28V,变换器输出电流I0最大值为20A。

3.1.1 变压器磁芯的选择

由于逆变器的变压器工作频率设计为20kHz,传统的铁心材料硅钢由于损耗太大,已不能满足使用要求。磁芯材料只能从坡莫合金、钴基非晶态合金和超微晶合金(非晶态合金)三种材料中来考虑。综合三种材料的性能比较,选择饱和磁感应强度Bs高,温度稳定性好,价格低廉,加工方便的超微晶合金有利于变压器技术指标的实现。

3.1.2 变压器匝数与变比的计算

二次绕组匝数N2=N1×U2/U1=60×28/320=5.25,取N2为6匝。

变压器变比为n=N1/N2=10。

3.1.3 变压器导线线径计算

当交变电流通过导体时,沿导体截面上的电流分布不是均匀的,最大电流密度出现在导体的表面层,该现象称为集肤效应。集肤效应从根本上说,相当于减少了导体截面而增加了一个给定负载的发热程度。导线通过高频交流时,导线的有效面积的减小可以用穿透深度 来表示。穿透深度 的意义为由于集肤效应交变电流沿导线表面开始能达到的径向深度。

3.2 功率开关元件IGBT的选择

IGBT的作用是通过它的周期性开和关作用,把直流电压变换成方波电压,它是软开关逆变电源中的关键核心器件。由于它比较脆弱,对它的设计、选择直接关系到整个焊机的安全、可靠。综上所述,所选IGBT管额定电压1200V,额定电流10A。

3.3 隔直电容的选择

隔直电容主要的作用就是在原边电流箝位续流时间时与谐振电感发生谐振,使原边电流迅速衰减到零并保持,从而实现固定臂的功率开关管零电流关断。所以隔直电容的设计与谐振电感在箝位续流时间的伏秒积有关。

3.4 可饱和电感的设计

可饱和电感的设计关键是根据临界电流选择符合性能要求磁芯的饱和点。选择好合适饱和点的磁芯将相关参数带入式15即可求得相关参数,但实际的可饱和电感受温度的影响较大,在实验中要根据实际情况对匝数进行适当调整才能获得所需可饱和电感。

3.5.1 超前臂并联电容和结电容的等效电容参数的选择

因最小输出电流和最大输入电压可以使超前臂零电压开通时,大电流和小电压时也就能满足超前臂零电压开通的条件,要在全范围内实现超前臂的零电压开通,必需以最小输出电流、最大输入电压来选择超前臂功率开关管VT1 和VT2 的等效电容C1、C2,选定一定型号的IGBT后器结电容是确定的,据此就可以算出IGBT两端的并联电容的值。

3.5.2 固定臂并联电容C3、C4和结电容等效电容参数的选择

由软开关逆变电源的工作原理的分析可知,只有移动臂上的功率开关管可以实现零电压开通,固定臂上的功率开关不但不能实现零电压开通,反而其开通时加载在功率开关管两端的电压是硬开关的两倍,即320V。

3.6 输出电路设计的设计

输出整流滤波电路具有两个功能,一个功能是将中频变压器二次方波电压整流成单向脉动电流,并将其平滑成设计要求的低纹直流电压;另一个功能是抑制开关整流二极管方向回复时间内电流急剧回复产生的尖峰噪声。由于输出电路要求整流的信号是20kHz的方波,与普通的低频滤波不同,所以对输出电路中的元件选择有着较高的要求。

3.6.1 输出整流二极管选择

由于逆变电路工作在20kHZ,所以输出整流二极管应有短的反向恢复时间和小的反向恢复电流,同时为减小尖峰噪声反向电流的恢复以缓慢为好。常用的输出整流二极管有掺金扩散型、外延型、肖特基型及PIN型。考虑留一定的安全裕量,二极管额定电压按120V,电流15A选取。

3.6.2 输出滤波电感的选择

输出滤波电感具有两个作用:一个作用是用于滤波,使电流连续。特别是小电流脉动大时,所以输出滤波电感的选择以最小直流电流波形连续为依据;另一个作用是改善直流电源的动特性。

4 FB-ZVZCS-PWM变换器仿真

仿真结果分析:

1)从上面四个仿真图可以看出,所设计的参数可以达到变换器的零电压零电流开关的要求。

2)实际中可饱和电感在达到饱和后,电感值并非完全为零。而在设计中由于所用的模块本身存在的问题,只能将可饱和电感理想化,设定在达到饱和时,该电感值为零,相当于一条导线。此处存在的误差对实验结果会有较大的影响。

3)所显示的变压器原边电流变化中,并未完全的如设想的结果。经分析认为,电流未出现稳定平台,主要是因为元件的参数还需进一步改进。

5 结束语

本文对全桥移相软开关逆变电源电路进行了研究,得出以下结论:

a. 通过比较分析FB-ZVS-PWM、FB-ZCS-PWM和FB-ZVZCS-PWM三种电路的工作过程,认为FB-ZVZCS-PWM工作模式比其它两种模式更有优势;

b. 对逆变电源的工作频率、IGBT管和隔直电容的参数进行了计算和选择,经过仿真后,可认为是合理的。

参考文献

[1] 杨旭,裴云庆,王兆安.开关电源技术[M].北京:械工业出版社,2015.

上一篇:变频电源范文 下一篇:双电源范文