变频电源范文

时间:2023-02-25 05:20:06

变频电源

变频电源范文第1篇

关键字:;电机试验;变频电源

一、变频电源在电机试验中的应用

交流电机产品试验中,提供符合规定的试验电源和满足试验工艺要求的加载是两个重要方面。对试验电源而言,首先其电源品质必须满足电机产品有关标准规定的指标,包括正弦度与对称度,典型指标包括:THDV不大于2.5%,HVF小于1.5%,负序分量小于正序分量的0.5%,零序分量影响消除(即也小于正序分量的0.5%),频率稳定性及频率偏差满足国家相关试验电源标准中对电源品质的要求;其次,要求试验电源能够在较广的范围内分别对电压和频率进行调节,即能定频调压,又能定压调频;此外,还要求试验电源能够方便的启动试品、对试验拖动电机进行调速运行、对运行试品进行快速制动、具备异步电机叠频试验及调节功率因数功能等等。交流电机试验的直接负载方式,特别对中大型电机,为考虑节约电力和加载调节方便,一般采用成对电机的对轴联接运行实现,被试机做为电动机运行,对轴联接的陪试机做发电机运行,使能量在电源设备处或电网供电处回馈循环,即使被试电机加上负载,此时陪试电机端依靠变频电源提供差频电源或可进行转矩控制而实现陪试电机的发电机方式运行。异步电机的叠频试验要求电源具备两差频电源或调制相应波形电源,并能较好的吸收和馈出拍频能量。大型交流同步电机可以采用零功率因数法进行试验,要求试验电源可与其进行无功吸收而满足试验要求,因此变频试验电源应能超前或滞后运行且具备一定容量。

变频电源在电机试验中担负多重角色,特别对电机产品型式试验而言是不可替代的工艺设备。

二、传统的机组变频电源

传统的变频电源由D-F电机组组成,最初的变频电源一般由直流电机+同步电机组成,借助于直流电机调速而改变机组转速,实现机组同步电机(做发电机)的频率可调,直流电机的供电电源同样需要由D-F直流发电机组提供,同时调节同步发电机励磁,可实现机组电压调节。也就是说传统的变频电源需要两套D-F电机组组合方能提供,即四电机组变频电源。为满足电机对拖负载试验要求,还需提供一路标准试验电源。在四电机组变频电源基础上,将一套机组改为同步+同步+直流电机组,而形成的五电机组,即可提供一路调频调压试验电源,还可提供一路频率固定、电压可调的试验电源,同时也解决了叠频试验电源。

D-F电机组与电力电子调速传动装置组合,派生出另一类机组变频电源。此类电源按转动种类分为直流传动变频电源和交流传动变频电源。直流传动变频电源由一套可控硅直流调速装置、一套直流+同步D-F机组及各电机配套励磁装置组成,调节直流机转速即可调节机组同步发电机输出电源频率,调节同步发电机励磁可调节器输出电源电压;交流传动变频电源则将上述传动装置改为交流变频器,将机组改为交流+同步D-F机组。此类电源可由一套传动装置及两套机组组合使用,亦可由调速装置分别传动两套机组,形成两套变频电源,基本满足50/60Hz等电机的型式试验。

机组变频电源,在多年的电机产品生产中发挥了巨大的做用,目前此类机组在相当多的电机工厂仍在使用,国内使用最大机组变频电源容量达20MW。机组电源具有传统设备的特点,其输出波形质量好,发电机不需过多处理,普遍可以达到标准正弦波输出;D-F机组属机械设备,其过载能力强,十分耐冲击;控制技术成熟,对有制造和维护能力的电机生产企业而言造价低廉;无需变压器直接可做一定电压等级的恒功率转换输出,满足叠频及零功率因数等特殊试验功能。

三、电力电子变频电源

近年来,伴随着电力电子技术的迅速发展,采用电力电子变频器为主件的新型电机试验用变频电源研发成功开始应用。交流电机的新品不断涌现,包括各类变频电机、永磁电机、汽车电机、高速电机、牵引电机等等以及其他特殊电机,传统的机组变频电源已不能满足试验,需寻求新的替代装备,也大大促进了电力电子变频电源的推广与应用。电力电子变频电源主要由变频器(逆变器)经必要滤波电路输出,形成正弦波电源,另配置必要外部设备(如镇定电容器,输出变压器、电抗器等),结合专用算法软件支持,形成无旋转器件的电机试验用变频电源,根据使用要求,有时需定制专用系统装置。

目前,电力电子变频电源按核心变频器划分,主流方案分为以下几种:两电平低压变频器的高-低-高配置方式,主流应用一般单电源不大于6MVA,大功率装置应以更高电压等级的器件为主;三电平中压变频器的高-高或高-低配置方式,目前应用最大单电源达数十兆瓦,电压等级以交流中压为主;单元级连的中高压变频器的高-高或高-低配置方式,目前最大单电源达10MVA左右,电压等级3/6/10kV均可使用。这几类系统各有特点,应根据被试产品需求、场地及环境条件、供电供水设施情况以及投资多少、设备档次等多方面综合考虑。

大量工程实例证明,合理的设置电力电子变频电源各组件参数,并配合强有力软件,其完全可以满足“一”条所述对普通电机试验的需要。与机组型变频电源比较,电力电子变频电源具有其鲜明特点:首先,无旋转设备和器件,运行噪声小、效率高,相对节能,其也不需旋转机组所需的专用基础,故土建公用设施简单,节约投资和使用面积;其次,调节范围宽,产品适用广,特别对运行频率特高或特低以及其他特殊运行频率的电机均能满足试验;再次,变频器具有极其优良的控制性能,包括矢量控制、直接转矩控制等等,矢量控制选用高性能的DSP和高精度的光电编码器,调速范围可以达到1:1000,动态性能也很好。直接转矩控制采用双位砰-砰控制器,可以获得更快的动态转矩响应,按定子磁链控制,避免了转子参数变化的影响 。这些特性使得在电机试验中的传统复杂试验项目变得极其简单易行,如:异步电机M-n曲线自动测试、被试电机稳定加载及细调等;较高的自动化程度,使得操作十分简单,一般试验人员只需简单培训即可操作使用。对异步电机的叠频试验、同步电机的低功率因数法试验等,不需做线路变动或转换,只要在控制计算中机中调入程序、设置必要参数即可进行试验。

四、 结语

传统的机组变频电源和现代电力电子变频电源,各有优缺点,在现实的电机工厂中两种装置也可能还将长期共存,不仅国内是这样,国外也是如此。但电力电子变频电源发展迅速,目前已经在绝大多数国内电机工厂的新建项目中使用,电力电子变频电源将逐步成为电机试验的主流装备。随着科学技术的发展,新型电力电子器件的涌现以及控制方式的更加精细及多样化,通过必要的完善成熟过程,电力电子变频电源终将取代传统的机组变频电源。

参考文献:

[1]吴汉熙,徐静.大功率变频电源在电机试验站系统中的应用[J].电机与控制应用,2012-05-10

[2]盛君,张敏.变频试验电源在电机试验中的应用[J].变流技术与电力牵引,2012-09-20

[3]李哓尚.交流牵引异步电机试验系统研究[D].北京交通大学,2010-06-01

[4]刘江明.变频电源在电力变压器局部放电试验中的应用研究[D].浙江大学,2011-05-01

变频电源范文第2篇

论文关键词:低压;变频电动机;绕组型式;成型绕组

论文摘要:文章根据变频电机电源的特点,分析了散下绕组、成型绕组和半成型绕组耐脉冲电压冲击功能、电气性能、制造难度、生产成本及它们对中型低压变频电动机的实用性和可靠性的影响。

中型(铁芯外径Ф500~Ф1000)、低压(380V~1140V或1650V)一般电动机输出功率都比较大。通常电源由交流电网供给,电压稳定,波形基本为正弦波,谐波很少,除大气过电压或开关操作过电压等事故状态外,电动机正常运转期间很少受电压波动的冲击。其定子绕组型式,以前JBR和一些大电流曾采用成型线圈,早年380V的JS、JS2采用半成型线圈,近年来多采用散下线的迭绕或同心绕组。如380V的Y和Y2315-355、380V~690V的IMJ315-450和ILA8315-450等。而变频电机一般由逆变器供电,电压多含高脉冲高频率谐波,文章将着重讨论中型低压变频电动机的绕组形式。

一、中型低压变频电动机电源的特点

一般变频电动机多采用晶体管逆变器供电,晶体管逆变器采用高频率脉冲,脉冲升降时间很短,从而在电机绕组中产生高电压谐波,电压脉冲峰值比标准额定电压高得多,因而线圈匝间和相间以及同相线圈间的电压应力可能非常高。有文献报导:380V电动机相间脉冲电压达1000V~1100V,相首线圈的脉冲电压达700V~900V,线圈间脉冲电压达650V~900V;500V电压的变频电动机的电压应力,相间脉冲电压达1200V~1400V,相首线圈的脉冲电压达900V~1000V,线圈间脉冲电压达8000V~1000V。电压脉冲峰值与电动机额定电压呈正相关关系,电压脉冲在绕组线圈中传播逐渐衰减。“Δ”接线绕组相首相尾的匝间以及相邻相间的线圈端部,是脉冲高压的最危险受害部位。因此,提高中型低压电动机绕组耐电压脉冲应力的问题不容忽视。

二、中型低压变频电机绕组型式的评价

(一)散下圆铜线绕组

由于圆铜线散下绕组结构简单、下线工艺传统化;散下线绕组端部短、用铜少、电阻和漏抗小;与散下线相配套的半闭口槽槽口相对较小,对降低齿谐波幅值、均衡气隙磁场、改善电机性能、降低温升、提高出力等有利,所以一般中型低压的普通电机经常采用,一些小功率变频电机也采用圆铜线散下绕组。

因电动机功率大、电源电压低、电流很大,线圈导线并绕根数多达70多根,匝数少至2~3匝,匝间工作电压高。如采用2级漆包圆铜线线制作线圈,因漆包线或多或少都存在一些小针孔,加上制造工艺的损伤,匝间工作电压高和散下在槽内的线圈首匝与末匝相碰的机遇较多,匝间进行耐压试验或运行一段时间后发现一些电机发生匝间短路故障。

即使采用3级漆包线(所谓变频电机专用线),绝缘层加大了导线的安全距离,但漆层的小孔仍难以杜绝,加厚的漆层在制造期间易变脆,使用期间出现老化变得越来越脆,容易产生危险的裂纹。当浸渍漆填充不好的气隙、针孔或后发生的裂纹处就很可能在高频脉冲电压下发生放电甚至局部出现电晕,使线圈绝缘加速老化、击穿或烧毁,降低了中型低压变频电动机的可靠性。绕组的过早损坏将缩短中型低压变频电机的寿命,有的运行一、二年,甚至几个月就出现损坏。21写作秘书网

