煤层地质学范文

时间:2023-10-25 17:14:27

煤层地质学

煤层地质学篇1

关键词煤层气;地面开采;制约因素;解决方案

中图分类号TK01文献标识码A文章编号1673-9671-(2010)032-0113-01

1煤层气简介

煤层气是指在成岩或煤化过程中由煤系中的煤或有机质经过复杂的化学变化及物理变化形成的一种主要以游离、吸附、溶解等三种形态赋存于煤层中的天然气,因为其成分以甲烷为主,故又称之为煤层甲烷。作为一种洁净能源,煤层气的开采可以从一定程度上缓解国内能源压力,改善我国能源结构,而与此同时开采煤层气可以有效减轻矿井的瓦斯灾害,缓解温室效应,由此可见开采煤层气有着巨大的经济、社会、环境价值。

2我国煤层气开发现状

为了缓解煤炭、石油、天然气等化石燃料的供应带来的紧张,目前世界上主要的产煤大国都在致力于煤层气资源的勘探开发。作为煤炭大国,我国同样有着丰富的煤层气资源,位居世界第三。在我国,埋藏深度在2000米以内的煤层气资源总量为31.46万亿立方米(中联煤层气有限责任公司等),资源总量与我国常规天然气大体相等,是我国天然气良好的后续资源。虽然从上个世纪80年代初开始我国就开始了煤层气资源勘探开发,但是直到去年我国煤层气资源地面开采量才突破十亿立方米,而仅仅比我们早开始几年的美国在上个世纪80年代初就实现了煤层气地面开采的突破,进入了煤层气资源大规模商业开发阶段,相关资料显示2004美国煤层气开采量就达到了500亿立方米。那么究竟是什么因素在制约着我国煤层气地面开采产业的发展?

3制约我国煤层气地面开采的因素

3.1地质条件复杂,技术落后

地质条件直接影响着煤层气地面开采的难度。虽然我国煤层气资源丰富且分布相对比较集中,但是同美国相比我国主要的煤层气富集区域地质构造比较复杂,煤层气的吸附保存条件受到了极大的破坏。而煤变质程度高、埋深比较大、割理不够发育和煤层压力小等因素又导致了我国煤层渗透率低和煤层气运移困难等后果。这些因素都严重制约了我国煤层气的地面开采。同时,由于地质条件方面的巨大差异,美国现有的煤层气开采理论和技术无法完全满足我国的开发要求,针对我国特有的地质条件而言,我们还没有形成完全成熟煤层气成藏理论以及开采技术。

3.2政策扶持不到位

不可否认,在美国煤层气产业的发展过程中,巨额的研究经费和长期的政策优惠起到了巨大的推动作用。由于煤层气地面开采生产周期长,而后期的排水加压也都需要相当大的投入,这些原因无形中将煤层气生产的成本大大提高,再加上投资煤层气相关产业的巨额投资,煤层气地面开采经济效益大大降低,甚至会导致有些企业赔本经营,而理论的不成熟更是加大了投资煤层气产业的风险。这就是煤炭企业重视煤炭生产而忽略煤层气生产的根本原因,此时国家在税收、价格等方面的政策支持就显得很重要。

3.3管道不足,运输不畅

国家能源局的数据显示,截止2009年底,我国共建成天然气输送管道,3.6万公里,与之形成鲜明的对比的是美国的输气管线路总长达到了50多万公里。更为严重的是,我国现有的天然气管道距离煤层气商业开发区较远,这就直接导致了我国煤层气生产环节和使用环节脱节。去年我国地面开采量达10.1亿立方米,但是利用的资源只有5.8亿立方米(据家能源局副局长吴吟的讲话),只有百分之五十多一点,但与此同时我国有很多地区却在闹气荒。现阶段煤层气的利用仅仅限于加气出租车,民用和极少量的工业利用,部分矿区还存在点天灯的现象,不仅造成了资源的大量浪费,也会大大加剧温室效应。

4解决方案

4.1认清地质条件,积极创新

1)加大对全国煤层气资源的勘查力度,新增更多的地质探明储量,对于煤层气资源富集区域进行全方位的研究,立足于我国特有的地质条件建立一谈完整的煤层气成藏理论,为煤层气产业的发展提供理论指导。

2)积极从国外引进先进的煤层气开发技术和设备,并在其基础上加以创新利用,弥补我国煤层气开发技术的不足。实现煤层气开采技术的飞跃以及从业人员整体水平的提高,为煤层气产业的发展提供不竭的动力。

4.2加大扶持力度

1)积极鼓励煤层气的勘探开发,对于煤层气资源勘探活动给与财政支持,对于煤层气生产企业要更大力度地实施税费减免及财政补贴等扶持方式,同时从国家层面上制定统一的煤层气行业运行标准,确保煤层气行业健康发展。

2)在扶持煤层气开发企业的同时,对于煤层气生产的基础建设以及煤层气相关产业的建设给与政策与资金上的倾斜,比如国家现行的煤层气发电优先上网及价格补贴。以国家政策来推广煤层气的使用,将煤层气的生产和利用结合起来。

4.3加强管道建设,提高煤层输送能力

1)对与煤层气储量小,设计产量低,服务年限比较短的开发区域,优先考虑建设地方性管道系统。将煤层气资源重点供应给矿区居民,工厂和企事业单位,并视产量将供气区域拓展至市区及周围相邻地区。

2)对于煤层气储量大,设计产量高,服务年限长的有大规模煤层气商业开发潜力的区块,应积极利用我国现有的天然气输送管道,尽快将煤层气管道并入“西气东输”管道系统。实现煤层气的远距离输送,扩大煤层气市场,提高煤层气利用率。

4.4统筹兼顾,合理设置开采权

对煤炭资源及煤层气资源实施综合管理,将煤炭的勘探开发同煤层气的勘探开发有效地结合起来,彻底落实采煤采气一体化的政策。对现有煤层气资源及煤炭资源进行综合勘探,合理设置煤层气开采权,力争做到在不影响煤炭企业生产的前提下解决矿权叠加的问题并最快最好地开发煤层气资源。

1)对于煤炭企业正在开发的区块(五年以内),优先考虑采用煤炭企业进行井下瓦斯抽采的方式回收煤层气资源,同时对煤炭企业的生产进行严格的管理,防止企业出现“重煤轻气”的现象,造成资源的浪费。

2)对于煤炭企业中期规划目标区域(五年到十五年),采用由煤炭企业实行地面开采加井下抽放的模式,首先在五年到十年的时间内利用地面抽采的方式最大限度地回收煤层气资源,然后在煤炭开采过程中利用瓦斯抽放进一步回收资源。

5结束语

虽然在我国要实现煤层气的大规模地面开采困难重重,但是沁水盆地初具规模的煤层气商业开发告诉了我们:在中国,煤层气资源的商业地面开采时可以实现的。相信,在国家相关政策的大力扶持下,在相关学者和工作人员的不断努力之下,煤层气产业在不久的将来必定会迎来它灿烂的春天。

参考文献

[1]傅学海,秦勇.韦重韬.煤层气地质学[J].中国矿业大学出版社,2007.12.

[2]李增学,魏久传,刘莹.煤成(型)气地质学[M].地质出版社,2007.10.

[3]黄盛初等.我国煤层气技术利用现状及前景[M].1998.

[4]孙万禄等.煤层气地质学基本问题的探讨,石油与天然气地质[M].1997.

