乙烯加聚反应范文

时间:2023-11-27 22:52:13

乙烯加聚反应篇1

关键词:苯乙烯 醇酸树脂 化学改性

化工中的醇酸树脂是由多元醇、多元酸和一元酸缩聚而成的线性树脂。该脂具有合成技术性能好、制造工艺简便、树脂涂膜综合性能好等特点,广泛运用于涂料的生产加工。在化工生产中醇酸树脂涂料也有一些不足之处,如涂膜干燥缓慢、硬度低、耐水性差等,这将导致施工周期延长,也影响其应用范围。运用苯乙烯化学对醇酸树脂的改性能够对快干醇酸树脂的工业化生产提供帮助。 

 

一、苯乙烯化学改性醇酸树脂的方法 

 

(一)共聚法。乙烯类单体改性醇酸树脂常采用共聚法。按此法中苯乙烯的加入时间及加入方式不同,可分为前苯乙烯化和后苯乙烯化两种方法。 

1.前苯乙烯化法。前苯乙烯化法主要包括植物油的苯乙烯化法、脂肪酸的苯乙烯化法和单甘油酯的苯乙烯化法三种。(1)植物油苯乙烯化法。该法的工艺要点为:首先,苯乙烯单体和油在引发剂存在下反应,生成共聚油这种均一产物,该产物可直接代替植物油制备醇酸树脂。苯乙烯化的植物油,先用甘油(季戊四醇或其他多元醇)醇解生成脂肪酸单甘油酯,然后用苯酐等多元酸进行酯化。(2)脂肪酸的苯乙烯化法。该法的工艺要点为:先将苯乙烯和引发剂滴加进盛有dco酸的反应釜中,进行脂肪酸的苯乙烯化反应,然后真空蒸馏除去剩下的苯乙烯,再向反应釜中加入甘油等多元醇,在惰性气体保护下进行醇解,最后加入配方量的苯酐等多元酸进行酯化。(3)单甘油酯的苯乙烯化法。该法的工艺要点为:以适当配比的含共轭双键和非共轭双键的混合植物油为原料,加入lioh等醇解催化剂,并用一部分甘油、季戊四醇等多元醇进行醇解,生成单甘油酯;然后加入苯乙烯、二甲苯和引发剂,在适宜温度下进行单甘油酯的苯乙烯化反应,生成苯乙烯化单甘油酯;再用多元酸(如苯酐)及剩余的甘油酯化,生成苯乙烯化醇酸树脂。 

2.后苯乙烯化法。后苯乙烯化法又称为醇酸树脂的苯乙烯化法。该法的工艺要点是:首先合成含共轭双键的基础醇酸树脂,然后用基础醇酸树脂和苯乙烯单体(有时还包括少量丙烯酸类单体),在引发剂存在及合适温度条件下,进行共聚反应(即醇酸树脂的苯乙烯化),直至得到我们所要求的粘度。该法的工艺特点是工艺过程容易控制,利用常规醇酸树脂的生产设备即可进行改性醇酸树脂的工业化生产。 

(二)预聚物法。预聚物法主要有聚苯乙烯羟基预聚物法和羧基预聚物法两种。 

1.聚苯乙烯羟基预聚物改性法。该法以聚苯乙烯二醇改性为代表,它主要是通过在聚苯乙烯分子链的末端上引入羟基反应性基团,然后通过化学反应将聚苯乙烯聚合物引入醇酸树脂中。聚苯乙烯二醇在改性中起到了双重作用:第一,它所提供的活性羟基,代替了常规醇酸树脂合成所用的甘油或其它脂肪族多元醇;第二,长链聚苯乙烯的引入赋予改性醇酸树脂以较高的硬度、良好的耐水性和耐化学品性。此类改性工艺较复杂,难以运用于工业化生产。 

2.聚苯乙烯羟基预聚物改性法。此法的工艺要点为:首先由苯乙烯和(甲基)丙烯酸等丙烯酸单体合成带活性羧基的预聚物,然后该预聚物可以直接代替部分多元酸(如苯酐等),在植物油的醇解物的酯化过程或两步法脂肪酸酯化过程中进行酯化反应,这样,带羧基的苯乙烯预聚物将接入到醇酸树脂分子链上,该法又称作共酯化法。这样,改性醇酸树脂将集中醇酸树脂、丙烯酸树脂、聚苯乙烯(ps)三种物质的优点,所得树脂的耐候性、柔韧性和耐溶剂性优于单纯以苯乙烯改性的醇酸树脂。此类改性工艺复杂,改性产品价格较贵,不利于企业节约生产成本。

二、后苯乙烯改性醇酸树脂的探讨 

 

我们通过综合研究对比发现采用后苯乙烯改性醇酸树脂对于化工企业生产具有积极的推动作用。该工艺在技术上具有易于理解接受和经济上具有降低成本消耗,提高经济效率的特点。同时在工艺的可行性及操作简便性等方面,都比其它方法具有更大的优越性,减少了化工生产中的危险系数。 

后苯乙烯化法按基础醇酸树脂的制备方法不同,可分为桐油(或dco)/亚麻油(或豆油)―苯酐基础醇酸树脂、亚麻油(或豆油)―苯酐-顺酐基础醇酸树脂、脂肪酸(或油酸)―苯酐―顺酐基础醇酸树脂三类。这三类基础树脂在苯乙烯化过程中主要通过diels-alder 机理进行加成反应,生成接枝共聚物,它们在醇酸树脂与苯乙烯的均聚物之间起着“相容剂”及“桥梁”作用。不同的是,三种基础树脂的制备工艺有差异,产品颜色差别较大,其中,以脂肪酸(或油酸)―苯酐―顺酐基础醇酸树脂制得的改性醇酸树脂颜色最浅,能满足人们装潢的各种需要。因此,我们进行首先进行了该类基础树脂的合成及工艺优化研究。 

脂肪酸-顺酐基础树脂的合成工艺特点为:采用高聚物法合成醇酸树脂,保证了所合成的醇酸树脂有一个合适的分子量及较窄的分子量分布;采用顺酐部分代替苯酐,以便为改性过程提供足够多的活性位点;同时,顺酐与苯酐分次分批加入,保证了基础醇酸树脂结构的合理性,其活性位的分布较为合理,为后续的苯乙烯改性醇酸树脂奠定良好的基础。 

该改性工艺要点为:首先将称量好的部分脂肪酸(fa)、多元醇(甘油、季戊四醇(pe)、新戊二醇等(npg))、多元酸(如苯酐(pa)、己二酸(aa))及部分回流溶剂加入带有搅拌器、热电偶温度计(连接温控仪)、回流冷凝器、分水器等附件的四口烧瓶中,加热至190~200℃,进行酯化反应,保温2~4h。当酸值(av)合格后,降温至120℃以下,加入顺酐(ma),这里顺酐中的共轭双键将作为后续苯乙烯改性的共聚合接枝活性点。升温至190~200℃,继续保温酯化至酸值、粘度合格。降温至120℃以下,加入兑稀用200#溶剂及二甲苯,过滤出料。 

工艺优化主要体现在:第一,直接采用脂肪酸或油酸为原料,所以不必经过醇解这一步骤,简化了工艺过程;第二,酯化过程中采用了某种特殊的酯化催化剂,降低了酯化反应温度,减少了高温聚合反应的危险程度,同时节约了导热油及冷却介质(如冷油)的使用量,节省了聚合反应时间。 

 