(二)成型绕组

成型绕组一般是用扁线绕绕制,经涨型、整型、压型、包绝缘等工序,一根扁线的截面积比散下绕组一根Φ1.5~Φ1.6圆线的截面积大得多,因而导体的并绕根数也少得多,导线绝缘占槽面积少;扁线的4个圆角所空的面积比并绕多根圆线四角所空的面积少得多,槽的有效填充系数高。成型绕组扁线排列比散下绕组的圆线整齐,杜绝首匝碰末匝或隔匝相邻的现象,匝间绝缘容易保证,相首相尾线圈加强匝间绝缘也容易做到。槽内上下层线圈和绕组端部的线圈之间和相间都有一定的间隙,绝缘容易保证。因此,成型绕组是提高变频电动机耐电压脉冲应力最好的绕组型式之一。但是,成型绕组的端部较长,用铜量多,电阻电抗大,铜耗大。与成型绕组配套的开口槽对气隙磁场的均匀分布影响较大,使齿谐波幅值增大,附加铁耗高,电动机效率较低。开口槽的卡氏系数大,加大了有效气隙长度,导致功率因数不高,铁芯长,用铁量大。总之,电动机性能相对较差,制造成本较高。

(三)半成型绕组配套半开口槽或小半开口槽

半成型绕组是指一个槽内每层一般并排放置两个半线圈,每半个线圈用扁线绕制,经涨型、整形、压型、定型(包扎固定或加包一层绝缘)等工序,主绝缘象散下线一样放置在槽内。扁线并绕的根数也比圆线少得多,槽的有效填充系数也挺高,导线排列也很整齐,也没有首匝末匝相碰或隔匝相邻的现象,匝间绝缘得以保证,相首相末加强匝间绝缘也容易实现,上下层线圈和绕组端部以及相间也有一定间隙,完全可以提高变频电动机耐电压脉冲的能力。

半成型绕组端部较散下绕组长,但比成型绕组短,槽口宽度在壮半闭口与开口槽之间,铁芯长也在两者之间,用铜量、用铁量、铜耗、铁耗、电动机效率、功率因数和电动机制造成本也都在两面三刀者之间。

三、结论

从以上对比分析得知,虽然成型绕组对提高耐电压脉冲应力最好甚至功能过剩,但其铜铁用量大、成本高。而散下绕组虽然制造成本低、电机性能较好,但存在耐电压脉冲功能不足的致命弱点,使电机可靠性差、寿命短。综合电动机性能、温升、生产难易程度、成本、特别是耐电压脉冲的能力和可靠程度等方面,半成型绕组的功能综合对比不失为中型低压变频电动机的最佳选择。

实际生产中,有些电动机生产商在额定电压690V、额定频率50HZ、功率范围为110~1400KW的H355-560变频调速电机中,就采用半成型绕组,生产了许多规格,并取得了良好效果。

参考文献

[1]Y.SHIBUYA,等.冲击电压及反复作用下绕组绝缘的恶化[J].国外大电机,1995,(2).

[2]李振宇,等.变频电动机的绝缘结构[J].防爆电机,2002,(4).

[3]胡文华.浅变频电机导线变损的原因[J].防爆电机,2002,(2).

[4]刘生,等.国外变频调速异步电机基本情况分析与研究,2002,(7).

变频电源范文第3篇

关键词:逆变器;变频电源;脉宽调制;IM14400;FPGA1引言

1.1选题的提出

由于我国市电频率固定为50Hz,因而对于一些要求频率大于或小于50Hz的应用场合,则必须设计一个能改变频率的变频电源系统。目前最常用的是三相正弦波变频电源。该电源系统主要由整流、逆变、控制回路3部分组成。其中,整流部分用以实现AC/DC的转换;逆变部分用以实现DC/AC的转换;而控制回路用以调节电源系统输出信号的频率和幅值。

1.2变频技术的介绍

变频技术是电力电子技术的主要组成部分,它主要用于需要交流电源的电压、频率可调(或恒压、恒频)的用电设备,如交流电机、中频电源及各种专用电源的中间环节等。这一技术的产生和发展为交流调速开拓了广阔的天地。国外交流调速在电气传动行业已占绝对优势,虽然国内直流调速还在大量使用,但近年来凡新建的电气传动系统均采用交流调速,其发展势头是迅速的。变频技术在供电电源方面的应用主要是:

(1)将过去用发电机、变压器产生交流电的地方用变频电源取代;

(2)将计算机、电焊机、电子装置等用直流电源的地方改为以变频技术为核心的开关电源。在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的4个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本文针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以TMS320F240数字信号处理器为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

变频技术在电源中的应用,极大地减小了电源装置的体积,提高了效率,产生了巨大的经济效益,所谓变频就是利用电力电子器件(如功率晶体管GTR、绝缘栅双极型晶体管IGBT)将5OHz的市电变换为用户所要求的交流电或其他电源。它分为直接变频(又称交―交变频),即把市电直接变成比它频率低的交流电,大量用在大功率的交流调速中;间接变频(又称交—直—交变频),即先将市电整流成直流,再变换为要求频率的交流。它又分为谐振变频和方波变频。前者主要用于中频加热,方波变频又分为等幅、等宽和SPWM变频。

常用的方法有正弦波(调制波)与三角波(载波)比较的SPWM法、磁场跟踪式SPWM法和等面积SPWM法等。逆变技术,是指整流技术的逆向变换方式。其作用是通过电力电子器件(例如SCR,GTR,IGBT和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换技术。它的主要用途是用于交流传动,静止变频和UPS电源等设备的研制与应用。逆变器的负载多半是感性负载。为了提高逆变效率,存储在负载电感中的无功能量应当能反馈回电源。逆变器的原理早在1931年就在文献中提到过。1948年,美国西屋(Westinghouse)电气公司采用汞弧整流器制成了3000Hz的感应加热用逆变器。

近年来,随着新型的电力电子元件的不断产生与发展,新的控制技术的出现,逆变技术也得到了飞速发展。1964年,由A.Schonung和H.Stemmler提出的把通信系统调制技术应用到逆变技术中的正弦波脉宽调制技术(Sinusoida-PWM,简称SPWM),由于当时开关器件的速度慢而未得到推广)。直到1975年才由Bristol大学的S.R.Bowes等把SPWM技术正式应用到逆变技术中,使得逆变器的性能大大提高,并得到广泛的应用和发展,也使正弦波逆变技术达到了一个新高度。此后,各种不同的PWM技木相继出现,在实际应用中,很多部件内部都有自己的积分器,比如电机本身就是非常理想的低通滤波器,PWM信号的一个很重要的用途就是数字电机控制。在电机控制系统中,PWM信号控制功率开关器件的导通和关闭,功率器件为电机的绕组提供期望的电流和能量。相电流的频率和能量可以控制电机的转速和转矩,这样提供给电机的控制电流和电压都是调制信号,而且这个调制信号的频率比PWM载波频率要低。采用PWM控制方式可以为电机绕组提供良好的谐波电压和电流,避免因为环境变化产生的电磁扰动,并且能够显著提高系统的功率因数。未能够给电机提供具有足够驱动能力的正弦波控制信号,可以采用PWM输出信号经过NPN或PNP功率开关管实现。

例如注入三次谐波的PWM,空间向量调制(SVW)、随机PWM、电流滞环PWM等,成为高速器件逆变器的主导控制方式。至此,正弦波逆变技术的发展已经基本完善。常用逆变主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器,逆变电路的应用非常广泛,其中用途最广的为恒压恒频电源和变压变频电源。

(1)恒压恒频电源

这是一种在负载或交直流电源在一定范围内波动时,能保持输出为恒定电压和恒定频率的交流正弦波的稳压和稳频电源装置,简称CVCF电源。这类电源的典型代表是不间断电源(UPS)。在计算机系统中使用UPS可以避免由于电源电压波动、频率漂移、瞬时干扰和电压突然中断等现象造成的损失。UPS的电压稳定性、频率稳定性、波形失真度和不间断性等都优于公共电网,所以它的应用十分广泛。(CVCF电源还包括航空机载电源和机车辅助电源等)

(2)调压调频电源

这是一种可获得所需要的电压、电流和频率的交流变压变频装置,简称VVVF变频电源。变频电源广泛用于交流电机的调速系统中。交流电机调速系统在许多领域内代替了传统的直流电机调速系统,这是电力电子技术领域的一个重大突破。随着电力电子技术的不断发展和新型电力半导体器件的产生,逆变电路的应用范围日益扩大。在电力拖动系统、电气传动、各种功率的焊机电源以及有源电力滤波器等方面广泛应用。

1.3研究意义

随着工业自动化和电力电子技术的高速发展,传统的体积大、笨重、效率低的变频电源已不能满足需求,现代变频电源以其低损耗、高效率、电路简洁和最佳的性能指标等显著受到青睐,并广泛应用与电气传动、计算机、电子设备、仪器仪表、通信设备和家用电器中。采用三相正弦波变频电源技术将使其损耗低,效率高,电路简洁。

1.4设计的对象

本设计了一个交流—直流—交流变频电源系统。该系统利用集成逆变器件IM14400,并以FPGA为控制核心,采用SPWM变频控制技术,实现了三相正弦波变频输出。其输出线电压有效值为36V,最大输出电流有效值达3A。此外,系统还具有频率测量、电流和电压有效值测量及平均功率测量等功能。

2系统总体设计方案

将市电通过隔离变压器输入到交流变频电源系统,隔离变压器的输出经过整流桥后,产生全波整流信号。全波整流信号滤波生成与输入交流电对应的直流电,从而实现AC/DC转换。该系统全波整流桥采用集成整流桥KBL406,三相逆变器模块IM14400在FPGA产生的三相SPWM脉冲控制下产生三相交流电。逆变器输出的交流电频率等于SPWM脉冲基波频率,通过控制FPGA的DDS模块的正弦波频率来调制正弦波频率。SPWM脉冲基波频率等于调制波频率,系统采用这种方法实现变频。图1-1给出了系统总体框图。

SPWM的概念在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小,反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。SPWM脉冲系列中,各脉冲的宽度以及相互间的间隔宽度是由正弦波(基准波或调制波)和等腰三角波(载波)的交点来决的。

图2.1系统总体框图

3系统主要功能的实现

3.1系统主要功能的实现

为减小系统的体积,提高性能。此模块的电路设计采用芯片IPMIM14400,在相应三相SPWM控制下,输出三相交流信号。Cyntec公司IPM系列芯片为三相电机驱动芯片,芯片内包含三相桥式IGBT功率管及相关控制、驱动电路,控制比较简单,适合用于本系统。电路如图4-3所示。

在芯片的P、N端施加整流输出的支流电压,SPWM控制信号经过光耦隔离、三极管驱动后施加在图4-3的SPWM端,则在UVW端得到满足要求幅度的SPWM信号,该信号经过滤波滤除高频分量,即可得到所要求的正弦波信号。