作者简介

煤层地质学篇2

【关键词】选煤方法;分类;选煤机理;选煤设备

随着经济的发展,人们对能源质量的要求越来越高,煤炭作为我国的主要能源,长期以来由于只追求暂时的经济效益,忽视了对环境的影响,结果造成了环境的巨大破坏。这些年随着洁净煤技术的研究,作为洁净煤技术的源头技术——选煤方法,取得了很大发展,发展选煤技术就是要谋求短期的经济效益和长期的社会效益、环境效益相统一。但如何选择合理的选煤方法,以及购置配套的选煤设备需要人们去探讨。

1.选煤方法分类

选煤是通过各种方法把原煤中的矿物质去除,并加工成质量均匀、用途不同的各种煤炭加工技术。大力发展选煤技术首先要选择合理的选煤方法,因为原煤中含有的矿物质及有害成分随产地及采煤煤层不同而不同,各地区、各煤层适合不同的选煤方法。按选煤方法的不同,选煤可以分为物理选煤、物理化学选煤、化学选煤及微生物选煤等。

1.1物理选煤

根据物料的某种物理性质(如粒度、密度、形状、硬度、颜色、光泽、磁性及电性等)的差别,采用物理的方法来实现对原煤的加工处理。在实际应用中物理选煤主要是指重力选煤,同时还包括电磁选煤及古老的拣选等。重力选煤主要有跳汰选煤、重介质选煤、空气重介质流化厂干法选煤、风力选煤、斜槽和摇床选煤等。

1.2物理化学选煤——浮游选煤(简称浮选)

它依据矿物质的物理化学性质的差别进行分选的方法。浮选包括泡沫浮选、浮选柱、油团浮选、表层浮选和选择性絮凝等。由于实际上常用的是泡沫浮选分选细粒的物料,所以通常所说的浮选主要是指泡沫浮选。

1.3化学选煤

借助化学反应使煤中的有用成分富集或除去杂质和有害成分的工艺过程。化学选煤主要有氢氟酸法、烧熔碱法、氧化法和溶剂萃取法等。

1.4微生物选煤

它是利用某些自养性和异养性微生物,直接或间接地利用其代谢产物从煤中溶浸硫达到脱硫的目的。在现有阶段有发展前途的有以下三种:堆积浸滤法、空气搅拌浸出法和表面氧化法。

2.主要选煤方法及选煤设备

一般要根据原煤特性、现有的技术水平、矿区地理特征等实际情况来选取选煤方法。由于各国技术能力不同,选取选煤方法也各有侧重。

2.1跳汰选煤

跳汰是各种密度、粒度及形状的物料在不断变化的流体中作用下的运动过程,是最复杂的重选分选过程,迄今为止关于跳汰分层机理的观点都只能反映跳汰的某个侧面,不能全面地描述在跳汰过程中矿粒按密度分层的物理实质。跳汰分层机理假说可以概括为两种:静力学观点和动力学观点。

2.1.1静力学观点

静力学假说主要有跳汰能量理论、跳汰概率统计模型及跳汰浮选模型三种。

(1)能量理论。1947年德国学者迈耶尔首先提出,有物理学理论可知:对一个系统来说稳定态的能量最低,当系统中各组元之间的约束较弱时,系统可自发的从非稳态向稳态转移;当组员之间的约束较强时,系统只有在外力作用下才能实现从非稳态向稳态转移。对于跳汰层系统,在未按密度分层时,床层的重力势能较高,在脉动水流的作用下,床层的重力势能减少,直至最低,最终床层将按密度分层。能量模型只是对分层前和分层后的两个状态点的状态进行分析,不能反映分层的过程。

(2)跳汰悬浮模型。该模型把床层看作是由物料和介质组成的准均匀重悬浮体,轻、重物料按准均匀重悬浮体的物理密度进行分层。

2.1.2动力学观点

动力学假说主要有1867年奥地利学者雷廷智提出的床层按自由沉降末速分层假说,1888年美国学者门罗改进了末速分层假说,提出了干扰沉降末速分层假说。该假说考虑了矿粒间的相互作用。1908—1909年查兹提出吸附作用分层假说;高登等人1939年提出的初加速度分层假说。

2.1.3跳汰设备

按压缩空气室和跳汰机的相对位置可以将无活塞式跳汰机分为两类:筛侧空气室跳汰机和筛下空气室跳汰机。其中我国常用的是筛侧空气室跳汰机,目前我国生产的筛侧跳汰机主要由LTG型、LTW型、BM型和CTW型。

2.2重介质选煤

2.2.1重介质选煤机理

重介质选煤是用密度介于煤与矸石之间的重液和悬浮液作为分选介质的选煤方法。重液由于价格昂贵,回收复杂、困难,在工业上没有应用,目前普遍采用磁铁矿粉与水配制的悬浮液作为选煤的分选介质。重介质选煤具有分选效率高、分选密度调节范围宽、适应性强、分选粒度宽等优点。主要用于排矸、分选难选和极难选煤。重介质分选的机理是依据物理学上的阿基米德原理。当颗粒在悬浮液中运动时,颗粒不仅受到浮力作用外,还受到悬浮液的阻力作用。对于最初相对于悬浮液作加速运动的颗粒,最终将以一个末速度在悬浮液中相对于悬浮液静止运动。一般来说,重介质选煤是在重介质旋流器中完成的,此时,重力相对惯性离心力可以忽略。在重介质旋流器重中,颗粒所受到的离心力为。

2.2.2重介质选煤设备

重介质选煤设备主要有分选大于6mm或13mm的块煤斜轮重介质分选机和立轮重介质分选机以及分选末煤的重介质旋流器。其中立轮重介质分选机的类型较多,国内外应用也比较广泛。常用的有德国的太司卡型、波兰的DISA型等。我国自行设计制造的JL型立轮分选机。重介质旋流器可以分为两类:一类是以荷兰D.S.M重介质旋流器为代表的圆锥形重介质旋流器;另一类是以美国D.W.P为代表的圆筒形重介质旋流器。

2.3浮选选煤

浮选选煤是利用煤和矿物质的表面物理化学性质的差别及对水呈现不同湿润性,分选细粒煤的选煤方法。

2.3.1浮选机理

煤的表面是非极性的,矿物质表面主要是极性的,因此煤表面显现出极强的疏水性,而矿物质表面有极强的亲水性。由于矿浆中煤粒和矿物质的不同湿润性,当煤粒和气泡发生碰撞时,气泡易于排开其表面薄且容易破裂的水化膜,使煤粒粘附到气泡的表面;而矿物质颗粒表面的水化膜很难破裂,气泡很难把其粘附到气泡上,所以就留在矿浆中。为了提高煤可浮性、扩大煤与矿物质湿润性的差别、提高浮选效果,在浮选过程中一般要加入一些药剂,按药剂的作用可分为捕收剂、起泡剂和调整剂。

2.3.2浮选设备

浮选机按充气方式可以分为机械搅拌式浮选机和非机械搅拌式浮选机。我国选煤厂应用最广泛的是XJM型机械搅拌式浮选机。

【参考文献】

[1]薛维东等.选煤设备应用与市场营销[M].煤炭工业出版社.

[2]王敦普.今年我国选煤科技状况及发展建议[J].选煤技术,1997(2).

[3]孙玉波.重力选矿.北京:冶金工业出版社,1982.1-4.

[4]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科技出版社, 1989.

煤层地质学篇3

关键词:半滑坡;滑坡治理;预期收益;滑坡隐患;地质灾害 文献标识码:A

中图分类号:TD824 文章编号:1009-2374(2016)11-0142-03 DOI:10.13535/ki.11-4406/n.2016.11.070

煤矿地质学是地质学的一个分支,是专门研究煤、煤层和含煤岩系的地质特征及成因、分布规律的科学,主要内容有矿物与岩石、地质构造、煤的形成和含煤岩系、煤田水文地质。

煤矿安全是研究煤矿安全生产的一门学科,内容包括煤矿五大自然灾害防治:矿井瓦斯防治、矿尘防治、矿井火灭防治、矿井水防治、矿井顶板灾害防治等理论知识。

下文重点论述煤矿地质对矿井瓦斯、矿井水、顶板管理的影响。

1 影响瓦斯含量的地质因素

影响瓦斯含量的地质因素有:(1)煤的变质程度,褐煤没有产生大量的瓦斯,也不利于保存,瓦斯含量少;长烟煤吸附能力低,最大吸附量为20~30m2/t;无烟煤吸附能力最强,最大吸附量达50~60m2/t。(2)围岩和煤层的渗透性好,瓦斯溢出,瓦斯含量低;反之,瓦斯含量高。(3)地质构造,断裂构造,张性断裂有利于瓦斯的排放,压性断裂不利于瓦斯的排放。褶皱构造,顶板为致密并未暴露地表时,瓦斯含量背斜顶部增大,向斜槽部瓦斯含量减小。顶板为脆性岩石且裂隙较多时,瓦斯含量背斜顶部减小,向斜槽部增大。(4)地下水活动,地下水的流动有利于瓦斯的扩散,水大瓦斯小,水小瓦斯大。煤(岩层)表面吸附水分子,减少对瓦斯的吸附。水分子占据了煤(岩层)的孔隙。(5)煤田暴露程度,煤系地层出露地表的程度越高,越利于瓦斯扩散。(6)煤层埋藏深度,瓦斯风化带以下瓦斯含量、涌出量和瓦斯压力随深度增加。

影响煤与瓦斯突出的地质因素有:(1)煤层厚度,大于20cm煤层才会突出;煤层厚度增大,突出增大。(2)煤层埋藏深度,深度增加突出次数增多,突出强度增大,突出范围扩大。(3)地质构造,地质构造带控制突出范围。(4)煤的力学性质,软分层突出可能性大。(5)围岩性质硬而且厚,突出危险性增大。(6)其他地质因素,岩浆侵入、煤的变质程度高突出易发生,涌水量大突出危险性要小等。