三、苯乙烯化学改性醇酸树脂的注意点 

 

(一)注意共轭双键的diels-alder 加成反应。共聚法苯乙烯改性醇酸树脂的改性方法都利用了苯乙烯与植物油(或脂肪酸)中共轭双键的diels-alder 加成反应;在预聚物法改性机理中,主要利用了预聚物中活性羟基或羧基与单甘油酯中的活性基团之间的反应进行的。 

(二)注意顺酐在后续改性过程反应。在基础醇酸树脂的设计中,除考虑油度、k值等因素外,顺酐是一个对后续改性过程起确定性作用的关键因素,它将提供苯乙烯改性所需的接

枝共聚活性位。 

(三)注意改性中的温度查看。在后苯乙烯化法改性顺酐基础醇酸树脂过程中,采用溶液聚合法进行接枝共聚反应,并且首先让混合单体热聚合一段时间,这样可避免聚合体系局部温升过高,甚至有爆聚危险的可能。 

乙烯加聚反应篇2

醇酸树脂是由多元醇、多元酸和一元酸缩聚而成的线性树脂,具有合成技术成熟、制造工艺简便、原料易得以及树脂涂膜综合性能好等特点,在涂料用合成树脂中用量最大用途最广。据有关统计资料报道,1997年全国涂料总产量为135万吨,其中醇酸树脂涂料约为35万吨,占合成树脂的52.9%;英、美等发达国家占30%~40%,居合成树脂之首。但醇酸树脂涂料也存在一些缺点,如涂膜干燥缓慢、硬度低、耐水性差等,这将导致施工周期延长,也影响其应用范围。针对以上问题,综合国内外有关醇酸树脂改性方面的文献报道,本文通过对几种不同化学改性醇酸树脂方法进行比较,研究了苯乙烯改性醇酸树脂的机理,同时,在基础醇酸树脂合成及苯乙烯改性醇酸树脂两方面进行了工艺优化。研究结果将对快干醇酸树脂的工业化生产提供理论指导和有力的借鉴。

2 苯乙烯化学改性醇酸树脂的方法比较与机理研究

传统的不饱和油(脂肪酸)改性的醇酸树脂分子中具有羟基、羧基、双键、酯基等反应性基团,因此,可以通过化学合成的途径引入其他活性基团,使醇酸具有广泛化学改性的基础。化学改性可以分为以下几类:如改性剂起羧基作用、改性剂起羟基作用以及利用双键反应的化学改性等。化学改性中尤以利用双键反应的化学改性最为重要,其中以苯乙烯类改性最为典型,主要有共聚法和预聚物法两大类。

2.1 共聚法

乙烯类单体改性醇酸树脂常采用共聚法。按照共聚法中苯乙烯的加入时间及加入方式不同,可分为前苯乙烯化和后苯乙烯化两种方法。

2.1.1 前苯乙烯化法

前苯乙烯化法主要包括植物油的苯乙烯化法、脂肪酸的苯乙烯化法和单甘油酯的苯乙烯化法三种。对以上几种苯乙烯改性方法的工艺要点分述如下。

(1)植物油苯乙烯化法

该法的工艺要点为:首先,苯乙烯单体和油在引发剂存在下反应,生成共聚油这种均一产物,该产物可直接代替植物油制备醇酸树脂。苯乙烯化的植物油,先用甘油(季戊四醇或其他多元醇)醇解生成脂肪酸单甘油酯,然后用苯酐等多元酸进行酯化。

(2)脂肪酸的苯乙烯化法

该法的工艺要点为:先将苯乙烯和引发剂滴加进盛有dco酸的反应釜中,进行脂肪酸的苯乙烯化反应,然后真空蒸馏除去剩下的苯乙烯,再向反应釜中加入甘油等多元醇,在惰性气体保护下进行醇解,最后加入配方量的苯酐等多元酸进行酯化。

(3)单甘油酯的苯乙烯化法

该法的工艺要点为:以适当配比的含共轭双键和非共轭双键的混合植物油为原料,如dco和亚麻油(或豆油)、桐油和亚麻油(或豆油),加入lioh等醇解催化剂,并用一部分甘油、季戊四醇等多元醇进行醇解,生成单甘油酯;然后加入苯乙烯、二甲苯和引发剂,在适宜温度下进行单甘油酯的苯乙烯化反应,生成苯乙烯化单甘油酯;再用多元酸(如苯酐)及剩余的甘油酯化,生成苯乙烯化醇酸树脂。

2.1.2 后苯乙烯化法

后苯乙烯化法又称为醇酸树脂的苯乙烯化法。该法的工艺要点是:首先合成含共轭双键的基础醇酸树脂,然后用基础醇酸树脂和苯乙烯单体(有时还包括少量丙烯酸类单体),在引发剂存在及合适温度条件下,进行共聚反应(即醇酸树脂的苯乙烯化),直至得到我们所要求的粘度。该法的工艺特点是工艺过程容易控制,利用常规醇酸树脂的生产设备即可进行改性醇酸树脂的工业化生产。

苯乙烯与含共轭双键的脂肪酸、植物油或醇酸树脂能发生共聚反应。苯乙烯与含双键的脂肪酸共聚容易,与含非共轭双键的脂肪酸则共聚很慢。例如,桐油脂肪酸中90%含共轭双键,共聚时容易成胶;脱水蓖麻油(dco)中25%左右的脂肪酸含共轭双键,共聚极慢,发生共聚反应的同时,苯乙烯将自聚成聚苯乙烯(ps)而与油相分离。在共聚过程中,通常发生如下反应,它们按不同机理进行。

(1) 苯乙烯与脂肪酸中共轭双键发生diels-alder 加成反应,即双烯加成反应:

(2) 苯乙烯单体与油(如亚麻油、豆油等)中非共轭双键的反应,则通过活性亚甲基的氢转移机理来进行:

(3) 在引发剂(如bpo或tbpb等)作用下苯乙烯自聚,生成苯乙烯均聚物(ps);

(4) 苯乙烯均聚物(ps)与醇酸树脂中所含共轭双键的脂肪酸进行接枝共聚反应;

(5) 在引发剂存在下,油也发生一定程度的氧化聚合,产生聚合油。

这样,苯乙烯与醇酸树脂共聚时所得产物是由苯乙烯均聚物(ps)、接枝共聚物和未改性醇酸树脂三者所组成的混合物。其中,基础醇酸树脂的质量对共聚物的组成和产品质量影响特别大,值得注意的是,基础醇酸树脂的粘度要低一些,否则,苯乙烯化时容易胶化。

2.2 预聚物法

预聚物法主要有聚苯乙烯羟基预聚物法和羧基预聚物法两种。

2.2.1聚苯乙烯羟基预聚物改性法

该法以聚苯乙烯二醇改性为代表,它主要是通过在聚苯乙烯分子链的末端上引入羟基反应性基团,然后通过化学反应将聚苯乙烯聚合物引入醇酸树脂中。聚苯乙烯二醇在改性中起到了双重作用:第一,它所提供的活性羟基,代替了常规醇酸树脂合成所用的甘油或其它脂肪族多元醇;第二,长链聚苯乙烯的引入赋予改性醇酸树脂以较高的硬度、良好的耐水性和耐化学品性。此类改性工艺较复杂,难以工业化生产。