芯片的+15V工作电源独立供给。独立电源采用DC-DC转换器SR5D15/50实现。转换器的+5V供电从FPGA引脚引出。该转换器的输出是隔离。图3.1三相桥式逆变电路

3.2PWM信号的产生方式

按照SPWM控制基本原理,在三角波和正弦波的自然交点时刻控制功率开关器件的通断。如果采用自然采样法,会增加硬件的复杂度,但因该系统是以FPGA为控制核心,可方便地实现。把正弦波波形表存入存储器中,同时利用加法器和减法器生成三角形载波,再通过数字比较器产生所需要的波形。该方案具有可靠性高,可重复编程,响应快,精度高等特点,其原理如图3.2所示。

图3.2PWM信号的产生原理图

三角波产生电路,如图3.3所示为通用三角波产生电路,该电路中,运算放大器A1,A2是正负峰值检波积分器,C1为保持电容。该电路能适应很宽的测试范围,具有很好的线性和振幅稳定性。振荡频率取决于积分时间常数R3,C2,若VA=8V,这时的振荡频率为1KHZ。电容C1与C2的比值取20:1。。运算放大采用741。

图3.3三角波产生电路

3.3SPWM调制方式的选择

载波比恒定的调制方式称为同步调制。同步调制时PWM脉冲在一个周期内的个数是恒定的,脉冲的相位也是固定的,将调制比设定为3的整数倍时,可以使输出波形严格对称,从而有效降低信号的谐波分量。但是,当逆变电路的输出频率比较低时,同步调制载波的频率也很低,过低时不易滤除调制带来的谐波,当逆变电路的输出频率很高时,同步调制载波频率也过高,这将使开关器件的开关损耗增大。载波信号和调制信号频率不保持同步的调制方式称为异步调制。异步调制时保持载波时钟频率不变,当调制正弦波的频率发生变化时,载波比跟随变化,在调制波的一个周期内PWM脉冲的个数不固定,相位也不固定。正负半周期

脉冲不对称,半周期内前后周期的脉冲不对称,造成信号的谐波分量较丰富,给后级滤波电路造成困难。

该系统的逆变器输出频率在20~100Hz,输出信号的频率较低。设计采用IM14400作为逆变电路,IM14400的PWM输入频率范围为5kHz~0.3MHz,可以选择很高的载波比。在异步调制方式下,当载波比很大时,正负半周期脉冲不对称和半周期内前后周期的脉冲不对称造成的谐波分量都很小,PWM脉冲接近正弦波。此设计的调制方式选择异步调制方式,载波频率固定为29.2kHz。

3.4FPGA控制模块

采用FPGA作为系统的总控制模块,其中的波形发生器控制电路通过外来控制信号和高速时钟信号,向波形数据ROM发出地址信号,输出波形的频率由发出的地址信号的速度决定;当以固定频率扫描输出地址时,模拟输出波形是固定频率。同时,还控制数码管动态显示频率和幅度预置值。

4理论分析与参数计算

4.1SPWM逆变电源的谐波分析

在调制度α一定,在三相共用一个载波信号的情况下,对输出线电压进行频谱分析,由此可发现,输出线电压的谐波角频率为:ω=nωc±kωr(1)式中:当n为奇数时,k=3(2m-1)±1,m=1,2……;当n为偶数时,k=6m+16m-1,k=6m+1,m=0,1,2…;k=6m-1,m=1,2…。

由式(1)可知,输出线电压频谱中没有载波频率ωc的整数倍次谐波分量,谐波中幅值较高的谐波分量是ωc±ωr和2ωc±ωr。

从上述分析可知,SPWM波形中所含的谐波主要是角频率为ωc、2ωc及其附近的谐波。由于采用了异步调制方式,故最小载波比k=ωc/ωr=168,所以PWM波形中所含主要谐波分量的频率比基波分量的频率高很多,谐波分量易被滤出。

4.2载波频率的选择

由SPWM逆变电源的谐波分量分析可知,SPWM电压源逆变器输出线电压谐波分量分布在ωc周围,提高SPWM的载波频率fc将使逆变器输出线电压的主要谐波分量分布在较高的频段,从而使逆变器的输出电压失真度很低。但是提高fc,会使逆变器中功率开关管的开关频率提高,这将大大增加逆变器的开关损耗。此外,fc提高还受到硬件的限制。通常情况下IM14400的关断延迟Toff=0.9μs,开启延迟时间Ton=0.73μs,由于其关断延迟大于开启延迟,易造成同一相上下两个桥臂同时导通。实际电路中由于硬件的时延,SPWM采样时刻的误差,以及为了防止同一相上下两个桥臂同时导通而设置了死区。IM14400的最小死区时间tdead设为3μs。SPWM脉冲的每一个开关脉冲之前都要加一个至少3μs的死区时间tdead,当IM14400的开关周期Tg≥3μs,Tg和载波周期Tc相等,所以fc≤0.33MHz。IM14400要求输入的最低PWM脉冲频率5kHz,所以5kHz≤fc≤0.33MHz。死区和开关时延是限制fc提高的最主要因素。fc越大,Tg越短,tdead/Tg就越大,逆变器的输出电压谐波分布也越复杂。

综上因素考虑,系统设计中选定fc=29.2kHz,它在20~100Hz的频率范围内,其载波比292<k<1460。

4.3FPGA内单相平均功率计算算法

平均功率公式[5]为:

将其离散化处理后得:

设计中,一个周期内电压和电流都采样256个点,则

5.应用程序设计部分

5.1VHDL硬件描述语言简介

采用VHDL(VeryHighSpeedIntegratedCircuitHardwareDescriptiponLanguage)超高速集成电路硬件描述语言设计复杂数字电路的方法具有很多优点,VHDL语言的设计技术齐全、方法灵活、支持广泛。

VHDL语言的系统硬件描述能力很强,具有多层次描述系统硬件功能的能力,可以从系统级到门级电路,而且高层次的行为描述可以与低层次的RTL描述混合使用。VHDL在描述数字系统时,可以使用前后一致的语义和语法跨越多层次,并且使用跨越多个级别的混合描述模拟该系统。因此,可以对高层次行为描述的子系统及低层次详细实现子系统所组成的系统进行模拟。

5.2正弦波顶层设计程序

LIBRARYIEEE;--正弦信号发生器源文件

USEIEEE.STD_LOGIC_1164.ALL;

USEIEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITYSINGTIS

PORT(CLK:INSTD_LOGIC;--信号源时钟

DOUT:OUTSTD_LOGIC_VECTOR(7DOWNTO0));--8位波形数据输出

END;

ARCHITECTUREDACCOFSINGTIS

COMPONENTdata_rom--调用波形数据存储器LPM_ROM文件:data_rom.vhd声明

PORT(address:INSTD_LOGIC_VECTOR(5DOWNTO0);--6位地址信号

inclock:INSTD_LOGIC;--地址锁存时钟

q:OUTSTD_LOGIC_VECTOR(7DOWNTO0));

ENDCOMPONENT;

SIGNALQ1:STD_LOGIC_VECTOR(5DOWNTO0);--设定内部节点作为地址计数器

BEGIN

PROCESS(CLK)--LPM_ROM地址发生器进程

BEGIN

IFCLK''''EVENTANDCLK=''''1''''THEN

Q1<=Q1+1;--Q1作为地址发生器计数器

ENDIF;

ENDPROCESS;

u1:data_romPORTMAP(address=>Q1,q=>DOUT,inclock=>CLK);--例化

END;

6结论

6.1取得的成绩

本系统初步达到了基本要求,整个系统运行稳定,甚至能在三相电流都达到3安得情况下长时间工作。各项保护均能够精确动作,测试效果比较理想。系统还扩展了频率步进、手动紧急断电等功能,并将频率分辨度做到了0.01Hz但是测试失真度为4.8﹪—5﹪。

6.2存在的不足和今后的努力方向

输入电压为198—242伏,负载的电流有效值应为0.5—3安,输出电压有效值应保持在36伏,误差绝对值应小于1﹪.然而受隔离变压器提供的最大电压限制,大负载情况下超出了反馈所能调节的最大范围,输出电压出现了跌落,如果时间允许,可以通过采用更适合的滤波电感、电容,并且使用更精细的逐点控制算法,相信能使系统的带负载能力和波形都得到一定程度的改善。

参考文献

[1]杨素行.模拟电子技术基础简明教程[M].高等教育出版社,2005

[2]曾祥富,兰永安.电工基础[M].重庆大学出版社,2001

[3]丁斗章.变频调速技术与系统应用[M].机械工业出版社,2005

[4]薛永毅,王淑英.新型电源电路应用实例[M].电子工业出版社,2003

[5]徐莆荣.高压变频调速技术应用实践[M].中国电力出版社,2007

[6]王伟.电源技术教程[M].电子工业出版社,2004

[7]陈元虎,徐祖建,梅建伟,陈新举.基于凌阳SPMC75F的三相变频电源设计[J].湖北汽车工业学院学报,2008(02)

[8]李明星,韦益春.基于VACON变频器的变频电源在RTG油改电中的应用[J].变频器世界,2008

[9]陆冬良,张代润,李勇,范小波.独立调压调频的数字化单相变频电源的研究[J].电器应用,2006,25卷第五期

[10]孙静.基于AVR单片机的三相正弦波变频电源的设计[J].黎明职业大学学报,2007(1)

[11]周严,邱晓筱,周颖.基于IM14400的三相正选波变频电源设计[J].国外电子元器件,2008(7)

[12]张华林.基于PIC单片机的三相正弦波变频电源的设计[J].电子技术应用,2007(07)

[13]朱朝霞,杨其华,徐德鸿.正弦波输出变压变频电源调制方式的研究[J].电源技术应用,2006(05)

[14]李娜,王京保.基于SPWM控制的三相变频变压电源的研究[J].机床电器,2006(05)

变频电源范文第4篇

[关键词]单相数字变频电源;SPWM;电力电子;控制策略

中图分类号:F407.61 文献标识码:A 文章编号:1009-914X(2015)15-0356-01

1 单相数字变频电源的研究背景及意义

变频电源自1969年诞生以来,便以其体积小,重量轻,功耗低的特点,在电子和电气领域得到了极其广泛的应用。变频电源运用先进的功率电子器件和高频逆变技术,使传统的工频整流电源材料减少70%~80%,节能20%~30%,动态反应速度提高2~3个数量级,并不断向高频化、轻量化、模块化、智能化和大容量化的方向发展。

早期的变频电源,只需要输出不断电、电压、频率可调即可,然而,近年来随着各种电子产品的出现,对能源的重视逐渐加强,对电源的要求也越来越高,除了这些基本要求外,还要考虑对电网的污染等要求。当代社会出现的许多高新技术都与市电的电压、电流、频率、相位和波形等基本参数的变换和控制密切相关,变频技术能够实现对这些参数的精确控制和高效率处理,特别是能够实现大功率电能的频率变换,从而为多项高新技术的发展提供有力的支持。