2 矿井水文地质对矿井水的影响

煤矿开采中,地下水或地表水进入矿井的过程,称为矿井充水。充水条件是水源和通道,是煤矿地质研究的内容。

2.1 矿井的充水水源

大气降水:(1)矿井涌水量随季节的变化,旱季小,雨季大。涌水量的高峰期常滞后降水一段时间。(2)矿井涌水量的大小与地区有关。南方降雨多,矿井涌水量大;北方降雨少,矿井涌水量少。(3)随着开采深度的增加,大气降水对矿井涌水量的影响减少。

地表水:(1)距地表水越近,涌水量越大;(2)地表水越大,且是常年性的,涌水量大;(3)季节性地表水由于是地下径流,仍然对涌水量有影响。

地下水按埋藏条件将地下水分为:(1)上层滞水:地表以下局部隔水层以上的水。范围小,水量小,季节性,对开采影响不大;(2)潜水:地表以下,第一个稳定隔水层以上的水,对建井和露天煤矿影响较大;(3)承压水:充满两个稳定隔水层且有压力的重力水。煤矿开采水时,如果遇到这样的水源,就会有大量水涌入,会造成矿井淹紧,如我国华北石炭二叠纪煤系的顶板奥陶系石灰岩水。

按含水层性质将地下水分为:(1)孔隙水:松散岩层中的水,对建井和露天煤矿影响较大;(2)裂隙水:岩层裂缝中的水,对煤矿生产影响较大;(3)岩溶水:石灰岩、白云岩等可溶性岩石中的水,对煤矿生产带来影响。

老空水是采空区和废弃巷道由于长期停止排水积存的水,其特点是:(1)来势凶猛,短时间水量很大,常伴有有毒有害气体,带来恶性事故;(2)老空水是酸性水,腐蚀金属设备;(3)如果和其他水源无水力联系,容易疏干,否则不易疏干。

2.2 矿井充水的通道

孔隙:如砾石、粗砂岩松散,存在空隙。导通性好,透水性强。采掘遇到涌水量大。

裂隙:包括风化裂隙、成岩裂隙、构造裂隙。而最严重是构造裂隙,包括节理和断层。其中断层破碎带常是水源的通道和积水区,即可以导水也可以积水。

溶隙:石灰岩、白云岩等可溶性岩石被水溶解,形成溶洞,互相导通。

人为的充水通道:(1)封闭不良的钻孔。导通地表水和煤层顶底板含水层水;(2)采矿活动采空区冒落产生的裂隙、煤层底板底鼓产生裂隙。导通地表水和煤层顶底板含水层水;(3)矿井长期排水,形成水位陷落漏斗。向外扩展,到达新的水源,使矿井涌水量增大。

3 采煤工作面顶板管理

顶压是地压表现的主要形式,顶压的大小主要取决于顶板岩石的物理力学性质。

顶板事故分为掘进工作面顶板事故和采煤工作面的顶板事故。

在掘进过程中,如遇到顶板破碎和压力大,容易发生冒顶。当遇到断层,褶曲的轴部的顶板破碎易发生冒顶事故,这些都和岩石的性质和地质构造有关,岩石强度低,受压后易破碎。当临近断层由于受地应力的作用,顶板岩层破碎,出现断层带。背斜和向斜的轴部由于受地应力的作用,顶板岩层破碎。掘进工程中,由于空顶作业导致顶板冒落,破岩后未及时支护出的顶板,在顶板压力的作用下就会冒落。

采煤过程中,煤层顶板分为伪顶、直接顶、老顶,伪顶随采随落,直接顶在回柱或支架前移后垮落,应为煤层采高的2~3倍,冒落后充满采空区。否则基本顶处于悬空状态,随着悬空面积增大,基本顶来压,发生基本顶冒落。

厚层难垮落的顶板,回柱放顶或支架前移,直接顶不冒落,形成大悬顶。到了一定程度,大面积来压,造成工作面垮面。

采煤过程中由于煤层倾角过大,支架会下滑、倾斜,导致冒顶。

另外,影响矿尘产生量的地质因素主要有:(1)地质构造:地质构造破坏严重的地区,断层、褶曲比较发育,煤岩较为破碎,矿尘的产生量大;(2)煤层赋存条件:同样技术条件下,开采厚煤层比开采薄煤层的产尘量大,开采急倾斜煤层比开采缓倾斜煤层的产尘量多;(3)煤岩的物理性质:节理发育、结构疏松、水分低、脆性大的煤岩,开采时产尘量较大,反之则小。

影响煤炭自燃的地质因素主要有:(1)煤的化学成分;(2)煤的物理性质;(3)煤层的地质条件。

综上所述,煤矿地质对煤矿安全有极大的影响,因此必须认真细致做好煤矿地质工作,研究影响煤矿安全生产的各种地质因素,为煤矿安全生产服务。

参考文献

[1] 陶昆.煤矿地质[M].徐州:中国矿业大学出版社,

2008.

[2] 国家安全生产监督管理总局宣传教育中心.煤矿探放

煤层地质学篇4

引言

随着世界原油不断减少,世界常规能源供给形势日益严峻,国际上逐渐把发展非常规能源作为新世纪能源发展的主要议题。煤层气的开发具有热值高、污染少、安全性高的特点,完全可以成为石油和天然气等常规能源的重要补充。[1]世界上很多国家逐渐开始重视煤层气的勘探和开发试验,并积极发展发达国家的地面钻井开采技术,在煤层气资源的勘探、钻井、采气和地面集气处理等技术领域均取得了重要进展。我国埋深在2000米以内的煤层中含煤层气资源量达30万亿-35万亿立方米,是世界上第三大煤层气储量国,煤层气开发前景非常可观。然而,由于种种原因,我国煤层气的开发和利用规模普遍偏小,所以合理加强煤层气的综合利用,对我国的资源建设有积极的作用。

1.煤层气的成因

天然气的成因各式各样,Macd Donald(1983)研究了天然气的形成模式,认为最具代表性的模式有六种:(1)沉积岩有机质的微生物降解;(2)沉积岩有机质的热降解;(3)原油的热裂解;(4)煤的变质作用;(5)岩浆岩的高温反应;(6)地幔原生甲烷的释放。煤层气是属于第(4)种模式,是在煤的变质作用过程中不断生成的。煤在变质作用中产生的甲烷分子被吸附在煤体的表面。吸附甲烷量的多少决定于压力、温度和煤质。即在一定的温度、压力条件下,甲烷分子主要以单分子层状态吸附于煤体的细微孔隙表面,并和微孔隙中的游离甲烷分子处于不断交换的动平衡状态。由此可知,游离甲烷的多少,取决于煤的孔隙度、温度和压力。当遇到外界条件发生变化(地壳运动、岩浆活动)时,这种平衡就会被打破,若继续沉降使煤热演化继续进行,煤层含气量增加;或地壳抬升,使煤的热演化终止,甲烷不再产出;当煤层抬升接近地表遭受风化时,所有气体将散失干净。

2.煤层气田的分类

纵观国外已有煤层气开发的生产实践和我国国内开发试验的经验教训,可以认为不同成因的煤层气田的开发,会存在一定的差别。分类划分得当对指导煤层气地面开发选区和开发方式、方法的运用均有一定的指导作用。现参考煤田地质学理论中煤变质类型的分类,结合煤层气的生成、赋存等条件,将煤层气田初步划分为三类二个亚类。

(1)深成成因的煤层气田。

(2)岩浆热成因的煤层气田,可分为。

①区域热力作用形成的煤层气田。

②岩体接触作用形成的煤层气田。

(3)挤压成因的煤层气田。

3.国内煤层气开发利用的现状

当前,国际能源局势趋紧,我国煤矿安全生产形势严峻。我国的能源消费结构很不合理,1999年煤炭约占68%,石油占23%,天然气仅占2.6%,天然气在能源结构中的比例远远低于世界平均水平(24%)。为了实现能源与环境的可持续发展,我国急需实施以优质能源为主的能源发展战略,合理调整能源结构,增加天然气在一次能源消费中的比重。煤层气有望成为接替煤炭、石油和天然气等常规能源的新能源资源。目前全国瓦斯发电的总装机容量为9万千瓦,而规划或正在实施的瓦斯发电项目装机容量接近15万千瓦。其中,山西晋城煤业集团在建的煤层气电厂计划装机达12万千瓦,是世界上目前最大的煤层气发电厂。