2.2.2聚苯乙烯羟基预聚物改性法

此法的工艺要点为:首先由苯乙烯和(甲基)丙烯酸等丙烯酸单体合成带活性羧基的预聚物,然后该预聚物可以直接代替部分多元酸(如苯酐等),在植物油的醇解物的酯化过程或两步法脂肪酸酯化过程中进行酯化反应,这样,带羧基的苯乙烯预聚物将接入到醇酸树脂分子链上,该法又称作共酯化法。这样,改性醇酸树脂将集中醇酸树脂、丙烯酸树脂、聚苯乙烯(ps)三种物质的优点,所得树脂的耐候性、柔韧性和耐溶剂性优于单纯以苯乙烯改性的醇酸树脂。但此类改性工艺复杂,改性产品价格较贵。

通过对以上几种改性方法和工艺进行比较,本研究认为采用第四种工艺无论在技术经济上,还是在工艺的可行性及操作简便性等方面,都比其它几种具有更大的优越性。因此,本研究采后苯乙烯化的工艺路线来进行苯乙烯改性醇酸树脂的研究。

3、工艺优化结果与讨论

3.1 基础醇酸树脂的制备及工艺优化结果

后苯乙烯化法按基础醇酸树脂的制备方法不同,可分为桐油(或dco)/亚麻油(或豆油)―苯酐基础醇酸树脂、亚麻油(或豆油)―苯酐-顺酐基础醇酸树脂、脂肪酸(或油酸)―苯酐―顺酐基础醇酸树脂三类。这三类基础树脂在苯乙烯化过程中,将分别利用桐油(或dco)中脂肪酸所含的共轭双键以及顺酐上的共轭双键,主要通过diels->alder 机理进行加成反应,生成接枝共聚物,它们在醇酸树脂与苯乙烯的均聚物之间起着“相容剂”及“桥梁”作用。不同的是,三种基础树脂的制备工艺有差异,产品外观(主要为颜色)差别较大,其中,以脂肪酸(或油酸)―苯酐―顺酐基础醇酸树脂制得的改性醇酸树脂颜色最浅,能满足人们现代装修涂饰的各种需要。因此,我们进行

首先进行了该类基础树脂的合成及工艺优化研究。

脂肪酸-顺酐基础树脂的合成工艺特点为:采用高聚物法合成醇酸树脂,保证了所合成的醇酸树脂有一个合适的分子量及较窄的分子量分布;采用顺酐部分代替苯酐,以便为改性过程提供足够多的活性位点;同时,顺酐与苯酐分次分批加入,保证了基础醇酸树脂结构的合理性,其活性位的分布较为合理,为后续的苯乙烯改性醇酸树脂奠定良好的基础。工艺要点为:首先将称量好的部分脂肪酸(fa)、多元醇(甘油、季戊四醇(pe)、新戊二醇等(npg))、多元酸(如苯酐(pa)、己二酸(aa))及部分回流溶剂加入带有搅拌器、热电偶温度计(连接温控仪)、回流冷凝器、分水器等附件的四口烧瓶中,加热至190~200℃,进行酯化反应,保温2~4h。当酸值(av)合格后,降温至120℃以下,加入顺酐(ma),这里顺酐中的共轭双键将作为后续苯乙烯改性的共聚合接枝活性点。升温至190~200℃,继续保温酯化至酸值、粘度合格。降温至120℃以下,加入兑稀用200#溶剂及二甲苯,过滤出料。工艺优化主要体现在:第一,直接采用脂肪酸或油酸为原料,所以不必经过醇解这一步骤,简化了工艺过程;第二,酯化过程中采用了某种特殊的酯化催化剂,降低了酯化反应温度,减少了高温聚合反应的危险程度,同时节约了导热油及冷却介质(如冷油)的使用量,还节省了聚合反应时间。

3.2 顺酐醇酸树脂的苯乙烯化改性研究及工艺优化结果

苯乙烯改性顺酐醇酸树脂的工艺特点为:采用后苯乙烯化方法进行改性研究,保证了改性工艺过程简便易操作,改性醇酸树脂的质量稳定;采用溶液聚合法进行苯乙烯改性醇酸树脂的接枝共聚反应,克服了本体聚合法中易出现反应体系的温度升高过快和反应不稳定等缺陷;另外,以含共轭双键的活性较高的顺酐作为多元酸部分代替苯酐,可提供足够多的接枝共聚活性位点;在引发剂加入前,使苯乙烯单体(或混合单体)进行一定时间的热聚合,这样,改性工艺过程将更加稳定。改性过程的工艺要点为:首先在带有搅拌器、热电偶温度计(连接温控仪)、回流冷凝器等附件的四口烧瓶中,加入称量好的基础醇酸树脂、st、甲基丙烯酸甲酯(mma)、丙烯酸丁酯(ba)和部分溶剂,加热至125~135℃,保温1h后,将配方量75%的引发剂及部分溶剂加入滴液漏斗,在3~4h内滴完。保温2~3h后,分次补加剩余的引发剂。保温过程中,间隔1h取样,检测聚合反应体系的粘度和不挥发分含量,但体系的粘度和单体转化率均合格后,迅速降温,兑稀出料。

工艺优化主要体现在以下几方面:第一,常规后苯乙烯化法改性醇酸树脂,一般是先加入基础醇酸树脂,然后滴加大部分混合单体与引发剂,再分次补加剩余单体和引发剂的方法。但本文通过实验研究,发现该方法存在以下不足:第一,由于采用滴加方式加料,反应体系中单体浓度较小,反应速率较低,反应时间较长;第二,由于同时存在单体的自聚及单体与基础醇酸树脂的接枝共聚等竞争反应,降低了接枝共聚反应的速率,减少了接枝共聚物的产生量,影响了改性树脂的外观和质量。为此,从工艺优化的角度考虑,我们增加了混合单体的热聚合这一过程,稳定了工艺过程,提高了聚合反应速率,改善了改性树脂的质量。如果改性剂为苯乙烯(st)单体,则热聚合过程将生成较多苯乙烯均聚物(ps),如果改性剂为st与甲基丙烯酸甲酯(mma)、丙烯酸丁酯(ba)的混合物,则它们可能会先生成部分丙烯酸预聚物(pp),这些在热聚合过程中生成的ps和pp将同样参与接枝共聚反应,并且会由于它们的产生,避免了聚合反应过程中局部升温过高,容易产生爆聚现象,此时,树脂的分子量剧增,以致出现凝胶化现象。

另外,工艺优化还从反应温度、改性剂与基础醇酸树脂的比率、引发剂的选择、加入方式和加入量等几个方面考虑,通过科学地设计实验方案,经过大量的实验研究,提出反应温度以125~135℃较合适,改性剂采用混合单体比单一改性剂能获得较好的漆膜性能,改性剂与基础醇酸树脂的比率在30~40%较合适,引发剂的加入量占混合单体的1.8~3.2%,且需采用分次加入较有效。

4 结 语

(1) 共聚法苯乙烯改性醇酸树脂的几种方法,其改性机理具有共性,它们都利用了苯乙烯与植物油(或脂肪酸)中共轭双键的diels-alder 加成反应;在预聚物法改性机理中,主要利用了预聚物中活性羟基或羧基与单甘油酯中的活性基团之间的反应。