2 单相数字变频电源的国内外研究现状

数字变频电源的主要特点:以数字信息构成智能化变频电源,模拟组件与数字组件优化组合,电源系统集成化,数字电源达到高技术指标。数字变频电源的核心部分包括电力电子器件、微控制器和控制策略,所以,单相数字变频电源的研究现状从以下3个方面进行阐述。

2.1 电力电子器件的研究现状

变频技术作为电力电子的核心技术,随着电力电子器件的不断发展,变频技术也随之发展。电力电子器件以美国1957年美国通用电气公司研制出第一个晶闸管为起始点逐渐发展起来的。在器件的结构上,从分立器件发展到组合功率变换电路,继而将功率变换电路、触发控制电路和检测电路等组合在一起构成复杂模块,目前已经开发出具有智能化功能的功率模块IPM。智能功率集成电路能够提供数字控制逻辑与功率负载之间的接口,最简单的形式可由电平移动和驱动电路组成,把来自微控制器的逻辑信号转换成足以驱动负载的电压和电流,较复杂的智能功率集成电路能实现以下3项任务。

(1)控制功能:自动检测某些外部参量并调整功率器件的运行状态,以补偿外部参量的偏离。

(2)传感与保护功能:当器件出现过载、短路、过电压、欠电压或过热等非正常运行状态时,能测量相关信号并能进行相应保护,使功率器件工作在安全工作区。

(3)提供逻辑输出接口:功率模块的控制由驱动电路来执行,它具有处理高压、大电流或二者兼备的能力。

2.2 微处理器控制技术的研究现状

最初使用的微处理器控制功率器件时,一般应用单片机来控制。单片机拥有丰富的硬件和软件资源,但随着变频系统的数据量、实时性和精度要求不断地增加,单片机的处理能力逐渐达不到系统的要求。

为了提高数据处理能力,近年来数字信号处理DSP发展迅速,TI公司先后推出具有事件管理器模块的TMS320F2407、TMS320F2812,已被广泛应用在高频开关电源的控制,采用DSP作为变频电源的控制核心,可以用最少的软硬件实现灵活准确的在线控制。

2.3 控制策略的研究现状

早期变频器大多采用开环控制,因为控制结果简单,应用方便。但由于其波形质量差、谐波畸变率高,动态响应慢,只能应用在对电压质量要求比较低的场合,对电压质量要求较高的场合,则需要闭环控制,通过合适的闭环控制策略改善波形质量,减小误差,提高动态响应速度。各种闭环控制策略各有优缺点,几种闭环控制策略如下:

(1)PID控制。早期对变频电源的控制通常采用模拟PID控制,单纯采用输出电压瞬时值反馈,利用模拟PID控制器进行调节。随着DSP的出现,瞬时值反馈数字PID逐渐出现,由于变频电源在空载时有很强的震荡性,积分环节又产生新的相位滞后,为保证系统稳定,比例环节的作用不能太强;加上数字控制的采样保持、运算时间引入的相位滞后及量化误差等因素的影响,减小了最大可得到的脉宽,使得变频电源的输出电压波形畸变较高,特别是对非线性干扰抑制较差,通过各种补救措施如采用高速AD和提高开关频率的方法可以一定程度上提高精度,但性价比较差。

(2)双环控制。由于单电压环控制的抗负载扰动性能较差,所以在电压外环的基础上,引入电感电流作为内环,利用电流内环快速的抗干扰性能来改善输出波形,提高动态响应,增加其抗干扰性能。

(3)无差拍控制。无差拍控制是一种基于离散数学模型实现的PWM方案,它根据正弦参考指令和测量的状态反馈变量,由微机来计算下一个开关周期的脉冲宽度,控制功率开关管动作以使下一采样时刻的输出电压准确等于正弦参考指令。

(4)模糊控制。模糊控制的设计中不需要被控对象精确的数学模型,模糊控制有着较强的鲁棒性和自适应性,查找模糊控制表只需要占用处理器少量的时间,因而可以采用较高采样率来补偿模糊规则和实际经验的偏差。模糊控制理论上可以任意精度逼近任何非线性函数,但受到当前技术水平的限制,模糊变量的分档和模糊规则数都受到一定的限制。

2.4 单相数字变频电源的发展方向

目前,单相数字变频电源主要朝着以下几个方向发展:

(1)高频化。理论分析与实践表明,电器产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。当我们把频率从工频50Hz提高到20kHz,用电设备的体积重量大体下降至工频设计的5%~10%,其主要材料可以节约80%甚至更高,同时还能节电20%以上。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,原材料消耗显著降低、电源装置进一步小型化、系统的动态反应加快,能够更加深刻的体现其技术含量。

(2)模块化。模块化的含义包括功率器件的模块化以及电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元甚至七单元,实质上都属于“标准”功率模块(SPM)。近些年,有些公司把开关器件的驱动保护电路也集成到功率模块中去,构成了“智能化”功率模块(IPM),不仅缩小了整机的体积,还方便了整机的设计。有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,把寄生参数降到最小,从而提高了系统的可靠性。

(3)数字化。在传统电力电子技术中,控制部分是按模拟方式来设计和工作的。而今数字电路技术则越来越重要,信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、提高了系统的抗干扰能力、便于软件包调试和遥感遥测遥调、也便于自我诊断,容错等技术的植入,电力电子领域以前难以处理的一些问题将迎刃而解。

(4)绿色化。随着各种政策法规的出台,对无污染的绿色电源的呼声也越来越高。绿色电源的含义有两层:首先是显著节电。这意味着发电容量的节约,因为节电就可以减少对环境的污染;其次这些电源不能对电网产生污染。为了使电源系统绿色化,电源应加装高效滤波器,还应在电网输入端采用功率因数校正技术和软开关技术。

3 小结

变频电源范文第5篇

关键词:变频器 多功能电源开关设计

中图分类号:S611文献标识码: A

前言:作为变频器的多功能电源开关,必须具有多路稳定的直流电压输出,以确保电源开关供电安全,UC3842作为变频器用多功能电源开关中应用最为广泛的芯片,其作用非常巨大,通过精确且科学的运算方法以及设计原理,使电源开关能够同时提供给主控系统、驱动系统以及通信系统多路稳定隔离直流电源,从而确保开关正常工作。

一、设计要求

多功能开关电源要求为变频器逆变器 3 个上桥臂的 IGBT 提供驱动电压, 并为其他部分提供电源,具体指标如下:输入 直流 250 V±40 %, 即 150~350 V;输出 3 路 24 V、2 A独立输出, 2 路 ±15 V、0.2 A共地输出; 1 路 5 V、1 A 输出。由于逆变器 3 个上桥臂每一时刻最多有 2 个同时导通, 所以输出总功率为 110 W。

二、芯片选择

多功能开关电源选用一种开关电源设计专用芯片 UC3842, 该芯片是美国Unitorde 公司生产的一种高性能单端输出式电流控制型脉宽调制器片,UC3842 可专门用于控制占空比适应负载变化造成的输出电压变化, 负载调整率好, 较适合该电源的应用场合。电路中开关管选择 N 沟道场效应管 K1358, 其额定参数为 900 V /9 A, 有充分的裕量保证系统的安全运行。

1、UC3842 内部结构和引脚功能

双列直插式封装, 其内部结构见图 1。

2、 UC3842 管脚功能

1 脚(COMP): 误差放大器的输出端。

2 脚(VFB): 误差放大器的反相输入端

3 脚(ISEN) : 电流检测端。流过开关管的电流被检测电阻转换为电压信号并被送

入此脚, 用来控制PWM锁存器, 调整输出电压大小。并且当该脚电

压超过 1 V 时, UC3842 即关闭输出脉冲, 从而保护开关管不致因

过流而损坏。

4 脚(RT / CT): 内接振荡电路, 外接 RC 定时元件, 定时电阻 R 接在 4 脚和

8 脚之间, 定时电容 C接在 4 脚到地, 振荡频率为 f=1.72 /

(RC) 。其振荡频率最高可达 500 kHz。

5 脚(GND): 电源电路与控制电路的接地端。

6 脚(OUT): 推挽输出放大器的输出端。为推拉式输出, 可直接驱动场效应管,

驱动电流的平均值可达 200 mA, 最大可达 1 A 峰值电流, 输出的

低电平为 1.5 V, 输出的高电平为 13.5 V。

7 脚 (Vcc): 电源输入端。外接电源电压 Vcc,UC3842 的开启电压为 16 V, 关

断电压为 10 V, 其内部有一个 34 V 的稳压管, 可以保证内部电

路工作在34 V 以下。该电源电压经内部基准电压电路的作用产生

5V 基准电压, 作为 UC3842 的内部电源使用, 并经衰减得到2.5

V 电压作为内部比较器的基准电压。

8 脚(VREF): 参考电压(+5 V) 输出端。可提供参考电压。

三、硬件电路设计

1、工作原理

根据芯片功能的介绍, 所设计的电路图如图 2 所示。当电源通电时, 输入电压通过电阻 R3对电容C4充电, 当 UC3842 的 7 脚(Vcc 端) 达到导通门槛电压(16 V) 后, UC3842 开始工作, 此后芯片由反馈线圈供电, 电压维持在 13 V 左右。

开关变压器的反馈绕组 Ns 两端电压经 VD2、R2、C3、VD3、C4整流滤波后再经过 R9、R10分压后, 从 2 脚送入 UC3842 的误差放大器反相输入端, 反馈电压与基准电压(2.5 V)经误差放大器比较放大后, 调整 PWM输出脉冲的宽度, 从而稳定输出电压。主回路电流由电阻 R5进行取样, 取样电压经 3 脚加到 UC3842 内的电流比较器的一个输入端, 与误差电压放大器的输出进行比较, 当该取样电压等于误差电压( 最大值为 1 V)时, UC3842 的输出脉冲被中断, 从而实现限流保护。

该电源用UC3842 的 PWM输出直接驱动开关管, R7的作用是限制峰值驱动电流。当直流输入电压变化时, 以变大为例, 此时反馈电压也会相应变大, 也就使得 UC3842 电压误差放大器的输出变小, 也就使得 PWM输出脉冲的占空比减小, 从而使输出电压保持稳定。