4.我国煤层气区划方案

根据实际资料和工作程度,按煤层气大区、含气区、含气带、气田这四个级别进行中国煤层气资源分布区划。

5.开采煤层气的技术方法

5.1生产布局

煤层气开发的生产布局与常规油气有较大差异。当煤层气开发选区确定以后,在钻井之前,就应进行地面设施的系统设计与布局。在确定井径、地面设施与井筒的位置关系时,应综合考虑地质条件、储层特征、地形及环境条件等因素。―个煤层气采区包括生产井、气体集输管路、气水分离器、气体压缩器、气体脱水器、流体监测系统、水处理设施、公路、办公及生活设施等。只有各部分密切配合,才会使得煤层气生产顺利进行。

5.2 井筒结构

煤层气开发的成功始自井底,一般井筒应钻至最低产层之下,以产生一个口袋,使得产生气体在排出地面之前,在此口袋内汇集。煤层气生产井的结构是将油管置于套管之内,这种构型是由常规油气生产井演化而来的。这种设计还可使气、水在井筒中初步分离,从而减少地面气、水分离器的数量,并可降低什筒内流体的上返压力;一般情况下,产出水通过内径为10 mm或20mm的油管泵送至地面,气体则自油管与套管的环形间隙产出。除排水产气外,井简的设计还应尽量降低固体物质(如煤屑、细砂等)的排出量。井底口袋可用上收集固体碎屑,使其进入水泵,使地面设备的数量降至最低。在泵的入口处,可安装滤网,减少进入生产系统中的碎屑物质。另外,在操作过程中,缓慢改变井口压力,也有利于套管与油管环形间隙的清洁,降低碎肩物质的迁移。

5.3气水地面集输与处理

5.3.1地面气水分离

在煤层气生产井中,将油管置于套管之内的设计可实现气、水的初步分离,但在泵送至地表后,还需经地面分离器进一步分离,分离的气和水分别进入集气管线和水处理系统,同时还应除去流体中固体颗粒物(煤粉、细沙等)。

5.3.1.1 低压分离

常用的分离器有常规两相分离器,脱水器和在线水分分离器。两相分离器为一个内部装有挡板的大容器,从井中排出的流体从两侧进入分离器,分离出的气体自顶部排出,当容器中水位升至一定高度时,通过一个自动阀门口底部流出 。该分离器的缺点是分离出的气体仍含有较多水分,需进―步纯化,另外,在不增加上返压力的情况下,井下泵不能将排出的水送全至各处系统。脱水器可有效地去除套管气流中的水分,但不能收集水流中的气体。在线水分分离器是颇为有效的二次分离器,可置于管线中两相分离器之后。该装置采用离心分离,使水分流至洼坑,气体继续沿管线流动。使用该分离器可有效去除气体中的水分,但不能处理大量水流和去除进入气体中的固体颗粒物。

5.3.1.2高压分离

部分生产井需要两次分离,第一步,高压容器从流体中分离出气体;第二步,低压分离,从石油中分离出水。虽然一般采用重力分离设备,但煤屑过多会对设备产生严重影响。需要针对不同情况采取相加措施。例如,常规的水雾分离器可被细微灰尘堵塞,可使用脉型或其它水雾分离器代替。为避免大块煤堵塞底部阀门或其它接口,可使76mm阀门代替50mm阀门。中等煤屑通常处于气饱和状态,漂浮于分离器的气、水界面上。分离器中分离的气体通过一个药盒型过滤装置,以免在后来脱水、压缩或进入气表时产生问题。气体还需经20―25µm滤网过滤.以免破坏水处理没备。

5.3.2集输系统

集输系统的作用有二:一是利用最经济的方式将气体从井门输送至中央压缩站;二是从环保与经济效益的角度,妥善处理排出水。在铺设管线时应充分考虑地形和地面没施,输气管道不宜铺设在低洼处,而输水管尽量不要架设在高处。但如果无法避免这种情况,应安浆气压缓解阀,以免水回流至井口。

5.4气体处理与压缩

进入销售管线的煤层气,一方而应符合管道气的成分标准,另一方面应具有足够的压力。因此,经气水分离器分离出的气体,需经进一步处理和压缩。

6.开采煤层气需要注意哪些问题

6.1煤层气开采中水的处理

水是煤层气生产的副产品,其净化和处理费用在日常操作中占相当大的比重。合理设计水处理系统,是决定煤层气开发成功与否的主要因素之一。水的处理方法和费用上要取决于排水量和水质特征,在设计水处理系统时.应首先根据临近生产井的排水情况或煤层渗透中及水文资料估算煤层的产水量,还应考虑到生产过程中不同阶段排水量的变化。

6.1.1产出水杂质分类

煤层产出水是一种含有溶解盐、溶解气体、非水液体和固体颗粒等杂质的多相体系。其中杂质可分为五类:(1)固体颗粒。(2)胶体。(3)分散油和浮油。(4)浮化油。(5)溶解物质。

6.1.2水处理方式

在美国煤层气生产中,最常用的产出水处理方式是排入地表水系和注入深井,其它方法包括土地灌溉、蒸发、水力压裂时重新利用等,反渗透方法正处于试验阶段。

7.总结

我国煤储层的发育状况、煤层的含气特征、煤层的渗透性等,在地域上的分布是很不均衡的。煤层气分布的不均衡性,加上区域经济因素,就造成了当前我国煤层气勘探开发工作在地域上的不平衡发展。因此,研究和总结我国煤层气在区域分布方面的规律性,合理进行煤层气资源分布区划,对于从宏观上阐明资源分布特征,分析煤层气勘探开发态势,指导未来煤层气勘探开发工作都将具有重要意义。

参考文献:

[1]宫诚.国外煤层气发展现状[J].中国煤炭, 2005,(03)

[2] 张建博,王红岩,赵庆波等.中国煤层气地质[J].北京地质出版社,2000

[3] 张新民,庄军,张遂安等.中国煤层气地质与资源评价[J].北京科学出版社,2002

[4] 陈荣书,袁炳存等.天然气地质学[J].中国地质大学出版社,1986

[5]孙万禄.我国煤层气资源开发前景及对策[J].天然气工业, 1999,(05)

[6]张建博.煤层气开发评价技术[J].北京地质出版社,1997

[7] 戴金星,裴锡古,戚厚发等.中国天然气地质学[J].石油工业出版社,1992

[8]李五忠,王一兵,孙斌,鲜保安,陈彩红,王宪花.中国煤层气资源分布及勘探前景[J].天然气工业, 2004,(05)

[9]孙茂远,范孙茂远.我国煤层气开发的现状与远景[J].煤炭企业管理, 2005,(04)

[10]志强.中国煤层气开发利用现状及产业化战略选择[J].天然气工业, 2007,(03)

[11]孙世清,徐会军,李中锋,铁磊.我国煤层气资源及开发现状[J].焦作工学院学报, 1999,(03) .

[12] 苏现波,陈江峰,孙俊民,程昭斌等.煤层气地质学与勘探开发[J].科学出版社,2001

[13] 李明潮,梁生正,赵克镜等.煤层气及其勘探开发[J].北京科学出版社,1996

[14]孙茂远,范志强.中国煤层气开发利用现状及产业化战略选择[J].天然气工业, 2007,(03)

[15]王仲勋,郭永存.煤层气开发理论研究进展及展望[J]天然气勘探与开发, 2005,(04) .

[16] 冯福间,王廷斌,张士亚等.中国天然气地质[J].北京地质出版社,1995

[17]林伯泉,张建国等.矿井瓦斯抽放理论与技术[J].中国矿业大学出版社,1996

[18] 王会林.煤气共采、综合开发探讨[J]科技情报开发与经济, 2003,(01) .

[19]黄稚达.中国煤层气资源的开发与利用[J].中国矿业, 2001,(01)

[20] 舒秋,张建兵.国内外煤层气的钻采技术[J]西部探矿工程, 2003,(08) .

[21]於俊杰,朱玲,周波,邵立南,何绪文.中国煤层气开发利用现状及发展建议[J].洁净煤技术, 2009,(03)

[22] 李义德,员建国.晋城市煤层气综合利用发展初探[J]煤化工, 2005,(06) .