(2) 在基础醇酸树脂的设计中,除考虑油度、k值等因素外,顺酐是一个对后续改性过程起确定性作用的关键因素,它将提供苯乙烯改性所需的接枝共聚活性位。

乙烯加聚反应篇3

论文摘要:醇酸树脂是由多元醇、多元酸和一元酸缩聚而成的线性树脂,具有合成技术成熟、制造工艺简便、原料易得以及树脂涂膜综合性能好等特点,在涂料用合成树脂中用量最大用途最广。但醇酸树脂涂料也存在一些缺点,如涂膜干燥缓慢、硬度低、耐水性差等,这将导致施工周期延长,也影响其应用范围。针对以上问题,综合国内外有关醇酸树脂改性方面的文献报道,本文通过对几种不同化学改性醇酸树脂方法进行比较,研究了苯乙烯改性醇酸树脂的机理。

传统的不饱和油(脂肪酸)改性的醇酸树脂分子中具有羟基、羧基、双键、酯基等反应性基团,因此,可以通过化学合成的途径引入其他活性基团,使醇酸具有广泛化学改性的基础。化学改性可以分为以下几类:如改性剂起羧基作用、改性剂起羟基作用以及利用双键反应的化学改性等。化学改性中尤以利用双键反应的化学改性最为重要,其中以苯乙烯类改性最为典型,主要有共聚法和预聚物法两大类。

一、苯乙烯改性醇酸树脂的机理

1、共聚法

乙烯类单体改性醇酸树脂常采用共聚法。按照共聚法中苯乙烯的加入时间及加入方式不同,可分为前苯乙烯化和后苯乙烯化两种方法。

(1)前苯乙烯化法 前苯乙烯化法主要包括植物油的苯乙烯化法、脂肪酸的苯乙烯化法和单甘油酯的苯乙烯化法三种。对以上几种苯乙烯改性方法的工艺要点分述如下。

a、植物油苯乙烯化法 该法的工艺要点为:首先,苯乙烯单体和油在引发剂存在下反应,生成共聚油这种均一产物,该产物可直接代替植物油制备醇酸树脂。苯乙烯化的植物油,先用甘油(季戊四醇或其他多元醇)醇解生成脂肪酸单甘油酯,然后用苯酐等多元酸进行酯化。

b、脂肪酸的苯乙烯化法 该法的工艺要点为:先将苯乙烯和引发剂滴加进盛有DCO酸的反应釜中,进行脂肪酸的苯乙烯化反应,然后真空蒸馏除去剩下的苯乙烯,再向反应釜中加入甘油等多元醇,在惰性气体保护下进行醇解,最后加入配方量的苯酐等多元酸进行酯化。

c、单甘油酯的苯乙烯化法 该法的工艺要点为:以适当配比的含共轭双键和非共轭双键的混合植物油为原料,如DCO和亚麻油(或豆油)、桐油和亚麻油(或豆油),加入LiOH等醇解催化剂,并用一部分甘油、季戊四醇等多元醇进行醇解,生成单甘油酯;然后加入苯乙烯、二甲苯和引发剂,在适宜温度下进行单甘油酯的苯乙烯化反应,生成苯乙烯化单甘油酯;再用多元酸(如苯酐)及剩余的甘油酯化,生成苯乙烯化醇酸树脂。

(2)后苯乙烯化法 后苯乙烯化法又称为醇酸树脂的苯乙烯化法。该法的工艺要点是:首先合成含共轭双键的基础醇酸树脂,然后用基础醇酸树脂和苯乙烯单体(有时还包括少量丙烯酸类单体),在引发剂存在及合适温度条件下,进行共聚反应(即醇酸树脂的苯乙烯化),直至得到我们所要求的粘度。该法的工艺特点是工艺过程容易控制,利用常规醇酸树脂的生产设备即可进行改性醇酸树脂的工业化生产。

苯乙烯与含共轭双键的脂肪酸、植物油或醇酸树脂能发生共聚反应。苯乙烯与含双键的脂肪酸共聚容易,与含非共轭双键的脂肪酸则共聚很慢。例如,桐油脂肪酸中90%含共轭双键,共聚时容易成胶;脱水蓖麻油(DCO)中25%左右的脂肪酸含共轭双键,共聚极慢,发生共聚反应的同时,苯乙烯将自聚成聚苯乙烯(PS)而与油相分离。在共聚过程中,通常发生如下反应,它们按不同机理进行。

2、预聚物法

预聚物法主要有聚苯乙烯羟基预聚物法和羧基预聚物法两种。

(1)聚苯乙烯羟基预聚物改性法 该法以聚苯乙烯二醇改性为代表,它主要是通过在聚苯乙烯分子链的末端上引入羟基反应性基团,然后通过化学反应将聚苯乙烯聚合物引入醇酸树脂中。聚苯乙烯二醇在改性中起到了双重作用:第一,它所提供的活性羟基,代替了常规醇酸树脂合成所用的甘油或其它脂肪族多元醇;第二,长链聚苯乙烯的引入赋予改性醇酸树脂以较高的硬度、良好的耐水性和耐化学品性。此类改性工艺较复杂,难以工业化生产。 转贴于

(2)聚苯乙烯羟基预聚物改性法 此法的工艺要点为:首先由苯乙烯和(甲基)丙烯酸等丙烯酸单体合成带活性羧基的预聚物,然后该预聚物可以直接代替部分多元酸(如苯酐等),在植物油的醇解物的酯化过程或两步法脂肪酸酯化过程中进行酯化反应,这样,带羧基的苯乙烯预聚物将接入到醇酸树脂分子链上,该法又称作共酯化法。这样,改性醇酸树脂将集中醇酸树脂、丙烯酸树脂、聚苯乙烯(PS)三种物质的优点,所得树脂的耐候性、柔韧性和耐溶剂性优于单纯以苯乙烯改性的醇酸树脂。但此类改性工艺复杂,改性产品价格较贵。

二、醇酸树脂的苯乙烯化改性工艺研究

苯乙烯改性顺酐醇酸树脂的工艺特点为:采用后苯乙烯化方法进行改性研究,保证了改性工艺过程简便易操作,改性醇酸树脂的质量稳定;采用溶液聚合法进行苯乙烯改性醇酸树脂的接枝共聚反应,克服了本体聚合法中易出现反应体系的温度升高过快和反应不稳定等缺陷;另外,以含共轭双键的活性较高的顺酐作为多元酸部分代替苯酐,可提供足够多的接枝共聚活性位点;在引发剂加入前,使苯乙烯单体(或混合单体)进行一定时间的热聚合,这样,改性工艺过程将更加稳定。改性过程的工艺要点为:首先在带有搅拌器、热电偶温度计(连接温控仪)、回流冷凝器等附件的四口烧瓶中,加入称量好的基础醇酸树脂、St、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)和部分溶剂,加热至125~135℃,保温1h后,将配方量75%的引发剂及部分溶剂加入滴液漏斗,在3~4h内滴完。保温2~3h后,分次补加剩余的引发剂。保温过程中,间隔1h取样,检测聚合反应体系的粘度和不挥发分含量,但体系的粘度和单体转化率均合格后,迅速降温,兑稀出料。