2、电路功能模块设计

a.输入滤波电容 C1: 可以滤除输入电压中的高频干扰, 得到较为稳定的输入

电压。

b. 启动电路设计: 启动电路由限流电阻 R3和电容 C4组成。在 UC3842 启

动正常工作之前, 启动电流在 1mA以内,7 端(Vcc)电压升至 16V时, 芯片

开始工作, 此时消耗电流为15 mA。所以 R3>16 V÷1 mA=16kΩ, 功率最好

在 1-2W。C4储存的能量要能满足电源开始正常工作的需要, 最好在 100 μ

F 以上。

c. 缓冲吸收电路设计: 开关管在关断的瞬间会产生很高的电压尖峰脉冲, 这不

仅很容易使开关管由于电压急剧升高而损坏, 而且使电流采样和输出电压的

波形出现很尖的脉冲, 影响系统的稳定工作。为此, VD4、R4、C5组成 RCD 缓

冲吸收电路, 同时对于反激变压器, R1、VD1、C2组成的缓冲电路, 也具有

同样的作用, 形成双重保护。

d. 反馈电路设计: 由于该电源的输出为多路, 不适合仅仅对某一路进行反馈调

节, 故采用反馈线圈Ns 来输出一个反馈电压, 对多路输出同时进行控制。

VD2、R2、C3、VD3、C4为整流滤波电路, 得到一个稳定的反馈电压, 该电压同时

也作为 UC3842 正常工作时的供电电压。

e. 电流取样和过流保护: 电流的取样由取样电阻 R5完成, 其峰值电流由误差

放大器控制, 为 Is=(Ue- 1.4) / (3Rs)( 其中 Is为主电路峰值电流, Ue

为UC3842 内部电压误差放大器输出电压, Rs为采样电阻) 。由于电流测定

比较器的反向输入端钳位电压为 1 V, 故最大电流限制在 Is=1V /Rs, 当电

流超过这个值时, UC3842 自动闭锁输出, 以保护电路。R6、C6为滤波电路,

用以滤除开关管开通电流尖峰, 防止误触发, RC 滤波器的时间常数应接近

于电流尖峰的持续时间, 通常为几百纳秒。取 R6=1 kΩ, C6=470 pF,则时间

常数τ=RC=470 (ns)。

f. 误差放大器的补偿电路: R11和 C7, 改善误差放大器闭环增益和频率特性。

g. 振荡电路: 由 R12、C9设定振荡频率, 取 R12=13 kΩ, C9=3.3 nF, 则振荡

频率为f=1.72×103/ (13×3.3) =40 (kHz)

h. 旁路瓷介电容: C8、C10, 用以滤除高频叠加信号。

i. 变压器设计: 变压器有多种工作方式, 在此采用单端反激工作方式。其基本

工作原理是当开关管受控导通时, 高频变压器将电能变为磁能储存起来;而

在开关管受控截止时, 变压器就将原先储存的磁能变为电能, 通过二极管向

输出电容充电, 再由电容向负载供电。若PWM 工作的占空比为D, n 为原副

边匝数比, 则输出电压 Uo=DUi/ [ n( 1 - D) ] 。关于变压器的设计在后面

再详细说明。

j. 输出滤波电路: 每一路电压输出都有整流二极管和电容组成的滤波电路,

如 VD5、C11组成 +5 V输出的整流滤波电路, 然后通过三端稳压器 LM7805

来滤除纹波, 得到一个较为稳定的电压, 也可以起到消除纹波的作用, 见图

2, 其他几路输出也是如此。

四、变频器开关电源的变压器设计

针对于变频器开关电源的变压器设计,要依照一定的步骤进行:

1、设计参数工作频率 fs=40 kHz, 工作周期 Ts=25 μs; 效率η=0.85; 输入直流电压 250 V±40 %, 即 150~350 V;输出功率 110 W。

2、 设计步骤

步骤 1 选择磁芯

考虑到变压器损耗和整流管损耗, 输入功率 PM=Po/ η=110 / 0.85=130(W) (Po为输出功率), 再由经验公式, 磁芯截面积为 SJ=0.15 PM=1.71 (cm2)。查表后可选择磁芯 EE42 /21 /15, 外形结构如图 3所示。

其磁芯截面积为SJ=173 mm2, a=42 mm,b =21 mm, c=15 mm, d、e、f 可查表得到。磁芯材料选择PC40 铁氧体磁芯, 其优点是电阻率高、交流涡流损耗小、价格低。

步骤 2 计算 ton和最低输入直流电压 Us,min

由于 UC3842 属于峰值电流控制芯片, 在没有斜坡补偿的情况下, 其稳定工作的占空比范围是 D

步骤 3 选择工作时的磁通密度

对于 PC40 材料的磁芯, 其 100 ℃ 时的最大磁感应强度 Bmax= 390 mT, 振幅取其一半, 交变磁通密度 ΔBac=0.5 Bmax=195 mT=0.195 T。

步骤 4 计算原边线圈匝数

步骤 5 对于+5V,匝数计算

对于+5V, 考虑到整流管压降,U2=5+0.6=5.6(V),而原边绕组每匝伏数 =Us,min/N1=150 /50=3 (V/匝),故而可算得 N2=5.6 /3≈1.867, 取 N2=2 匝。则新的每匝反激电压=5.6 /2=2.8 (V /匝), 原边匝数 N1=150 /2.8≈53.57, 取 N1=54 匝。

对±12 V 的直流输出电压 U3=12+1=13(V), N3=13 /2.8=4.64, 取 N3=5 匝。对+24 V 的直流输出电压 U4=24+1=25(V), N4=25 /2.8=8.93, 取 N4=9 匝。

由于电源输出接负载时会发生一定的电压跌落,所以在变压器设计时每一路输出多设计一匝, 得到一个稍高的输出电压, 然后通过三端稳压器 LM7805,LM7812, LM7824 分别得到+5 V+12 V、+24 V 电压, - 12 V 由 LM7912 得到, 如图 3 所示。所以在此对+5 V 取 3 匝, ±12 V 取 6 匝, +24 V 取 10 匝。对于反馈线圈, U=13+0.6×2=14.2 V, Ns=14.2÷2.8=5.07, 取 Ns=5 匝。

步骤 6 确定气隙的大小

设变压器工作在电流连续工作方式, 原边线圈电流 Ip如图 4 所示。原边电感 Lp=UsΔt /Δi, Ip2=3 Ip1,则 ton时间内流过电流的平均值 Iav=Ip2- Ip1=2 Ip1。在周期 Ts内的平均输入电流 Is=P /Us,min=1对±12 V 的直流输出电压 U3=12+1=13(V), N3=13 /2.8=4.64, 取 N3=5 匝。对+24 V 的直流输出电压 U4=24+1=25(V), N4=25 /2.8=8.93, 取 N4=9 匝。

由于电源输出接负载时会发生一定的电压跌落,所以在变压器设计时每一路输出多设计一匝, 得到一个稍高的输出电压, 然后通过三端稳压器 LM7805,LM7812, LM7824 分别得到+5 V、+12 V、+24 V 电压, - 12 V 由 LM7912 得到, 如图 3 所示。所以在此对+5 V 取 3 匝, ±12 V 取 6 匝, +24 V 取 10 匝。对于反馈线圈, U=13+0.6×2=14.2 V, Ns=14.2÷2.8=5.07, 取 Ns=5 匝。

步骤 7 校验

0N1Ip1/g=4π×10- 7×54×1.745 /(0.72×10- 3) =903×10- 4(T) =90.3 (mT) (Bdc为直流作用的磁感应强度) ; Bmax=0.5 ΔBac+Bdc=190.3 (mT)

五、计算结果分析

根据精确地运算制作出实物,需进行相应调试,并测算结构。图 5 是 UC3842 自身振荡器的波形, 图 6 是 PWM驱动输出的波形, 图 7 是电流取样电阻上的波形, 也就是 UC3842 的 3 脚的波形, 从波形上看, 虽然采取了滤波电路,仍然存在着尖峰脉冲, 这说明缓冲电路还有改进的空间。

结语:综上所述,基于对变频器用多功能开关电源的设计原理、计算方法以及设计步骤等的详细阐述,精确的计算以及科学的设计方法能够从根本上保障变频器多功能开关电源的正常稳定工作,为人们的生产生活提供安全的供电保障,并且随着我国电力事业的不断发展,对于变频器多功能开关电源的研发还将越来越科学,越来越先进。

参考文献:

[1] 王水平, 史俊杰, 田庆安. 开关稳压电源―――原理、设计与实用电路[M].

西安: 西安电子科技大学出版社, 2005.

[2] 李定宣. 开关稳定电源的设计与应用[M]. 北京: 中国电力出版社, 2006.

[3] 张占松, 蔡宣三. 开关电源的原理与设计[M]. 北京: 电子工业出版社,

2005.

[4] 曲学基, 王增福, 曲敬铠. 新编高频开关稳定电源[M]. 北京: 电子工业出

版社, 2005.

[5] 周志敏, 周纪海, 纪爱华. 开关电源实用电路[M]. 北京: 中国电力出版社,

变频电源范文第6篇

引言

随着电力电子技术,微型计算机和大规模集成电路的飞速发展,使得由变频器组成的交流电机变频调速系统迅速发展成熟起来,并得到了越来越广泛的应用。

现有的振动棒产品基本上都是一种电动机带发电机,再由发电机提供200Hz交流电,带动高速振动棒电机运行的工作状态[1]。其突出的缺点是体积和重量都比较大,对现场施工造成使用和移动上的很大不便。本文研究的重点是将交流变频调速技术,应用在振动棒这一种小型建筑用机械上,开发一种新型变频电源。在实现振动棒功能的同时使整机的体积和重量都大幅减小,并提高输入端的功率因数,稳定输出端的电压和频率,还能降低产品的成本。该变频电源基本性能指标如下:供振动器的内置式异步偏心式振动电机的电源频率为200Hz,单相输入,三相输出,电机的线电压为42V,单机功率为350W,要求能带双机运行。

1 电压型逆变器的主电路

变频电源不但要实现变压和变频功能,还要使输入与输出实现电气隔离,并且还要满足电网的谐波要求,其基本结构一般均包括AC/DC,DC/DC和DC/AC等几个重要部分。

本电源主电路由APFC前级,DC/DC和三相逆变3个部分构成。输入经全桥不控整流后,用Boost电路作为APFC的电路拓扑进行电压预调节。DC/DC部分采用单端正激变换器实现降压和隔离的功能。三相逆变部分则采用SPWM控制方式,其基本结构如图1所示。由于采用了功率因数校正技术,因此输入功率因数高,电网侧流谐波小,对电网的谐波污染很小;而且当电网电压波动或负载变化时,由于DC/DC环节的控制可以保持三相逆变部分的直流侧电压稳定,从而使系统的输出电压稳定,而不需要通过调节三相逆变部分的调制深度来改变输出电压的大小,因此,对逆变部分的控制芯片的要求就可以降低,可以采用比较廉价的CPU。另外,由于是低压逆变,则可采用低压MOS管作为逆变电路的功率开关管。

2 有源功率因数校正(APFC)电路

采用平均电流控制的Boost电路来实现APFC,是目前在高频开关电源中使用最广泛的一种APFC控制方法。应用平均电流控制法的功率因数校正器的控制电路在市场上已有很多种集成电路芯片可供选择,其中美国Unitrode公司的UC3854是很有代表性的一种,并在实际中得到了较广泛的应用。在本方案中,就是采用Unitrode公司的UC3854芯片来实现的,其电路原理图如图2所示[2],输入端电压电流实验结果如图3所示。实际电压和图中电压对应关系为为1V∶1V,实际电流和图中电流对应关系为4A∶1V。