[23]孙欣,王国文.抚顺、铁法和晋城矿区煤层气开发利用[J].中国煤炭, 2003,(09)

[24]陈永武,胡爱梅.中国煤层气产业形成和发展面临的机遇与挑战[J].天然气工业, 2000,(04)

[25]吴佩芳.中国煤层气产业发展面临的机遇和挑战[J].断块油气田, 2002,(02)

煤层地质学篇5

我校是率先开设煤层气抽采技术专业的高职院校之一,该专业于2010年申报成功,2011年开始招生,现在校学生共174人,第一届毕业生已全部就业。我校煤层气抽采技术专业是矿井通风与安全专业群中专业之一,也是矿井通风技术,安全技术管理专业向矿井瓦斯防治方向的一次延展和深入,侧重点在于煤矿井下煤层气抽采技术和管理。该专业立足于实际能力培养,主要涵盖煤矿井下开采、通风、监控、抽采、安全管理等方面学科,构建以煤层气开发与利用的设计、施工管理等工程技术为主线,兼顾相关知识、素质教育,培养出综合素质高、适应市场能力强的应用型高端技能专门人才的课程体系。

2目前存在问题

2.1课程定位的局限性

我院该专业毕业生主要面向煤层气开发企业和矿山企业,但现课程设置中较少涉及煤层气地面开采与利用,学生毕业后尚不具备到煤层气、页岩气相关企业进行地面开发、设计、施工及管理所需的技能、知识和专业素质,学生无法到地面开采的相关企业工作,尚不能扩展学生就业的需要。

2.2课程设置不尽合理,教学内容有待调整

该专业的课程设置是在我校煤矿开采技术、矿井通风与安全的相关课程较简单综合,造成部分教学内容不足。如地质课程,仅开设了普通地质、瓦斯地质,但该专业的地质课程应涵盖的矿床学中的煤地质学、石油天然气地质学,煤层气地质的基础理论和基础知识较少涉及,这些在《瓦斯地质课程教学内容探讨》中有详细论述。如瓦斯防治和煤层气抽采技术的课程设置部分内容重复,在瓦斯防治中已涉及了瓦斯抽采的部分内容,且深度较浅。

2.3教材体系建设薄弱,教材空缺现象突出

该专业的许多课程多来自于相关专业,因专业差异以及教材编者知识结构局限性,国家规划教材很少,所用教材只是编者专著或别的专业的适用教材,通识性差,对该专业并不完全适用,造成学生知识的掌握与实践脱钩或者实用性不强。很多课程还没有教材,授课教师只能根据自己的学识,在众多教材、专著内选择认为适合的内容进行授课,授课内容零散,涉及学科理论深浅不一,缺乏系统性、通识性和科学性。如煤层气勘探与开发,包括了煤层气地质、煤层气开发、煤层气利用等众多课程的教学内容,针对性不足。

3煤层气抽采技术专业课程设计与构建

3.1煤层气抽采技术体系分析

煤层气赋存状态、控气地质因素、产出机理、开采方式、产出特征的不同导致其赋存与产出均有其显著的特殊性,鉴于此,煤层气勘探开发技术既有常规天然气勘探开发技术的来源、借鉴甚至直接移植,又有自己的独特性,还有与采煤技术交叉融合的耦合特性,是一个与常规天然气和煤炭开发技术既有联系又有区别的复杂技术系统。煤层气勘探与开发技术主要包括勘探技术、开采技术以及协同开采三大技术体系,勘探技术包括地球物理、地球化学、钻探3类方法,以及地质分析与选区的综合技术;地面开采的程序主要包括钻井、固井、完井和地面井增产技术及排采技术;矿井井下抽采技术中的模块化区域递进式抽采技术、分源双系统抽采技术、保护层抽采技术、卸压层抽采技术和采空区抽采技术等;在煤气共采技术形成了煤与煤层气协调开发的时间顺序、空间衔接和开发技术途径,形成了煤层气立体抽采工艺与配套技术;地面集输工艺较简单,一般为“井场一采气管道一集气站一集气管道一处理厂一输气管网”的工艺流程。

3.2根据所需技术体系分析课程设置

煤层气地面抽采技术是一项复杂的系统工程,涉及地质资源与地质工程、石油天然气工程、矿业工程等众多学科,煤层气藏的特殊性决定了我国的煤层气开采必须要具有针对性措施,需要煤田地质学与天然气地质学紧密结合、煤储层理论与常规天然气藏工程技术紧密结合、煤层气排采技术与钻完井紧密结合。因此,煤层气抽采技术专业要求掌握或熟悉地质学、煤层气及煤炭资源地质勘探与开发、煤矿安全生产和安全减灾、井下煤矿瓦斯抽采、地面煤层气(瓦斯)开采、储运与输送等多方面的技术,分析各院校煤层气相关专业课程开设情况,主要开设了包括涉及地质、力学、勘探、煤矿开采与安全、地面抽采技术、地面集输配技术、钻井与抽采设备、煤层气综合利用、管理等多方面的课程。

3.3专业课程设计

根据煤层气勘探与开发技术的特点,结合我校该专业主要是基于云贵川渝等煤炭行业及煤层气、页岩气开发企业的实际情况,在学校地质、煤矿开采技术、矿井通风与安全等专业的基础上设计该专业课程。课程设置主要考虑知识与所需能力相适应;岗位技能和应用型人才培养的要求相适应;与行业需求、企业需求相适应;与专业学习的需要相适应,使学生的知识、能力、素质协调发展等原则,主要设置有以下几大类专业课程,以满足学生在毕业后可在煤矿、煤层气、页岩气等相关企业单位的基本知识和技能要求,并为后续成长打下较好的基础。地质类课程:普通地质、煤矿地质、瓦斯地质、煤层气地质。力学类:矿山工程力学、流体力学、岩石力学。煤矿开采类:矿井开采与掘进、矿井通风、煤矿安全技术。井下抽采类:煤层气抽采技术、安全检测与监控、防突规范与管理。地面开采类:煤层气开采技术、钻井与完井技术、测井监测技术、煤层气输配技术、煤层气抽采设备及维护。其他:工程制图、AUTOCAD、流体机械、现代企业管理、安全评价技术、环保概论与煤层气综合利用、事故应急救援。

3.4专业课程构建

为更好地达到该专业人才培养目标,将课程构建分成了公共课程、专业必修课、实践课程、专业选修课四大方面。在完成大学基本素质教育即(公共课程)的前提下,对应未来就业岗位(群)所需的专门技能设置了专业基础课和专业课,并结合我校特点开设了一般的实习实训课程和增设了技能鉴定这一教学和考核实践教学内容,还为扩大学生的知识面和职业素质设置了一组专业选修课。公共课程主要包括了思想政治、英语、数学、计算机、体育、应用文写作等。专业必修课:工程制图与CAD、普通地质与煤矿地质、瓦斯地质、煤层气地质、矿山工程力学、流体力学与流体机械、矿井开采与掘进、矿井通风、矿井灾害防治、安全检测与监控、煤层气抽采技术、煤层气开采技术、钻井与完井技术、煤层气输配技术、煤层气抽采设备及维护、测井监测技术、现代企业管理。实践教学课程贯穿与整个教学活动当中,分为课程实训和集中实习两大部分,除了一般工科专业的入学教育、军训、公益劳动、毕业实习及毕业论文(设计)等实践课程外,针对本专业的特点,特设置了地质认识实习、煤矿(煤层气)认识实习,瓦斯灾害防治、抽采工程顶岗实习及其设计、安全检测与控制课程设计等实践教学活动。实践教学中增设了瓦斯检查工、煤矿抽采工、钻井工、煤矿防突工等技能鉴定实训内容。专业选修课:环保概论与煤层气综合利用、防突规范与管理、事故应急救援、安全评价技术、工程项目管理。

4结语

(1)我校在办该专业之初,将专业定位于地面开采与井下抽采两个方面,面临煤炭行业困难时期,生源不足以开设两个方面,急需整合此两个方向一并教学,经过教学实践,该课程设置能够较好的融合地面开采与煤矿井下瓦斯抽采两个方向,课程设置中体现了“适专业,宽口径”的目标,能够基本满足行业人才的需求,也扩展了学生就业的需要。

(2)在课程设置时还应根据以行业需求为导向,合理地调整分配各方向有关的专业课程设置结构及比例,旨在培养针对性强、实用性高、适用性广的专业人才,提高学生在专业方向上的就业竞争力。

煤层地质学篇6

关键词:煤炭资源 勘查 新进展 发展方向

中图分类号:TD82 文献标识码:A 文章编号:1674-098X(2013)01(a)-00-02

我国是一个富煤、贫油、少气的国家,这就决定了煤炭在我国的一次能源结构中长期占主要地位。随着国家经济的迅速增长对能源的需求也在逐步增长,如何高速、安全、环保的开采煤矿资源就成为了一个重要课题,而要完成这一课题,精准的煤炭资源勘查是个大前提。