工艺优化主要体现在以下几方面:第一,常规后苯乙烯化法改性醇酸树脂,一般是先加入基础醇酸树脂,然后滴加大部分混合单体与引发剂,再分次补加剩余单体和引发剂的方法。但本文通过实验研究,发现该方法存在以下不足:第一,由于采用滴加方式加料,反应体系中单体浓度较小,反应速率较低,反应时间较长;第二,由于同时存在单体的自聚及单体与基础醇酸树脂的接枝共聚等竞争反应,降低了接枝共聚反应的速率,减少了接枝共聚物的产生量,影响了改性树脂的外观和质量。为此,从工艺优化的角度考虑,我们增加了混合单体的热聚合这一过程,稳定了工艺过程,提高了聚合反应速率,改善了改性树脂的质量。如果改性剂为苯乙烯(St)单体,则热聚合过程将生成较多苯乙烯均聚物(PS),如果改性剂为St与甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)的混合物,则它们可能会先生成部分丙烯酸预聚物(PP),这些在热聚合过程中生成的PS和PP将同样参与接枝共聚反应,并且会由于它们的产生,避免了聚合反应过程中局部升温过高,容易产生爆聚现象,此时,树脂的分子量剧增,以致出现凝胶化现象。

另外,工艺优化还从反应温度、改性剂与基础醇酸树脂的比率、引发剂的选择、加入方式和加入量等几个方面考虑,通过科学地设计实验方案,经过大量的实验研究,提出反应温度以125~135℃较合适,改性剂采用混合单体比单一改性剂能获得较好的漆膜性能,改性剂与基础醇酸树脂的比率在30~40%较合适,引发剂的加入量占混合单体的1.8~3.2%,且需采用分次加入较有效。

参考文献

[1] 瞿金清,肖新颜,涂伟萍等.苯乙烯改性醇酸树脂涂料的研究进展.现代化工,1999,19(9):12~15

乙烯加聚反应篇4

关键词:聚苯乙烯 生产工艺 扩建工程

聚苯乙烯由苯乙烯单体聚合而成,是世界上用量较大的塑料之一。目前主要采用本体聚合法和悬浮聚合法进行生产合成。国内外对其的需求也逐年增长。我国自上世界80年代就陆续从国外引进先进设备进行生产。但是,我国大部分企业对聚苯乙烯的生产工艺技术仍比较落后,这些企业生产与发展有待于提高。

一、聚苯乙烯生产国内生产工艺情况

我国聚苯乙烯的生产工艺经历着起步、扩展和规模化3个阶段。在20世纪60到80年代处于起步阶段,在该阶段中,技术相对落后,以小体本法和悬浮法为主要的生产工艺。企业生产规模都在万吨以下。到20世纪的80年代末期到90年代中期为扩展阶段,在这一阶段过程中,企业引进了当时的国际先进技术――连续本体聚合工艺,对当时生产技术的发展起到了促进作用。20世纪90年代中期到现在是规模化发展阶段,在此阶段,由于经济的迅猛发展,我国国内对聚苯乙烯的需求迅速增长,国内出现很大的缺口,国外先进企业纷纷到我国建厂,带来了先进的生产技术,我国聚苯乙烯的生产技术水平也达到了一个新的平台,年产量也有大量的进步。在我国引进的国外先进技术中,我国很多企业先后进行引进Fina工艺,也是我国企业引进最多的生产工艺。我国的辽宁抚顺石油、汕头海洋和辽宁盘锦乙烯等公司先后引进了这一生产工艺。但是这些企业所运用的都不是Fina公司的最先进聚苯乙烯生产工艺。我国的湛江新中美引进了Fina公司典型商业化的聚苯乙烯生产工艺。我国的很多企业也引进了日本的TEC-MTC生产工艺。我国的兰州石化和齐鲁石化公司等公司都引进了这一生产工艺。兰州石化引进的较为古老的生产工艺,齐鲁石化引进的为新进的生产工艺。

二、聚苯乙烯生产国外生产工艺情况

在国际上,聚苯乙烯最先是由德国法本公司实现工业化的,在之后经过的技术实践,现在聚苯乙烯系列树脂的工艺生产大都采用本体连续聚合方法工艺。此方法相比乳液聚合法能够生产更纯净的、高透明的及外观漂亮的聚苯乙烯系列树脂。美国的Dow公司也是在上世纪30年代开始研究聚苯乙烯的生产工艺的,经过60年代的创新发展,对聚苯乙烯的聚合工艺发展起到了促进作用,成为世界四大聚苯乙烯生产企业之一,在聚苯乙烯的生产领域中处于领先的地位。该公司的生产工艺是采用双官能团的引发剂引发,然后加入少量的乙苯作为循环溶剂,采用乙二醇做冷剂。设备采用碳钢的反应器及不锈钢的真空循环系统、添加剂系统。德国的BASF公司也是世界上聚苯乙烯最早的发明者之一,经过逐渐不断的扩大发展也成为世界上四大聚苯乙烯的生产厂商之一。该公司生产工艺采用引发剂引发及少量乙苯作为循环剂。美国的Fina公司也是世界四大聚苯乙烯生产商之一,该公司采用热引发剂,加入少量的乙苯作为溶剂。设备全是碳钢材料,生产设备投资较少。日本的TEC-MTC工艺采用热引发,高光泽HIPS的生产才用引发剂引发,加入少量乙苯作为溶剂,设备全为不锈钢材料。

三、国内外聚苯乙烯发展趋势

1.装置大型化

市场的激烈竞争,要求生产企业必须具有优越的生产工艺路线,提高单线生产能力是降低投资和生产成本,提高长期受益的重要方式。受企业竞争和经济因素的影响,聚苯乙烯的生产装置逐渐向更大规模、更安全可靠和更经济的方向发展。降低单线的生产成本,从而提高企业总的利润效应。

2.反应器系统的改进和优化

目前企业中有10多种本体法聚苯乙烯生产工艺,这些生产工艺仅在工艺装置及发应器中存在差别。然而,反应器及其相关系数是决定企业投资成本的关键环节,反应器的设计和数量也对总成本具有影响。设计单个或多个反应器温度控制装置的方法对安全运行及反应器的最大运行速率及反应体系的成本具有重大影响。

3.新产品的开发

全世界的聚苯乙烯生产企业都很重视聚苯乙烯新产品的研究开发。随着聚苯乙烯树脂工艺的发展,逐渐生产处残留单体含量低、耐用性强的新产品。另外,通过在生产中添加改性剂对其改性,也能生产处更好的耐候性和表面性能的聚苯乙烯。各大生产企业都在大力开发综合性能好的聚苯乙烯产品。进一步开拓新的应用领域作为发展重点。随着聚苯乙烯技术的发展,现在能够将以前不能兼得的各项性能集于一身,生产出各项性能皆优的HIPS产品,只需改变HIPS中橡胶粒径分布就可使聚苯乙烯树脂的一些性能,如光泽度和机械综合性能得以提高。为了提高脱挥效率,在脱挥过程中加入一种化学助剂,这类助剂在熔融的聚合物中有一定的溶解度,但又可很容易地分离出去,具有洗涤介质的作用,能够降低残留单体在熔体中的分压。

4.重视环境保护

在过去生产中,聚苯乙烯树脂不断受到来自环境法规方面的压力,在许多市场受到替代材料的冲击,特别是在包装市场中的应用受到较大影响。因此,与环保有关的技术也是聚苯乙烯行业近年来的一个重点。

四、结语

我国聚苯乙烯的生产工艺经历着起步、扩展和规模化3个阶段。聚苯乙烯又苯乙烯单体聚合而成,是世界上用量较大的塑料之一。目前主要采用本体聚合法和悬浮聚合法进行生产合成。国内外对其的需求也逐年增长。国内外出现了聚苯乙烯装置大型化、反应器系统的改进优化、新产品的开发及重视环境保护的发展趋势。

参考文献:

[1]陈乐怡.近年来世界五大通用树脂的实际生产能力和产量预测[J].当代石油化工,2005,13(11):20~24,41

[2]全国合成树脂及塑料工业信息总站5塑料工业6编辑部.2003~2004年国外塑料工业进展[J].塑料工业,2005(3):1~22

乙烯加聚反应篇5

关键词:氯乙烯 生产过程 优化策略

聚氯乙烯属于一种热塑性的树脂,用途广泛,经过加工、改性处理后,能够制造食品包装原料及塑料制品,提高其应用价值,聚氯乙烯的主要生产原料是氯乙烯,由此对氯乙烯的生产工艺提出了更高的要求。电石法生产氯乙烯是当前较为常用的一种方法,通过加强生产过程的优化控制,能够进一步满足聚氯乙烯的生产及制造需求。

一、氯乙烯生产技术概述

氯乙烯的化学分子式为CH2-CHCL,是一种无色、容易液化的气体,能够与丙烯、丙烯腈、马来酸脂等发生聚合,氯乙烯的主要用途是生产聚氯乙烯,也可以进行有机合成,或者制备冷冻剂。聚氯乙烯是最大的一种塑料品种,因此对于氯乙烯的应用量也不断增加,氯乙烯单体生产至关重要。自1912年氯乙烯生产方法开展,经过一个世纪的变革,氯乙烯的生产规模不断扩大,生产技术不断改进,其技术水平与聚氯乙烯树脂质量密不可分,因此,加强氯乙烯生产技术的研究是提升聚氯乙烯市场竞争力的关键。

当前,氯乙烯生产方法主要有两种,一是电石法,主要通过水与电石发生反应,产生乙炔,通过氯化汞催化,乙炔与氯化氢产生反应,产生氯乙烯。二是乙烯氧氯化法,乙烯与氧气发生反应,产生二氯乙烯,二氯乙烯裂解,产生氯化氢及氯乙烯,氯化氢与乙烯及氧气反应,产生水和二氯乙烷。

二、电石法生产氯乙烯现状

虽然世界上大多数先进国家已经淘汰电石法,但由于我国对于氯乙烯生产的资源、环境及原料不同,而且电石法工艺技术趋于成熟,再加上国际上乙烯工艺生产氯乙烯方法的成本不断提高,由此凸显了电石法的优势。因此,当前我国对于氯乙烯的生产主要采取电石法工艺。

电石法生产氯乙烯的过程较为复杂,而且在生产过程中具有时变性、非线性及不确定性的特点,虽然我国在其他方面的自动化水平大大提高,但在电石法工艺生产氯乙烯方面却仍有较大限制,即使采用PLC控制系统,也仍旧需要人为操作,从而影响到了氯乙烯的生产效率及质量。很多企业对于氯乙烯的生产,更多的是注重工艺研究,而工艺研究与生产过程控制还没有结合起来,由此也成为氯乙烯生产的一大制约因素。因此,在未来的发展过程中,加强生产工艺与生产过程控制结合是首要解决的问题。

三、氯乙烯生产过程的优化控制策略

以电石法为例,氯乙烯生产过程较为复杂,需要采取有效措施进行优化控制,以提高生产效率及质量,更好的满足市场需求。在电石法工艺生产过程中,水和电石反应、乙炔与氯化氢反应、氯乙烯转化反应、精馏反应、产品生成是最为重要的几个部分,加强这几个部分的优化控制是提高氯乙烯生产质量和效率的关键。

1.水和电石的反应优化控制

生成乙炔的主要原料是水和电石,水解反应中会释放热量,由此导致发生器温度升高,内部压力加大,从而导致事故发生率增加。对此,首先应当控制好水及电石的质量,保证用于化学反应的水及电石都符合要求,反应过程中水解产生的热量需要及时处理,以免发生爆炸,传统安装气柜的做法仍有较大风险,因此可以加强主要发生器的温度控制,通过采取冷却降温等方法将温度控制在合理的范围内。对于水和电石发生反应的过程,应当加强严密监控,避免杂质入侵,在反应完成后收集乙炔时应当注意提高质量,保证精度,从而确保后续氯乙烯转化反应的顺利进行,也能够最大限度的减少资源浪费,提高转化利用率。

2.氯乙烯转化原料优化控制

在氯乙烯转化阶段,原料主要是氯化氢和乙炔,这两种化合物的比值在理论上是1:1,但在实际操作过程中,为了保证化合反应的正常进行,大多数生产工艺采用的乙炔和氯化氢流量比值要与理论产生浮动,而在流量控制过程中,如果乙炔量过大,则会造成触媒中毒事故,而氯化氢超出预定范围,则会对设备产生腐蚀作用,影响到后续的工艺生产。对此,在氯乙烯转化阶段,可以氯化氢流量为主,以乙炔流量为辅,设计一个单闭环的比值控制系统,通过温压补偿运算式进行处理,以确保氯化氢及乙炔流量控制的精度,此外,还应当针对氯乙烯的转化反应过程设计一个简单的自动化控制系统,通过系统自动反应来控制氯乙烯的转化过程,这样可以降低人工成本,同时减少人为失误,提高运行效率,并避免中毒事故的发生。

3.氯乙烯转化过程优化控制

在氯乙烯转化过程中,反应温度应当严格控制在130~180℃之间,如果温度过低,会导致不能完全反应,如果温度过高,又会导致触煤中毒事故,反应失效,因此加强控制系统改造至关重要。对此,根据氯乙烯生产过程中的复杂特点,无法建立机理模型,可以精确的建立数学模型,将氯乙烯转化过程中所涉及的各个参数综合起来,并计算出各个参数之间的关系,形成预测控制系统,对于转化器温度变化情况,能够在第一时间内得出数据,根据模型计算出各个参数应当调整的比例,并根据数据大小进行温度调节,从而保证时刻达到最佳的控制效果,确保转化反应的顺利进行,通过加强氯乙烯转化过程的优化控制,能够更好的满足后续工序的顺利进行,由此提升氯乙烯生产效率。

4.精馏装置优化控制

氯乙烯单体生产过程中的精馏阶段主要包含低沸点塔和高沸点塔,在此阶段,需要加强精馏塔的控制,以保证氯乙烯生产质量。但是精馏塔包含多个变量,系统复杂,要想实现精确控制非常困难。在当前的精馏装置生产中,大多采用单回路控制,每个工艺参数控制都处于分开状态,而且是进行人为操作,由此制约了精馏塔控制精度的提升。而从系统工程的角度来说,精馏塔应当是一个整体系统,每个参数之间都应当存在密切联系,而且能够相互作用,并不是相互独立的,因此,精馏塔的控制系统并不是优越,仍需进行有效改进。对此,应当将精馏塔装置中的各个参数综合起来,并通过某一个理论练成一体,互相作用,以实现整体控制。同时,生产过程中还可以建立在线诊断系统,实现全天候控制,及时找出问题,并采取有效策略进行解决,从而保证精馏装置运作正常。

5.产品优化控制

在氯乙烯生产的最后一个工序是产品控制,氯乙烯是无色、容易液化的气体,因此,对于此种材料的保存也需要采用专门的装置,对于完全反应的氯乙烯,要首先检查是否存在残留及杂物,保证其精度,在确定无问题后,用密封装置进行包装,并放置在安全位置进行保存。对于保存过程中出现问题的氯乙烯,应当尽量安全处理掉,避免对外界产生影响,同时也要避免与其他材料产生反应,以提高产品质量,更好的满足企业发展需求。