3 正激(Forward)变换器的设计[2]

振动棒是一种手持式电动产品,为了操作人员的人身安全,输入与输出之间要实现电气隔离。APFC前级的输入与输出是没有隔离的,实现隔离的功能是由DC/DC部分完成的。由于采用的是高频DC/DC变换电路,因此变压器的体积可以做得很小。另外,由于APFC的输出电压大约为350~400V,考虑到后面逆变电路开关管的电压应力问题,DC/DC部分应该还具有降压的功能。基于这种考虑,在本方案中,DC/DC部分采用的是正激变换电路(ForwardConverter)。正激变换器的最大优点是结构简单,可靠性高,减少了成本和重量。考虑变压器的磁复位问题,本方案采用如图4所示的电路。在开关管导通时,变压器传输能量,在开关管关断时,输出二极管D1反偏没有能量泄放回路,磁化能量将引起较大的反压加在MOS管的漏极和源极之间。采用N2线圈的作用就在于经二极管D可以把储存的能量返回到电源中。只要N2和N1的匝数相同,开关管承受的漏-源电压就为2Vs。采用N1与N2两个绕组双线并绕的方法,可以减小漏感。在图4电路中,功率开关的控制芯片采用的是Unitrode公司的UC3844。

4 三相逆变器控制、驱动与保护电路的设计

4.1 逆变控制电路的设计[3]

由于本方案逆变部分不需要通过调节调制深度来改变输出电压的大小,仅须实现变频功能就可以,故控制电路采用的芯片是INTEL的87C51FX系列的8位单片机,价格比通用的Intel196单片机大大降低,而性能足够。一般而言,应用CPU产生PWM的典型用法是采用定时的方法,在定时中断中通过查询的方式来确定三相的输出。但是,这种方法只适用于输出PWM脉冲频率很低的情况,当输出频率大于1kHz时,中断查询时间就可能会长于最小输出脉冲宽度,这样就会造成输出脉冲宽度变大或减小,使输出谐波加大,三相之间的对称关系也会受到影响。与普通的51系列单片机相比,87C51FX增加了一个可编程的计数器阵列(PCA),它由一个16位的定时器/计数器和5个16位比较/捕捉模块组成,如图5所示,其功能与Intel196单片机的EPA相似。PCA的16位定时器/计数器作为比较/捕捉模块的定时标准,因此,主要作为定时器使用,每个比较/捕捉模块都有4种用途,即捕捉外部引脚CEXn上输出电平发生跳变的时间,软件定时器,高速输出和脉冲宽度调制输出。

本方案采用不对称规则采样法产生三相6路控制脉冲。相比于对称规则采样法,不对称规则采样法所形成的阶梯波更接近于正弦波。将计算出的三相脉冲宽度的值存成一个数据表,作为定时基准,在程序中查询这些定时时间就可以得到6路控制脉冲。工作原理简述如下:应用87C51FX的软件定时器和高速输出方式,在16位比较方式中,16位PCA定时器的计数值和模块中的16位比较寄存器中的预置值在每个机器周期进行3次比较,若相等则产生一个匹配信号,使模块工作于高速输出方式,即在PCA定时器计数值和模块的比较寄存器比较相等时产生一个匹配信号,该信号使外部引脚CEXn上的输出电平发生跳变,如果允许也产生一个PCA中断。由软件来设置CEXn上输出电平的初态,就可以使该引脚在预定时刻达到时发生正(负)跳变,利用这种方式就可以产生16位PWM波。

由于引脚的跳变不须经过CPU的运算来完成,因此,避免了由于最小脉冲宽度过窄而造成的脉冲宽度变化。程序主要由主程序和中断服务程序两部分组成。主程序主要是进行初始化工作,将定时器和各个寄存器赋予初值。中断程序主要包括用于产生PWM脉冲的PCA中断服务程序和保护中断程序:在PCA中断服务程序中,主要是将下一个定时时间赋值给各个模块的比较寄存器;保护中断程序主要是处理当有保护信号到来时,封锁PWM输出。

4.2 驱动电路的设计[4][5]

本方案中驱动芯片采用IR2130。IR2130的最大优点是可共地运行,因此只需要一路控制电源。而且它的6路输出信号中的3路还具有电平转换功能,既能驱动低压侧的功率器件,也能驱动高压侧的功率器件。IR213

0还具有电流放大和过电流保护功能;欠压锁定并能指示欠压和过电流状态功能;输入端噪声抑制功能;同时还能自动产生上、下侧驱动所必需的死区时间(2μs)等功能。实际应用中的驱动电路如图6所示。

4.3 保护电路与主电路的设计由于驱动电路部分具有电流保护功能,因此,保护电路部分只设计了电压保护,包括输入过压、欠压保护和输出过压、欠压保护。保护电路如图7所示。其中,这几种保护功能的实现电路是类似的,即输出(或输入)电压经过分压后送到比较器的反相端,比较器的同相端接给定电压。他们的区别在于比较器的输出不同,即输入过压和输出过压时,比较器输出低电平;输入欠压和输出欠压时,比较器输出高电平。前面3种保护电路的输出经过4011的运算后,成为“或”的关系,即只要有一种故障发生,得到的故障信号就是高电平,送到CPU的外中断端口进行相应的处理。输出欠压时,比较器输出高电平,发光二极管点亮,同时蜂鸣器发出声音报警。

由于DC/DC部分的输出电压比较低,因此,主电路部分采用的功率开关管是低压MOSFET。同时,为了减轻开关过程中功率管的负担,在主电路部分采用了缓冲电路,如图8所示。其中三相逆变桥由6个MOSFET组成,D1~D6是MOSFET自带集成的快速恢复二极管,R,D,C组成了缓冲电路(也可以看出是U,V,W三相缓冲电路的等效电路)。

5 实验分析与结语

变频电源范文第7篇

关键词:空间矢量;脉宽调制;变频器;专用芯片MR16

引言

随着拖动技术的不断发展以及大功率电力电子器件的不断更新,交流异步电机V/f控制PWM变频电源在工业上的应用越来越广泛。传统的SPWM变频调速技术理论成熟,原理简单,易于实现,但其逆变器输出线电压的幅值最大值仅为0.866Ud,直流侧电压利用率较低;而采用空间矢量PWM(SVPWM)算法可使逆变器输出线电压幅值最大值达到Ud,较SPWM调制方式提高了15%,且在同样的载波频率下,采用SVPWM控制方式的逆变器开关次数少,降低了开关损耗。为此,本文运用SVPWM算法,将逆变器和电机作为整体考虑,并综合三相电压,通过实时计算,利用MR16单片机实现了电机的恒磁通变频调速控制。

1空间矢量PWM基本工作原理

图1所示为三相电压型逆变器的工作原理图,它由6个开关器件组成。逆变器输出的空间电压矢量为

根据同一桥臂的上下两个开关器件不能同时导通的原则,其三相桥臂开与关可以有8种状态。在这8种开关模式中,有6种开关模式输出电压,在三相电机中形成相应的6个磁链矢量,另外2种开关模式不输出电压,不形成磁链矢量,称之为零矢量。各种状态形成的矢量在空间坐标系中的位置关系如图2所示。括号内的二进制数依相序A,B,C表示开关的不同状态,“1”表示上桥臂功率器件导通,下桥臂器件关闭;“0”表示的工作状态与此相反。任意一个电压空间矢量的幅值和旋转角度都表示此刻输出PWM波的基波幅值及频率大小,它的相位则表示不同的脉冲开关时刻。因此,三相桥式逆变器的目标就是利用这8种基本矢量的时间组合,去近似模拟合成这样一个磁链圆。

通常将一个圆周期6等份,并习惯地称之为扇区。每一扇区又可继续划分为任意的m个小等份。当理想电压矢量位于任一扇区之中时(如图2所示),就用该扇区的两个边界矢量和两个零矢量去合成该矢量,例如:当理想电压矢量处于第一扇区时就由和两个非零矢量以及零矢量合成,其他扇区依此类推。假设理想电压矢量位于图3所示的位置,依据正弦定理可以得到式(2)—式(4)。

式中:Us为逆变器输出电压矢量的幅值;

U1为非零矢量的幅值;

U2为非零矢量的幅值;

Ts为PWM周期;

t1为的作用时间;

t2为的作用时间;

t0为零矢量的作用时间;

|U1|=|U2|=…=Ud。

由于理想电压矢量是由位于该扇区边界的两个非零矢量和零矢量合成,在实际合成时可采用每一个非零矢量分别发出两次,零矢量则依次插入各个分割点的方法。例如:理想电压矢量为,其合成步骤可以是:先发非零矢量作用t1/2时间,再发零矢量作用t0/4时间,而后发出非零矢量作用t2/2时间,接着发出零矢量作用t0/4时间。然后再依此次序重发矢量一次,就完成了整个合成过程。之所以采用这种合成方法是因为系统工作到低频时,控制周期变长,而每个周期内非零矢量的作用时间又是一定的,也就是说零矢量的作用时间相应的变长了。于是就将一个周期中太长的零矢量分开成几个零矢量,而后把它们均匀地插入到非零矢量中去,这样既满足了合成的要求,又有效地抑止了低速转矩脉动。对于理想电压矢量位于扇区边界的这种情形,可以把它作为扇区的特例来处理,即有一个非零矢量的作用时间为0。

2系统实现

2.1主电路拓扑结构

主电路采用三相全桥逆变电路,其拓扑结构如图4所示,逆变DC/AC部分为全控式逆变桥,电容C为滤波电容,其电容值的选择与负载额定功率及直流侧输入电压有关。交流电机变频调速不仅要求输出电压为正弦波,而且要求电压和频率协调变化,即要求电压V和频率f要同时变化并满足一定的规律,如V/f为常数,这样才能保证异步电机转子磁通在变频调速过程中保持恒定。采用空间矢量PWM控制法驱动逆变桥,可以实现输出电压和频率分别按各自规律变化,而且正弦波畸变小,响应速度快,控制简单。2.2控制芯片

本系统采用MOTOROLA公司的电机控制专用单片机68HC908MR16(以下简称MR16)作为主控芯片,它是一种高性能,低成本的8位单片机。MR16内部集成有16K字节的可擦写片内闪速存储器FLASH,768字节的RAM;具有10位精度的10通道ADC模块,其AD转换时间最快仅需2μs,能够在极短时间内完成多路采样并进行高精度转换;同时MR16含有一个可编程时钟发生器模块(CGM),系统时钟不仅可以直接由外部晶振输入分频得到,也可以先将晶振电路的输出信号缓冲后再经内部锁相环(PLL)频率合成器提供;具有串行通信模块SCI,它有32种可编程波特率,可以工作在全双工或半双工模式,通过SCI模块能方便地实现系统与外部的实时通信。