煤炭资源勘查的任务就是运用先进的地质理论、各种先进技术手段、装备和研究方法,寻找和查明煤炭储量,赋存的地质条件,开采的工程技术条件,为煤矿的开采设计、矿井建设和安全生产提供依据,为煤炭工业可持续发展提供保障。我国的煤炭资源勘查,自建国以来经历了曲折发展的过程,进入新世纪后迎来了全新的局面,勘查技术力量、项目数量和投资方面均达到了历史新高度、取得丰硕成果,为满足国民经济持续发展对煤炭的需求提供了可靠的资源保障[1]。

1 煤炭地质理论新进展

1.1 含煤岩系层序地层学研究进展

层序的提出始于20世纪40年代,其后被用于石油地质中得到蓬勃发展,已发展为油气勘探与研究不可缺少的具有强大预测功能的相分析工具。90年代初层序地层学引入煤田地质领域,为人们理解聚煤作用模式提供了新思路。基于层序地层格架,中国学者提出了幕式聚煤作用、海侵过程成煤、海侵事件成煤、海相层滞后时段聚煤等理论;同时概括出基于可容空间增加速率与泥炭堆积速率的关系的厚煤层聚集模式;并对层序地层格架中的煤岩煤质变化规律进行了研究[2]。

1.2 煤田地质构造研究进展

构造作用对煤的形成、形变及赋存起着主导作用。中国煤田的构造相对于北美、欧洲要复杂的多,这既增加了中国学者研究煤田构造的难度,又使中国煤田构造的研究具有更重要的意义。中国构造研究的主要进展有①煤田构造的区域地质背景研究取得重大进展。从大陆动力学和盆-山耦合角度探讨煤盆地的形成和演化进程,是当前构造研究的热点。《中国北部能源盆地构造》就讨论了盆地形成的区域动力学背景和深部作用机制。②中国东部盆地动力学与构造控煤作用受到关注。③煤田滑脱构造研究继续深入,提出了控煤构造样式的划分,分为伸展构造样式、压缩构造样式、剪切和旋转构造样式、反转构造样式及滑动构造样式[3]。④煤变形-变质作用的构造控制研究愈加深入。⑤三维地震、各种统计分析理论及信息化技术使得矿井构造预测与定量评价迅速发展,在煤矿高效安全开采中发挥越来越重要的作用[4]。

2 煤炭资源勘查技术进展

2.1 煤炭资源遥感技术

我国第一支煤炭遥感机构成立于1981年,遥感技术应用于煤炭地质调查与评价之初,仅作为一种辅助手段。但30余年来,随着遥感技术的不断探索与发展,航空高光谱、航天高分辨、地面探测及GPS、GIS相结合的较完善的“3S”技术的应用研究体系,遥感技术以应用与煤田地质的各方各面发挥着不可替代的作用。遥感技术具有快速、准确、直观、动态、可定量化等特点,在煤田地质中应用范围广泛,主要概括为两大方向十多个领域。在煤炭资源调查评价方面的应用,遥感技术应用于地形图更新、高精度煤田地质填图、煤炭资源调查评价、水文地质调查评价、煤层气调查评价、小煤窑调查;矿区地质灾害及环境方面的应用,煤层自燃环境调查、矿区地质灾害调查、矿区水害预测、矿区环境调查评价等。已完成了遥感应用项目近200项,取得良好的社会效益和经济效益[5]。

2.2 地球物理勘查技术

在物探勘察方法中,最为突出的是煤田地震勘探。自20世纪50年代到现在地震勘探技术发展迅猛。勘探方法从折射波法到反射波法,勘探技术从单一地震到多地震、从单分量到多分量、从初级勘探一体化到数据采集、处理和解释的三维可视化,从二维到三维,勘探能力不断提高。如今的三维地震技术不仅能查明煤田内落差5 m以上的断层和煤层分叉、合并缺失等结构,还能查明煤层厚度变化、陷落柱、采空区等,解释煤层顶底板岩性变化和岩石力学性质等[6]。三维地震勘探技术不仅能在平原取得好的效果,在山区、水域、黄土塬、沙漠、基岩、岩浆岩屏蔽等复杂条件下也能取得良好的效果[7]。

电磁勘探技术也在原理方法、仪器设备、数据处理方面有了较大改进。例如使用可控音频大地电磁测深法在青藏高原有效地解决了高原冻土带高阻屏蔽层下第四系厚度、含煤岩系、基底深度、构造、基地起伏等地质问题[8]。测井也是煤田地质勘探应用较多的技术手段。我国的测井技术的发展也经历了从模拟测井到数字测井再到现在成像测井的过程。

2.3 钻探技术

近些年,针对我国煤田地质条件复杂、含煤区多样性的特点,煤田钻探技术的研究也出现了许多新工艺、新技术。绳索取芯钻进技术已全面推广,在不提出钻杆的情况下,以绳索提出内套管的方式,将钻进中收集到内套管的岩心提取到地面。该技术能够减低劳动强度,提高工作效率,又解决了钻孔漏失、钻孔坍塌和硬岩层“打滑”的3大难关。空气泡沫钻进和空气泡沫反循环钻进较好的解决了干旱缺水、冲洗介质漏失、孔壁不稳等钻进难题。气动潜孔锤钻进技术是目前突破硬岩的有效手段。由受控定向钻进技术发展来的水平钻进技术越来越受到重视,这种技术不仅能在井下沿煤层钻进,还能在地面沿垂直-圆弧-水平线轨迹进入煤层钻进[9]。

2.4 信息化技术

随着计算机技术的发展,计算机和信息技术在煤田地质勘探各个专业推广应用,发展迅速。除编制数字地质报告和实现数据的储存和共享之外,由于引入了许多高新技术,如并行分布式处理、大容量存储、工作站、多媒体、人工智能和神经网络技术等,目前已能用人机对话方式处理、分析、解释和显示地质勘探数据,一些物探仪器自动化程度高,能在现场作预处理,控制各项操作和质量,选择有关参

数等[10]。

3 煤田地质勘查目标的发展

我国的煤田地质勘查工作已经从传统的单一的寻找和查明煤炭资源,逐步发展为集煤炭资源勘探、矿区水资源勘探、煤层气资源勘探、采区补充勘探、矿区环境地质勘查与监测等多功能为一体的为煤炭工业提供全方位服务的工作体系。

3.1 煤炭资源勘探

煤炭资源勘探是煤田地质勘查工作的基本职能,根据煤炭工业“十二五”规划,预计2015年我国煤炭产量35亿 t。为了保证产量,须做好东部地区的矿区深部和资源勘查;中部地区如山西、河南做好资源整合区补充勘探;西部地区重点做好神东、陕北、黄陇、宁东和云贵等大型煤炭基地内已规划矿区勘探及蒙东褐煤资源区域和新疆大型煤炭基地围绕重点开发矿区及近期建设项目开展勘探,青海加强木里和鱼卡矿区勘探。

3.2 矿区水资源勘探

我国西部地区为干旱、半干旱地区水资源匮乏,而矿区开发需要大量的水资源,这一供需矛盾将会成为我国煤炭工业战略西移的重要制约因素。目前我国矿区总需水量缺口达46万m3/日。要想满足矿井建设需要,我国矿区水资源勘探工作量很大。

3.3 煤层气资源勘探

我国的煤层气资源丰富,据预测,我国2000 m以浅的煤层气资源量为30~31万亿m3,约占世界煤层气的20%。近些年煤层气勘探开发越来越受重视,煤层气勘探项目成果显著,通过对含煤盆地的评价,优选出八个优选区块,分别为鄂尔多斯盆地中部及东部、沁水、冀中-冀东、鲁西-濮阳、豫西、淮南-淮北、六盘水。同时,由于我国地质历史复杂,造成我国煤层气具有“三低一高”的特点,使煤层气勘探开发难度增大。

3.4 采区补充勘探

现代化大型矿井在建设和生产阶段对矿井地质条件信息的要求越来越精确。而现有的勘探阶段对地质条件的查明程度难以满足安全高效矿井建设和生产的需要,那么采区补充勘探是很有必要的。国内应用较多的勘探手段主要是三维地震,三维地震勘探能够较准确的控制小构造、陷落柱、采空区等;国外也应用无线电成像法、探地雷达技术等也取得较好效果。

3.5 矿区环境地质勘查与监测

煤矿开采不可避免会导致一系列环境问题,如水源污染、水源枯竭、植被破坏、土地沙化、大气污染等,还有一些更为严重的灾害地质现象,如地裂、地表塌陷、滑坡及诱发地震。煤层自燃的危害更为严重,不仅直接烧掉煤炭资源,而且使得大量煤炭资源无法开采;燃烧产生的大量有毒有害物质,使生态环境恶化;煤层自燃导致地面塌陷,土地荒漠化更破坏了国土资源。