四、结束语

氯乙烯的生产关乎聚氯乙烯的生产质量,而聚氯乙烯的质量又与现代化企业生产发展及提升市场竞争力密不可分,因此,在未来的发展过程中,应当加强氯乙烯生产过程的优化控制,采取更有效的措施不断改善工艺生产流程,以不断促进塑料工业的快速发展,更好的满足我国的社会主义现代化建设需求。

参考文献

[1] 刘岭梅.乙烯氧氯化法氯乙烯技术进展[J].中国氯碱. 2011(04)

[2] 崔金保.氯乙烯生产工艺的技术改进[J].聚氯乙烯. 2012(08)

[3] 徐兆瑜.氯乙烯生产及其工艺技术新进展[J].江苏氯碱. 2013(03)

[4] 胡宝成,芦玉来,陈健康,杨学远,杨朝富.简述我厂氯乙烯生产工艺特点[J].中国氯碱.2012(03)

乙烯加聚反应篇6

关键词:氯乙烯 聚氯乙烯 悬浮聚合 乳液聚合 微悬浮聚合 聚合改性 共混改性

聚氯乙烯(PVC)是五大通用塑料之一,其相关的制品从硬到软,应用很广泛。四十多年来,我国聚氯乙烯工业的发展是参展国外工艺的基础上,广泛进行工业设备既工艺的革新,现今的生产能力已经超过百万吨了,成了我国产量最大的塑料品种之一。随着市场需求的不断增大,为了提高聚氯乙烯的性能,到20世纪20年代末,在该领域中出现了两大方面的突破:一种就是增塑,是在1933年发明添加增塑剂,另一种就是聚合,对聚氯乙烯起到改性作用,以期在生产加工的过程中能起到最有效的作用。

一、氯乙烯聚合

1.悬浮聚合

氯乙烯-醋酸乙烯共聚物简写(VC/VAC)。氯乙烯-醋酸乙烯共聚物主要有三大用途,一个是用于塑料地砖,一个是用于密文唱片,再一个就是在涂料中的应用。氯乙烯-醋酸乙烯共聚物(VC/VAC)的悬浮聚合方法,基本上是和PVC悬浮聚合的方式有着共通的效果,只不过就是多了一种单体。一般说来,在共聚物中,VAC的成分含量越高,共聚物的分子量反而就会越低,制造过程也就越困难。其中,制造过程中的困难主要表现在两个方面:第一,就是聚合过程中悬浮液的稳定性比较难控制好,再一个就是聚合终止时,未反应单体的回收工作比较难以有效地实施。与此同时,在悬浮聚合的技术标准,以及聚合反应所需的设备方面也需要特别的注意,例如,工具温度有可能高于均聚温度,聚合釜应受较高压力,具备良好的传热能力,所以,就必须高度重视悬浮体系的稳定性问题,包括分散剂系统、搅拌系统。另外,值得注意的是,反应终点不可追求高转化率,这样对制备化学组成较均匀的共聚物不利。再者,一定且必定要考虑未反应单体的回收问题。第一级回收系统的冷凝器将收集到的VC/VAC两种单体的混合物,回收VC是含有VAC,不可直接用于均聚的制备[1]。

2.乳液聚合

乳液聚合又称溶液聚合,它是在多级聚合釜中进行的,并可在后续的釜中添加较活泼的单体VC,用来制成化学组成均匀的VC/VAC共聚物,专门用于涂料。也可采用单釜反应的溶液聚合,连续的向聚合釜中添加单体、溶剂与引发剂的混合物,一定要将转化率控制在较低的水平上,才能转化成化学组成均与的共聚物。但是未反应单体回收的任务会加大,溶液聚合时有大量溶剂,故聚合压力会比较低,因此不需要添加悬浮稳定剂或乳化剂等[2]。

3.微悬浮聚合

LG化学公司专利报道了一种比较先进的PVC种子的制备方法,就是需要充分运用PVC树脂,把乳化剂、VC、引发剂放入水介质中,均化器压力调整为3792.25-6895.00Kpa均化以上的化合物,并进行微悬浮聚合。

二、PVC的改性

1.聚合改性

以高表观密度VC-醋酸乙烯酯共聚树脂(VAC)的生产为例。在生产高表观密度VC-醋酸乙烯酯共聚树脂(VAC)的过程中,首先在聚合釜中加入相对总料量的30%-70%VC及全部VAC,引发剂和纤维素分散剂,在40至70度开始聚合,在聚合过程中加入剩余VC单体,得到的VAC含量高、粘度小、加工温度低、表观密度大、流动性好及黏结力强的共聚物[1]。

2.共混改性

共混的关键在于“混”,“混”后在物质的结构及性能上产生什么样的变化,互溶性和相容性特别容易混淆,两者既有关系又有区别,相容性是指2种聚合物混合在一起后能产生有益的或期望的结果。主要从性能上说,这是共混的目的。但是并不要求两个聚合物完全互溶,两个聚合物组分之间的粘附作用是必须的,是共混物所要求的。从热力学角度来看,不论是2种聚合物之间的粘附作用、表面粘附离以及互溶性等都和两种聚合物之间的相互作用力密切相关,共混就是为了制造性能上、价格上具有优势的产品。高分子作为改性剂(聚合物改性剂)是共混物的一种实际应用。特别是PVC方面,用于PVC加工助剂的聚合物改性剂,它可以改善PVC的热熔加工性能,加速热熔的均化过程、大大提高热熔速率,可以看作是一种加工流动性的促进剂[3]。

3.复合改性

纤维类和乙烯-乙烯-丁二烯―苯乙烯(SEBS)冲击改性剂加入量对PVC符合物性能的影响。纤维量小于30%时,所有复合物存储的模量和拉伸强度随着纤维加入量的增加而增加,但不同的纤维改性材料的性能有差异,但差异较小,加入SEBS使模存储量降低,拉伸度反而增强,纤维的加入有利于复合材料冲击强度的提高,但是SEBS的加入对大多数复合材料的冲击强度影响不大,几乎可以忽略。将PVC复合材料在水中浸泡4周,PVC/谷糠复合材料的吸水率和厚度膨胀率达到最小。以上结果说明,采用农作物纤维复PVC具有类似木粉PVC的特性[2]。

三、结语

近年来,我国汽车行业的迅猛发展,汽车需求量的不断增大,使得汽车总产量不断增加。使对聚氯乙烯隔板树脂的需求不断增大,从市场需求来看,目前韩国、日本、俄罗斯等国外进口的聚氯乙烯隔板树脂质量不能完全满足我国生产加工厂家的设备要求。因此,为了确保我国在该领域的快速发展,还需要我们自己在原有的技术基础上不断探索,不断前进。

参考文献

[1]包永忠,邬春涛,黄志明.氯乙烯聚合和聚氯乙烯改性的研究[J].聚氯乙烯,2009,12(12):14-20.

[2]李艳华.氯乙烯共聚合及聚氯乙烯改性[J].江西化工,2010,4(5):38-41.