MR16中颇具特色的部分是专门用于电机控

制的PWMMC模块。该模块可以产生3对互补的

PWM信号或6个独立的PWM信号,这些PWM信

号可以是中心对准方式也可以是边缘对准方式。

6个通道都有一个12位的PWM计时器,PWM分辨率在边缘对准方式时是一个时钟周期,而中心对准方式时是两个时钟周期,这样边缘对准方式的最高分辨率是125ns(内部工作频率为8MHz)而中心对准方式的最高分辨率为250ns。当PWMMC模块工作于互补模式时,模块功能部件自动地将死区时间嵌入到PWM的输出信号中,并可以根据感应电机的相电流极性轻易地翻转PWM数据。PWMMC模块还含有4个故障保护引脚FAULT1~FAULT4,当任意一个故障保护端口为高电平时就封锁相应的PWM输出引脚。例如,当系统过流时,就置位FAULT引脚封锁所有PWM输出,这样就封锁了IGBT的驱动电路,从而实现了过流保护功能。为了避免由干扰引起的误操作,MR16的每个故障引脚都带有一个滤波器,并且所有的外部故障引脚都可由软件配置来再使能PWM,这些都给软件设计带来了极大的方便。

2.3PWM波形成本系统利用MR16单片机中的PWMMC模块,实现PWM波形的生成。在初始化时将其设置为3对互补工作模式,即同一桥臂上的两路PWM信号是互补的。为了防止同一桥臂上的2个开关管直通,在无信号发生器DEADTIME的死区时间寄存器DEADTM中设置了2.5μs的死区时间。系统采用4MHz的外部晶振,由程序选择内部锁相环频率合成器产生8MHz内部总线时钟。同时设置载波频率为9kHz,并将其写入PMOD(H:L)寄存器。PWM波的实时脉冲宽度的计算都是在中断服务程序中完成的,每当PWMMC模块中的PCTN(H:L)计数器计数至PMOD(H:L)中的数值时就引起一次中断。预先将一个扇区(60°)的正弦值扩大一定倍数后制成正弦表格存入FLASH中,每次进入中断后都从表中取出一个正弦值,经过相?的计算后将结果送入PVALX(H:L)寄存器中,单片机将PCTN(H:L)中的值与PVALX(H:L)中的值进行比较后自动产生PWM波,而后依次送入相应的PWM输出通道,完成PWM波的输出。采用软件方法实现PWM波的原理如图5所示,它对应于图1的第1扇区。当位于不同的扇区,不同的PWM周期时,它们的值都不相同,都是实时变化的。同样,赋给每一个PVALX(H:L)寄存器的值也就不尽相同。这种产生对称PWM波形的方法,每个PWM周期都开始和结束于零向量,并且000和111的持续时间相同;同时,除了占空比0%和100%外,每个周期内各桥臂通断两次,而且对于一个扇区来讲,桥臂的通断都有一个固定的顺序。

2.4串行通信

系统采用串行通信设计了相应的监控系统,使其具有良好的人机界面。其中逆变系统和监控系统均采用MAXIM公司的串行接口芯片MAX3082,通过标准RS485总线准确实时地实现了相互的串行通信。同时,运用光耦隔离的办法增强了系统的抗干扰能力,提高了通信的可靠性。双方约定波特率9600bps,工作于半双工模式,并采用校验和的校验方法检验数据通信的准确性。MR16工作频率设为8MHz,初始化程序如下:

MOV#$50,SCC1;每一帧10位数据,

启动SCI模块

MOV#$0C,SCC2;发送器和接收器使能

MOV#$00,SCC3;屏蔽出错中断

MOV#$30,SCBR;设置波特率为9600bps

2.5软件设计

系统软件采用模块化设计,包括初始化模块,读X5043模块,保护模块,通信显示模块,PI调节模块,软启动模块以及中断模块等。其中除中断模块在中断服务程序中完成以外,其他均放在主程序中完成。主程序流程如图6所示。

初始化模块包括MR16内部寄存器初始化,变量存储单元定义,通信初始化设置等部分;芯片X5043把三种常见的电路,即看门狗电路,电压监视和EEPROM组合在单个封装内,它内含的4KbitEEPROM存储着上次关机时正常运行的参数值设置,每次开机时系统都将这些参数值读到MR16中,这样就使系统具有记忆功能,使用户不必每次开机时都要对系统参数进行重新设置。保护模块则实现了系统的过热,过载,过流以及系统低频保护等保护功能。其中过流保护由硬件完成,以保证系统能在过流产生后的极短时间内迅速封锁全部的PWM输出。调节模块主要完成稳压输出的功能,而通信显示模块则是方便人机交流的界面,通过它可以进行多种功能的设定,系统状态的显示以及各种参数的修改。

3结语

变频电源范文第8篇

【关键词】变频器;AN8026

1.前言

变频器在能源节约、电力环保方面意义重大,电动机驱动是电能消耗大户,约消耗全国65%发电量,近三十多年来变频调速已在钢铁、冶金、石油、化工、电力等工作中得到广泛运用,其他家用电器例如变频冰箱,变频洗衣机、变频微波炉等也已相继出现[1],因此设计可靠高性能的变频器电源尤为重要。本文设计的电源采用开关电源控制集成电路AN8026,AN8026为松下公司开发的反激式单端输出开关驱动控制器,其内部采用RC充放电控制的RS触发器作为驱动信号源,其输出脉冲可直接驱动MOSFET开关管,而不必外设灌流电路[2]。

变频技术目前得到了广泛的应用,而变频器的可靠稳定运行决定了变频器性能指标,作为基础硬件,变频器电源的高效可靠运行至关重要[3]。如图1所示为变频器的拓扑结构,主要由整流单元、预充电电路、制动单元和逆变单元组成,从图中可知,变频器电源为驱动电路和控制电路提供直流电源,驱动电路则为逆变单元提供驱动能力强响应速度快的驱动脉冲,因而设计高效可靠变频器电源硬件显得尤为重要。

2.电源软开关技术及电路原理

AN8026为松下公司开发的反激式单端输出RCC型准谐振软开关驱动控制器,封装为SIP 9脚封装,各个脚号的定义如表1所示,内部框图如图2所示,其特点如下[4]:

·供电电压为下限8.6V到上限34V;

·输出脉冲为单端图腾柱式驱动脉冲;

·输出驱动电流为+1A,直接驱动M0SFET管;

·启动电流为8uA,减小启动电阻功耗;

·内置逐周控制过流保护电路;

·内置滞回特性的输入欠压8.6V保护电路;

·外置稳压管的过压保护电路。

AN8026的极限参数如表2所示,图3为AN8026的电路原理图。软开关电源主要由控制芯片AN8026、MOSFET K2225、TL431、脉冲变压器TR1等组成。VCC通过启动电阻R1、R3、R5、R6限流分压由直流母线供电,输入直流母线电压等级不同可以调节启动电阻的阻值,当达到启动电压时,变换器开始工作,此后控制芯片由副边+18V辅助绕组供电。

R8将TR1辅助绕组的感应脉冲限流,二极管D6负向箝位,将2.8V的正脉冲送入第①脚用作TR1的磁通复位检测,可以避免TR1磁能未释放完毕时开关管导通产生的冲击电流,同时保证输出电压的稳定;第②脚外接C10、R14设定最小关断时间,C10设定最小导通时间;第④脚以R15作为开关管源极电流传感器,正比于开关电流峰值电压;第⑧脚的过压保护由稳压管ZD4从Vcc端取样,使启动工作电压不超出上限值34V,DZ选用22V稳压管,同时可以实现驱动脉冲失控时输出过压保护;为了防止AN8026启动前启动电压瞬间超过28V产生误动作使电路不能启动,电路中由C13对瞬间超压尖蜂进行吸收。

开关电源的软开关主要是通过C5、C6、C7和初级绕组电感Lp组成的准谐振电路来实现,具体的器件参数需根据开关电源的开关频率来计算;同时第④脚电流检测实现过流保护;第⑧脚通过R16和C18进行启动时的过压锁定,实现开关电源软启动;通过TL431组成的反馈回路实现输出电压的稳定。

3.实验验证

根据电路原理图设计,利用软件Altium Designer Summer 09绘制PCB,并调试样机,图4所示为软开关电源实验波形。

从开关电源实验波形可知开关电源的MOSFET开关管开通和关断时电压应力几乎为零,开关管损耗近似为零,这样大大提高了开关电源效率,同时增加了开关管的寿命,提高了电源的可靠性,进而提高了变频器的可靠稳定性。

4.结论

本文设计的变频器电源板具有高效稳定的工作性能,基于AN8026控制芯片设计的软开关电源效率高、稳定可靠,能够驱动板和控制板的供电需求,从实验结果可知,MOSFET开关管开通和关断时电压应力几乎为零,开关管损耗近似为零,这样大大提高了开关电源效率,同时增加了开关管的寿命,进而提高了变频器的可靠稳定性。

参考文献

[1]张树国,李栋,胡竞.变频调速技术的原理及应用[J].节能技术,2009(1):83-86.

[2]郑国川.RCC型准谐振式AC/DC开关电源控制集成电路AN8026[J].家庭电子(爱好者),2005(22):12-14.

[3]孙丰涛,张承慧,崔纳新,杜春水.变频器故障诊断技术研究与分析[J].电机与控制学报,2005(3):73-75+80.