查明破坏环境和诱发地质灾害的因素提出防治对策,对煤田火区进行监测治理,也是煤田地质工作人员的责任。

4 综合勘查理论与技术新体系

综合勘查技术方法已经在许多煤田地质项目中应用,如利用三维地震和瞬变电磁技术相结合查明含煤地层富水情况等,都取得了良好的效果。通过对大量实践的总结升华,徐水师等提出了“中国煤炭地质综合勘查理论与技术新体系”这一全新的方法论。该体系可以概括为一个创新思路、两大理论支撑、五大关键技术、一套标准规范[11]。在系统分析我国煤炭资源赋存规律的基础上,根据我国煤田地质勘查工作的特点,重新确立了煤田地质勘查基本原则,将“煤田地质勘探”发展为包括煤炭资源调查、勘探,矿井建设与生产勘探,安全生产保障系统勘查,环境保护勘查与评价,以煤炭为主,煤层气和与之有一定生成关系的洁净能源的研究与勘查等内容的“煤炭资源综合勘查”。综合勘查技术新体系的确立,应以取得最佳勘查效果为目标,统筹考虑勘查区具体的地理、地质和地球物理条件,选择最适宜的勘查技术手段及组合[12]。

总之,煤炭地质综合勘查理论与技术新体系站在一个新的高度,将煤田地质理论、煤田地质勘查目标、煤田地质勘查技术进行了全面的综合,力求用最佳的方法和手段,达到最快速、最精准的勘查效果的目的。

5 结语

(1)促进煤田地质理论研究,一方面各学科理论应互相融合、互相促进,另一方面理论发展应不止于借鉴,更重要的是实践,应立足于我国地质背景复杂的实际情况进行相应的理论研究。

(2)增加煤层气勘查力度,推进采煤采气一体化。目前我国煤层气勘探程度低,煤层气探明地质储量2734亿 m3,仅为预测资源总量的0.74%,难以满足大规模产能建设需要。将煤层气勘查评价与煤炭勘查结合起来,统一部署,进行一体化勘探、综合评价。要求并鼓励煤矿企业先采气,后采煤,走采煤采气一体化道路。

(3)提高勘探精度,将传统的资源勘探发展为为煤炭高产、高效、安全生产提供可靠地质保障的勘探,将传统的资源勘探发展为包括前期资源勘探和采区补充勘探的多阶段勘探。

(4)煤炭地质信息化将向纵向、横向两方面发展,纵向上通过计算机软件将各勘查手段获得的信息进行复合集成,实现对整个煤炭勘探开采过程进行三维动态模拟跟进,横向上通过搭建网络平台实现信息共享。

(5)深入研究煤炭资源综合勘查理论,大力发展煤炭资源综合勘查技术。

参考文献

[1] 曹代勇.煤炭地质勘查与评价[M].江苏徐州:中国矿业大学出版社,2007:73-77.

[2] 邵龙义,鲁静,汪皓,等.中国含煤岩系层序地层学研究进展[J].沉积学报,2009,27(5):904-914.

[3] 曹代勇.煤田构造变形与控煤构造样式[M].江苏徐州:中国矿业大学出版社,2007:1-6.

[4] 曹代勇,王佟,琚宜文,等.中国煤田构造研究现状与展望[J].中国煤炭地质,2008,20(10):1-6.

[5] 张文若,康永峰,王永.遥感技术在煤炭地质中应用现状及前景[J].中国煤田地质,2006,18(2):5-8

[6] 贾建称,范永贵,吴艳,等.中国煤炭地质勘查主要进展与发展方向[J].中国煤炭地质,2010,22(增刊):147-153.

[7] 王怀洪,巩固,田育鑫.东部煤炭数字地震勘探技术发展与关键问题讨论[J].地球物理学进展,2007,22(4):1320-1326.

[8] 刁清建.可控源音频大地电磁探测法在青藏高原煤田地质勘探中的应用[J].中国煤炭地质,2011,23(12):46-50.

[9] 林祥.我国煤田钻探技术的研究进展[J].煤田地质与勘探,1995,23(3):59-62.

[10] 潘振武,胡丹九,高凌蔚.煤田地质勘探前沿问题及技术发展趋势[J].煤炭学报,1997,22(增刊):84-89.

[11] 徐水师,王佟,孙升林,等.再论中国煤炭地质综合勘查理论与技术新体系[J].中国煤炭地质,2009,21(12):4-6.

煤层地质学篇7

[关键词]煤田勘探地质勘查

中图分类号:F407.1 文献标识码:A 文章编号:1009-914X(2015)19-0251-01

煤田地质勘探是研究煤田周围的地质环境、煤层地质条件和研究煤层水文地质特征的理论与方法。煤田地质勘探包括煤田普查和煤田勘探两部分。煤田勘探是对初步确定具有开发价值的煤床,为了在开采过程中为确切保证煤储量的经济价值或保证煤矿的持续生产,而进行的水文、地质、经济研究和调查工作。本文对煤田勘探作为主要研究对象。

1 煤田勘探的技术条件

1.1 水文地质条件

首先,我们要了解煤田储藏的自然地理情况。煤矿大部分储藏在平原和低山丘陵区,总体呈现南部高,北部低,纵向分布的沟系较发育,地表水沿南部分水岭汇入冲沟,然后由北西向主冲沟向北流出矿区。

其次,掌握煤矿岩层的含水特征。按岩层含水介质及富水性不同,煤矿可分为五个含水层:第四系孔隙含水层、基岩风化裂隙带含水层、断裂带含水层、老窿含水层、基岩隔水层。其中第四系残坡积层、基岩风化带裂隙均属弱含水层,对矿床充水影响很小;断裂带(层间破水带)含水层,多为闭合面,亦属相对较弱含水层,导水性中等,对矿坑充水有一定影响;矿区基岩为煤系碎屑岩,致密坚硬,是区内良好的隔水尾局部裂隙发育,含少量裂隙水,但隔水性能仍较好,可以阻挡地下水和地表水进入矿坑。

再次,摸清地下水的补给、迳流和排泄条件区。煤矿矿区内属潮湿多雨型气候,植被发育,丰富的大气降水渗入第四系及基岩风化带转为地下水,并从高处往低处迳流。迳流途中,:―部分排泄出地表,另一部分通过断裂带或层间破碎带渗入地下深部,形成了断裂带裂隙水,或渗入老窿中形成地下水体。其相互沟通,对矿床的开采有一定影响,尤其老窿地下水体对矿床开采构成一定的威胁。因为煤矿附近无大的地表水体存在,所以煤矿与地表水体联系不紧密;但与浅部老窿水联系密切。矿区老窿分布于地表至采空区范围内,且老窿不断接受地表水补给,又与断裂联系较密切,是煤矿开采过程中充水的主要原因。

最后,制定煤矿矿坑的涌水量排放计划。如果煤矿矿区矿坑正常涌水量4.3m3/h,雨季为8.2m3/h。矿山提供矿井正常涌水量为3.0m3/h,最大涌水量为6.6m3/h,矿井应该采用二级排水:分牛173m、十107m两个水平用15kw潜泵逐级抽排,矿坑水从高处流向低处,然后自然汇聚到位于各水平最低处的水仓,煤田矿井在排水时,抽水至主斜井口的地面排水沟,随排水沟排出矿区。

1.2 工程地质条件

根据煤矿区内务岩石的风化程度不同、裂隙发育程度以及主要的岩石抗压强度将矿区内岩石划分为三个工程地质岩组。即:

(1)松散软弱型岩层

松散软弱型岩层分为第四系残坡积层、冲积层、强风化岩石层等,该岩组岩石结构松散、稳定性差,但距煤层远对矿床开采影响较小。

(2)半坚硬型岩层

半坚硬型岩层主要为断裂带中碎裂岩层、角砾岩层、泥岩等,该岩组稳定性相对较差,对矿床开采有一定影响。

(3)坚硬型岩层

坚硬型岩层包括砂岩、粉砂岩和部分泥岩,岩石结构致密坚硬,稳固性好,对矿床开采有较好的保护作用。

2 煤田勘探的技术应用

煤田勘探技术是在煤田勘探过程中运用的主要技术。其目的是为了探明煤矿整体的形状、规模;深度和储藏量。随着煤矿地质勘察技术的进步,我国的煤矿地质勘探工作也在不断发展。煤矿地质勘探主要策略是物探先行,钻探与物探相结合的策略。对于煤田勘探的技术包括:地震法煤田勘探、重力法煤田勘探、电化学煤田勘探、磁瞬间煤田勘探。

2.1 地震法煤田勘探

地震法煤田勘探是利用煤田岩石的弹性和密度的不同,通过地面人工激发的震波来进行观测和分析的过程,由此来推断地下岩层的分布隋况和形态的地球物理勘探方法。地震法煤田勘探的原理是以人工方法在地表激发人工震波,人工震波在向下传播时,假如遇有性质不同介质的岩层分界面,就会发生折射或者反射,运用检波器接收这种人工震波。地面通过收到的人工地震信号来分析推断地下岩层的分布情况和形状。地震法煤田勘探是目前煤田勘探煤炭资源的重要手段。在煤田和地质勘察、区域地质研究和地壳研究等方面,地震法煤田勘探也得到广泛应用。对于在煤田埋藏深度仅为160~700米的浅煤层,一般不超过800米的范围内的煤层,我们可以采用地面地震法煤田勘探技术。对于煤田深部,我们可以采用矿井地震勘探技术。而矿井地震勘探技术又包括井巷二维地震勘探技术、震波超前探测、瑞利波勘探技术、槽波勘探技术等等。

2.2 重力法煤田勘探

地质勘查技术中的重力勘查或重力法煤田勘探,主要是通过反映煤田地下岩层密度横向的重力差异和变化,用以提供煤田构造和煤矿储量等地质信息,进而作出定件、定量的解释推断。这种在地表上引起的重力变化,称之为重力失常;其规模、形状和强度,取决于具有密度差的物体大小,形状及深度。重力法可应用于煤田的地下水勘查和煤层区域及环境调查等领域。但是需要采用灵敏度高、精度高、适合复杂工作环境的专门仪器进行数据采集。

2.3 电化学煤田勘探

电化学煤田勘探是通过地壳中煤炭或矿体的电磁学性质(例如矿体的导电性、导磁性、介电性)和矿体的电化学特性差异,我们根据人工电场与天然电场的区,掌握电磁场或电化学场的时间特征的观查和研究,由这些特征及其空间分布规律和时间特性的差异,研究人员可以推断煤田矿体或其他地质构造的大小、形状、位置、埋藏深度的物理参数等,从而达到煤田勘探的目的。电化学煤田勘探还有具用场源、装置形式多及应用范围广等特点。电化学煤田勘探充分利用煤田岩石的物理参数。寻找不同类型有用矿床和查明地质构造及解决地质问题的地球物理勘探方法。

2.4 磁瞬间煤田勘探

磁瞬间煤田勘探技术在利用煤矿矿井瞬间电磁来进行非接触式探测的技术,属于时间域类型的煤田勘探技术。并下利用瞬间电磁探测时,其发射和接收回线边长需依据采掘空间断面的大小选择,可通过加大发射功率和接收回线匝数的方法增强二次场信号的强度,从而增大瞬变电磁法的顺层或垂直勘探深度。煤矿地质与煤田勘探技术必须紧密结合,这样才能很好的为煤矿采矿工作服务。

3 影响煤田勘探地质条件的因素

影响煤田勘探地质条件的因素很多,如构造、水文、瓦斯、煤层顶底板条件等.其中构造因素是最主要的,构造裂隙发育带是水与瓦斯突出的危险带,―也是顶底板管理的重点地带.因此,查明煤层构造是本阶段的主要工作,主要勘查手段为二维地震勘探、电法勘探与钻孔控制.在充分占有地质资料的基础上,确定井田地质构造的分布规律,并结合其它地质条件(煤层、水文地质、瓦斯地质等)的分析研究成果。

(1)对于浅层煤田的采空区低界面,地质勘察工作无法精确圈出,只能根据煤田的具体情况宋判断。

(2)煤田在建井开采后在煤炭质量方面所做的工作较少,地质勘察技术在此方面论述不足。

(3)用地质勘察技术对煤田地质条件不但可以作定性分析外,还必须进行定量评价,因而要运用地面和地下的测试和理论计算方法,提供结论性意见和可靠的设计参数,供设计和建井的参考。

(4)研究地质勘察问题必须考虑它们与煤矿建设的关系及期目互影,还要预测将来的发展趋势,即煤田地质预测。

结语

地质勘探技术是准确地获取地表质资料的方法之一,而且通过地质勘探技术获取的岩状土样和做现场试验研究也是煤田地质研究的任务。煤矿企业一直把企业经济效益放在首位,今后煤矿企业必定需要更加准确的地质资料。为此,地质勘察技术将有更大的发展空间。由于煤田管理体制的国际接轨,地质勘察技术的发展,体制改革必将推动技术革新,为高新技术的应用提出更高要求和提供条件,所以应加强地质信息数字化采集装置的研究,提高煤矿地质勘察技术水平。

参考文献

煤层地质学篇8

1.裂隙对煤层自燃的影响煤层中的裂隙主要是内生裂隙和外生裂隙。内生裂隙:煤层在煤化作用过程中因成煤物质结构、构造等的变化而产生的裂隙,一般面平且直,一般不切入到其它煤层中。外生裂隙:煤层形成后,由于区域构造变动而在煤层中发育的裂缝。通常成组出现,方向性明显,裂隙面较平直,延伸远,可切入其它煤层,甚至煤的顶底板岩层。裂隙影响煤层的供氧条件,它们的存在可以增大煤氧接触面积,从而导致煤层自燃初期的低温氧化阶段顺利进行。2.孔隙对煤层自燃的影响煤层中的孔隙主要是原生孔隙和次生孔隙。原生孔隙:煤层在沉积时,沉积物颗粒之间生成粒间孔和植物各组织内部的胞腔,共同组成煤层的原生孔隙。次生孔隙:煤层在煤化作用过程中,原生矿物结晶溶蚀而形成的孔隙,因淋滤、溶蚀等作用形成的粒间孔隙,以及煤化作用过程中因甲烷等气体的逸出而留下的孔隙等,共同组成煤层的次生孔隙。一般来说,煤中的孔隙越多,氧气越容易进入,煤氧接触面积越大,越容易氧化升温直至自燃。煤的孔隙会随着煤化作用加深而不断减少,煤级较高的煤中原生孔隙基本消失,这就可以解释变质程度低的煤比变质程度高的煤更容易自燃,就是因为变质程度低的煤孔隙度要大于变质程度高的煤,从而使氧气更容易进入到煤层中,增大了煤氧接触的面积。3.褶皱对煤层自燃的影响褶皱通过控制煤层氧化释放出的热量的运移方向和聚集状况来影响煤层的自燃。在背斜位置,煤层低温氧化释放出的热量就会运移到背斜的核部,如果核部的煤层顶板是渗透性较差的泥岩、页岩,那么核部处就会集聚大量的热量,从而使煤体温度升高,继而发生自燃。在向斜位置,煤层中集聚的热量向上扩散,一般不会在核部周围发生自燃。另外,倒转褶皱可以使煤层厚度变大,有利于热量的集聚,并且增加了燃烧物质的数量,容易诱发大规模的煤层自燃。2.4断层对煤层自燃的影响在没有受到采动影响的煤层中,断层的数量、规模、性质和走向对煤层通气供氧影响很大,直接影响到煤层的自燃。煤层自燃后,火焰蔓延的方向受断层的性质和断距大小的影响。在正断层位置,煤层被断开,阻止了火焰向煤层深部蔓延。当火焰蔓延到正断层处时,由于煤层已经被断层切断,火焰在此结束蔓延趋势。当正断层完全切断煤层时,断层位置成为天然的防火墙。在逆断层附近,一旦断距较小,就会使煤层发生重复,煤层厚度增大,而厚度又是煤层自燃的一个必不可少的条件,所以煤层自燃会在逆断层处发展和蔓延。当有多个煤层且间距较小时,断层的存在则会引起不同煤层之间的煤火相互贯通,燃烧煤层可导致不同层的煤燃烧。另外,由于断层的存在,使得在选择开采方法时必须采取工作面过断层的种种措施,从而严重影响采煤和掘进的速度,给采空区中遗煤的自燃争取了时间,加大了自燃的几率。

煤田地质安全生产管理存在的问题和原因

从某种角度来说,人、机两者的合理结合才能产生最佳的物质生产资料。所以说,有了生产,就会有安全生产管理。安全生产管理是一项多学科的系统工程,它包含着政策、法令、规程、组织、技术等综合管理内容,充分地运用和执行就能在经济工作中产生效益。目前,煤田地质队伍在走向社会地质市场、多种经营中,往往忽视了安全生产管理和作用,还存在不少问题需要研究解决。

煤矿的开采深度的增加,地质条件更加复杂。所以加强地质工作是煤矿安全的第一道保障线,也是最重要的一道。通过地质工作对井下的危险性有效的预测提高安全保障。

上一篇:教育职业理想范文 下一篇:生物能源市场前景范文