变频电源范文第9篇

引言

众所周知,我们所使用的市电频率是50Hz,但是,在实际生活中,有时需要的电源频率不是50Hz,这就需要变频电源。对一个电源来说,用户期望它在各种性质的负载下,都能输出稳定的电压,变频电源也不例外。因此,有必要研究变频电源在各种性质的负载(纯阻性,感性,容性,非线性)下的输出特性。

1 实验方案

本实验的接线框图如图1所示。

50Hz的三相电网电压经变频器整流逆变后,输出频率可变(用户可自行调节输出频率)的正弦波,经LC滤波后,再经过升压变压器(作用是升压和隔离)加到三相负载上。三相负载可以是纯阻性,感性,容性和非线性。

本实验期望得到的结果是,当变频器的输出电压和输出频率设定为固定值时,此变频电源装置能在各种性质的负载下,输出稳定的电压和频率。

2 参数选择

2.1 变频器

本实验用的变频器是SIEMENS公司的MIDIMASTERVECTOR(MDV),它的输出功率是7.5kW,额定输入电压380V,输出电压可调,输入频率50Hz,输出频率可调。

2.2 变压器及滤波参数

由于变频器输入额定电压是380V,输出电压在0~380V范围内可调,本实验设定变频器输出电压最高为300V,因此,就需要一个升压变压器,变比为300/380,使加在负载两端的电压为380V。

由于采用的滤波电路为LC滤波,其滤波电感和电容须满足式(1)

1/2μ(根号LC)≤根号f1fs (1)

式中:fs为变频器的开关频率,fs=4kHz;

f1取为fs。

所以根号f1fs=根号(800×4000)=1789Hz

如果取L=7mH,C=1.5μF,则=1/[2π(根号LC)]

1553Hz满足式(1)。

2.3 负载参数

在纯阻性负载实验中,每相均采用5个250Ω,额定功率200W的电阻串联;在感性负载实验中,每相均采用3个250Ω/200W的电阻并联,然后再跟62mH的电感串联组成感性负载;在容性负载实验中,每相用3个10Ω/250W的电阻串联,再跟70μF的电容串联组成容性负载,另外,每相用5个250Ω/200W的电阻并联,再跟70μF的电容并联也组成容性负载;在非线性负载实验中,采用额定电压为800V,额定电流为20A的整流桥作为非线性负载。

3 实验过程及分析

按图1接线,其中三相滤波电感L均为7mH,三相滤波电容均为1.5μF,变压器采用/Y接法,变比是300/380,变频器输出频率设定为60Hz,然后接不同性质的负载进行实验。

3.1 纯阻性负载实验及分析

三相负载均采用五个250Ω/200W的陶瓷电阻串联,输出电压为300V,当确认一切接线都没有问题时,开始实验,测得波形如图2所示。分析及说明如下:

1)由于变频器输出电压为300V,则变压器输入电压接近300V,而变压器变比是300/380,所以,理论上变压器输出电压为380V,其峰值为537V;

2)实验中,通过观察图2中的波形,得到变压器输出电压峰值的实验值为540V,接近理论值;

3)用频谱分析仪观察谐波分布,看到4kHz的谐波与60Hz基波相差最大,有30dB,即谐波约占基波的3.16%。

3.2 感性负载实验及分析

把图1中的负载换成感性,其中每相均用3个250Ω/200W电阻并联,再跟63mH的电感串联,三相负载接成星形,输出电压为300V,当确认一切接线均没有问题后,开始实验,测得波形如图3所示。分析及说明如下:

1)用频谱分析仪观察谐波分布,发现此种情况下300Hz以内谐波及4kHz,8kHz谐波与60Hz的基波相差30dB左右,即谐波成分约占基波的3.16%,其余次数的谐波含量更低,表明滤波效果良好;

2)为了进一步改善波形,尝试把每相滤波电感由7mH换为10mH,再观察谐波分布,发现高次谐波(4kHz,8kHz)与基波相差33.6dB,波形有所改善,如图4所示;

3)由于本次实验所用电感的漆包线比较细,不能承受很大的电流,因此,把变频器输出电压调节为230V,此时理论上变压器输出电压峰值应为412V,观察图3波形,发现实验值为420V,基本接近理论值。

3.3 容性负载实验及分析

3.3.1 电阻与电容串联

把图1的负载换成三相容性负载,每相均由3个10Ω/250W的电阻串联,再与70μF的电容串联,变频器输出电压为298.4V,测得波形如图5所示。分析与说明如下:

用频谱分析仪观察谐波分布状况,发现最高次谐波为高次谐波(4kHz,8kHz),其倍频与基波相差35dB,即谐波成分占基波的1.8%,滤波效果非常好,有高次谐波,是因为变频器的开关频率为4kHz。

3.3.2 电阻与电容并联

再把负载换成每相均由5个250Ω/200W的电阻并联,再与70μF的电容并联,变频器输出电压为303V,测得波形如图6所示。

3.4 非线性负载实验及分析

把图1的负载换成额定电压为800V,额定电流为20A的整流桥作为非线性负载,变频器输出电压为300V,检查一切接线均无问题后,开始实验,实验情况如下:

1)整流桥输出电压波形,如图7所示,其理论值为515V,观察波形,实验值为520V,相差不大,实验效果还可以;

2)变压器输出电压波形,如图8所示。用频谱分析仪观察谐波分布,发现谐波比较厉害,其中300Hz的谐波最厉害,与60Hz基波相差20.6dB;120Hz,240Hz,1.2kHz,4kHz,8kHz谐波也较厉害,其中4kHz的谐波与基波相差28.8dB,8kHz的谐波与基波相差34dB;

3)尝试把滤波电容由1.5μF变为3μF,发现高频部分谐波有所减小,波形更接近正弦波;

4)再把滤波电感由7mH变为10mH,发现谐波分布无明显变化。

3.5 实验结果总结

在综合分析了上述实验波形及数据后,总结如下:

1)当变频器输出频率设定为60Hz时,变频电源在各种性质的负载下输出频率也为60Hz,波动很小,符合设计要求;

2)在纯阻性负载情况下,变频器输出电压设定为300V,变频电源输出电压峰值为540V,在510V~564V的范围内(理论值的波动在±5%范围内);

3)在感性负载情况下,由于所用电感的漆包线比较细,承受电流比较小,最多3A,因此,把变频器输出电压调节为230V,此时变频电源输出电压峰值为420V,照此推论,如果变频器输出电压为300V,则变频电源输出电压峰值为549V,也在510V~564V的范围内,满足要求;

4)在容性负载

情况下,当电阻与电容串联时,变频器输出电压为298.4V,变频电源输出电压峰值为530V;当电阻与电容并联时,变频器输出电压为303V,变频电源输出电压峰值为540V;5)在非线性负载情况下,变频器输出电压仍然设定为300V,此时变频电源输出电压峰值为530V,也在510V~564V的范围内,同样满足要求。

4 结语

变频电源范文第10篇

关键词:高中;电学实验;转换器;直流电;变频交流电

中图分类号:G633.7文献标识码:A文章编号:1003-6148(2007)10(S)-0060-2

人教版高中物理第二册交变电流一章第三节研究电感和电容对交变电流的影响,为了通过对比实验来分析电感和电容对交变电流的阻碍作用,需要这样的电源:能输出直流和不同频率的交变电流,而且它们的有效值相等。但在中学物理实验室中没有这样的电源,因此只能简单比较电感和电容对直流和交变电流的影响的不同,不能比较电感和电容对不同频率的交变电流的影响。笔者设计制作了一个有效值一定的可变频交变电源――能把直流电源转换成可变频交变电源(以下简称“转换器”),在研究电感和电容对交变电流的影响时实验效果很好。现将该转换器的工作原理、制作过程和应用效果介绍如下,供大家参考。

1转换器的工作原理

我们知道直流电动机工作时是通过电刷由换向器把直流电引导到固定在转轴上的线圈上,使线圈在磁场力的作用下转动。实际上线圈中通过的电流的方向在不断改变,实为交变电流。根据同样的原理,可适当改进换向器就可以把直流电源转换为交流电源。

1.1转换器的基本结构和工作原理

如图1所示,把两个相互交错并彼此绝缘的金属圆筒固定在同一转轴上,使四个电刷与两金属圆筒相应部分接触,这样就组成了转换器。转换器的电刷A、B接线柱接直流电源UAB,如图2所示。当转换器绕轴转动时,电刷a、b接线柱间将输出矩形波交变电压Uab,如图3所示。可见,转换器的电刷A、B间输入的直流电压UAB和转换器电刷a、b间输出的矩形波交变电压Uab的最大值相等。根据交变电流有效值的定义易知:转换器输出的交变电压的有效值和输入的直流电源电压相等。

1.2转换器输出交变电流频率的改变

如图4所示,把转换器两金属圆筒相互交错的部分一周分为四等份。这样制成的转换器当转动一周时,输出的矩形波交变电流将做两次周期性变化,即在转速不变的情况下,输出的交变电流的频率将变为原来的2倍。根据上述原理,可制作出输出不同频率的交变电流的转换器以满足实验的需要。

2转换器的制作和组装

笔者制作的转换器可将直流电源转换成两种不同频率的矩形波交变电流输出。具体制作方法如下。

2.1转子的制作

首先,找一块金属片(铜片,或从易拉罐上取下的金属片,或从牙膏筒上取下的金属片均可),按图5所示在金属片上画上虚线线条。再按图6所示沿实线剪开,把金属片一分为二。

其次,把金属片在圆柱体杆上卷成圆筒,用电烙铁把金属圆筒的两端焊接成圆环。

最后,找一根细的金属杆为转轴,把金属圆筒套在转轴上,并用固定胶熔化后注入转轴和金属圆筒之间,等固定胶冷却凝固后,转子就制成了(图7)。需要注意的是,金属杆作为转轴要固定在金属圆筒的轴线上,两部分金属圆筒之间要绝缘。

2.2支架的制作

找一段细铁丝,用钳子把其制成如图8所示的形状作为支架,制作两个这样的支架备用。

2.3电刷的制作

找一个用弹簧提供动力的玩具,把玩具中提供动力的弹簧卷取下,从弹簧卷上截取6段适当长度的弹簧片,调整其外形后作为电刷,用来连接转子和接线柱。

2.4组装转换器

如图9所示,用木板作为基座,把支架套在转子转轴上,并把支架固定在基座上,然后把6个电刷固定在基座上并与转子相应部分良好接触。最后截取一段圆珠笔芯塑料管,把转子转轴和直流电动机转轴相连并把直流电动机固定在基座上。为了减小摩擦的影响,用铅笔笔芯在支架和转轴间、电刷和转子间、涂抹一层石墨。这样转换器就组装好了。当电刷A、B接直流电源,电动机带动转子转动时,电刷a1、b1间和a2、b2间输出频率不同的矩形波交变电流,以供实验需要。

3转换器的特点和应用

上述制作的转换器把直流电源转换成有效值一定的矩形波交变电流。电刷a1、b1间和a2、b2间输出的交变电流频率随直流电动机转速增大而增大,而且电刷a2、b2间输出的交变电流频率始终是电刷a1、b1间输出的交变电流频率的两倍。需注意,当转子不转动时,电刷a1、b1间和电刷a2、b2间输出的是直流。在研究电感对交变电流的阻碍作用时,把如图10所示的研究电路的a、b端分别接转换器的电刷a1、b1,当直流电机不转动时,电刷a1、b1间输出直流,灯亮;当直流电动机转动时,电刷a1、b1间输出有效值未变的交变电流,灯变暗了,说明电感“通直流,阻交流”。把研究电路的a、b端分别接转换器的电刷a2、b2上,即增大了输出交变电流的频率时,灯变得更暗了,说明电感“通低频,阻高频”。

在研究电容对交变电流的阻碍作用时,把如图11所示研究电路的a、b端分别接转换器的电刷a1、b1,当直流电动机不转动时,电刷a1、b1间输出直流,灯不亮;当直流电动机转动时,电刷a1、b1间输出有效值未变的交变电流,灯亮了,说明电容“通交流,隔直流”。把研究电路的a、b端分别接转换器电刷a2、b2上,即增大了输出交变电流的频率时,灯变得更亮了,说明电容“通高频,阻低频”。

可见,有了笔者制作的转换器,在研究电感和电容对交流电的影响时,教师讲解方便,学生理解容易,效果很好。

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

上一篇:电源变压器范文 下一篇:逆变电源范文