乙烯加聚反应篇7

[关键词]聚乙烯醇 固化微生物 生活污水

中图分类号:X703 文献标识码:A 文章编号:1009-914X(2015)08-0312-01

0 引言:

在我国经济水平不断增长的今天,工业化进程不断加快,这在一定程度上危害了生态环境,促使水资源受到严重污染。我国政府为了实现可持续发展的宏伟目标,近几年在积极致力于污水处理中,为提高水资源利用率而努力。聚乙烯醇固定化微生物技术是处理生活污水的一种有效技术,聚乙烯醇无毒、价廉、抗微生物分解、机械强度高等优点,使其适合应用于生活污水处理中。当然,实现聚乙烯醇固定化微生物技术有效的处理生活污水,需要制备有效的聚乙烯醇载体,促使聚乙烯醇固定化微生物技术可以充分发挥作用。对此,笔者在下文就聚乙烯醇固定化微生物技术对生活污水的处理进行分析。

1 聚乙烯醇载体的制备

对于聚乙烯醇固定化微生物技术中聚乙烯醇载体的制备主要是通过交联方法得到的。交联是水溶性聚乙烯醇材料改性及制备聚乙烯醇载体的重要步骤。在聚乙烯醇载体制备中所应用的教练方法有三种,即物理交联、化学交联、辐射交联法。其中,辐射交联法在不需要任何添加剂的作用就可以达到交联的目的,但其在交联的过程中可能具有杀菌和诱变的作用,不利用微生物载体的制备。所以,在固定化微生物载体制备中很少应用到辐射交联法。以下笔者就物理交联和化学交联这两种方法进行分析。

1.1 物理交联

对聚乙烯醇进行物理交联处理中所采用的方法是冷冻解冻法。此种方法是利用聚乙烯醇链间的氢键、微晶区及大分子链间的缠结形成三维网络,以此来增强聚乙烯醇与微生物的融合性,促使其可以在固定化微生物中存在,有效才处理生活污水中的污染物。对于冷冻解冻法的应用,主要是将聚乙烯醇溶液放置在-20℃~-80℃低温和室温下反复进行冷冻―解冻,促使聚乙烯醇材料内部形成微晶区作为物理交联点,在利用聚乙烯醇链间的氢键、大分子链间的缠结形成三维 网络结构,促使聚乙烯水凝胶强度增强,使其形成聚乙烯醇载体,并保证此载体具有开孔率高、含水率大等特点,在固定化微生物中作为载体而有效应用。

1.2 化学交联

相对于聚乙烯醇物理交联法来说,化学交联是更为有效的教练方法,其可以保证聚乙烯醇载体具有较强的水溶性、故稳定性。因为,化学交联是由聚乙烯醇的羟基与多官能团物质进行反应形成交联结构的过程。在聚乙烯醇化学交联中最常用的方法是聚乙烯醇―硼酸法,其可以使聚乙烯醇形成共价交联的多孔凝胶,大大增强聚乙烯水凝胶强度,促使可以作为具有较强应用性的固定化微生物载体。聚乙烯醇―硼酸法的应是将聚乙烯醇材料与硼酸发生反应,使聚乙烯醇形成单二醇型建,增强聚乙烯醇分子的链接,实现聚乙烯醇共价交联,最终获得聚乙烯水凝胶(如图一所示)。利用聚乙烯醇―硼酸法来获得聚乙烯醇载体,可以使所获得的聚乙烯醇载体具有较强的机械强度、良好的弹性、较长的使用寿命等优点,这对于提高聚乙烯醇固定化微生物技术应用性有很大作用。当然,在利用此种方法来获得聚乙烯醇载体,会使硼酸对某些微生物有毒害的作用,促使细胞活性降低,在使用的过程中应当慎重考虑这一点。总体上来讲,聚乙烯醇―硼酸法是制备聚乙烯醇载体的一种非常有效的化学交联法,值得广泛的应用。

2 聚乙烯醇固定化微生物技术对生活污水的处理研究

在我国经济有很大程度发展的今天,我国水污染日益严峻。我国要想实现可持续发展这一宏伟目标,就需要加强水污染处理,尽可能的提高水资源利用。生活污水处理是解决水污染问题中的重要部分之一。相对于难降解、浓度高、含有重金属的废水来说,生活污水还是比较容易处理的。那么,以下就利用聚乙烯醇固定化微生物技术处理生活污水进行分析。

2.1 含氮生活污水的处理

以往对于含氮废水的处理,主要是利用好氧硝化和厌氧硝化两个过程来完成的。但由于这两个过程对时间和溶解氧条件要求较高,使得含氮废水处理效果并不是非常好。在聚乙烯醇固定化微生物技术可以有效应用的今天,利用此种方法来处理含氮废水,可以大大提高含氮废水处理效果。在含氮废水处理方面,所应用的聚乙烯醇固定化微生物技术是其可以同时固定自养好氧的硝化菌和异养厌氧的反硝化菌,通过载体内部的溶解氧梯度形成外部好氧内部厌氧的环境,实现在好氧反应器内的同时硝化反硝化脱氮。利用聚乙烯醇固定化微生物技术来处理含氮废水,可以有效的脱氮,促使含氮废水得到有效处理,这充分的说明此种技术在生活污水处理方面有很大作用。

2.2 污染物降解处理

利用聚乙烯醇固定化微生物技术来处理生活污水,主要是对活性污泥予以有效的处理,促使水变得清澈、干净。在对生活污水中污染物降解处理过程中,所采用的处理方法主要是聚乙烯醇-硼酸法。此种方法的有效应用,可以在污染物固定化后,活性污泥对温度和pH值的适应范围变宽;在优选条件下连续运行,尽可能的被去除,从而达到处理生活污水的目的。聚乙烯醇-硼酸法处理生活污水的主要内容是以聚乙烯醇(PVA)为包埋材料,以含2%的饱和硼酸作为交联剂,采用包埋和交联联合应用的微生物固定化方法固定驯化后的活性污泥,以网格塑料片作为支撑体,制备成固定化生物膜。生物膜活性恢复后,组装固定化微生物反应器,对生活污水进行处理。总之,聚乙烯醇固定化微生物技术的有效应用可以对生活污水予以有效的处理,促使生活污水可以再次被应用,这将大大提高水资源利用率,缓解日益匮乏的水资源,为促进我国实现可持续发展创造条件。

3 结束语

聚乙烯醇固定化微生物技术是处理生活污水的一种有效技术,聚乙烯醇无毒、价廉、抗微生物分解、机械强度高等优点,使其适合应用于生活污水处理中。在对生活污水予以处理的过程中所应用的聚乙烯醇固定化微生物技术,应当根据生活污水污染物情况,科学合理的应用此技术来处理,这可以充分发挥聚乙烯醇载体的作用,促使生活污水得到有效的处理。相信随着科学技术的不断发展,聚乙烯醇固定化微生物技术将得到创新和发展,更加有效的应用与生活污水处理中,高质高效的完成生活污水处理,促使水资源利用率得以提高,为实现我国可持续发展创造条件。

参考文献:

[1] 祝丽思.聚乙烯醇固定化微生物技术对生活污水脱氮的研究[J].黑龙江畜牧兽医,2014(11).

[2] 刘海琴,韩士群,李国锋.固定化复合微生物对废水的脱氮效果[J].江苏农业科学,2006(06).

[3] 刘茹,索虎勤,李明,席凤霞,何化平.三门峡城市供水安全现状分析及评价[A].第三届全国河道治理与生态修复技术交流研讨会专刊[C].2011.

[4] 黄龙,韩春元,田娟,刘杰.不同处理能力人工湿地净化效果的比较[A].四川省环境科学学会二一一年学术年会论文集[C].2011.

[5] 余冬冬,金勇威,迟莉娜,张振家.包埋固定化微生物处理微污染原水的试验研究[J].中国给水排水,2008(13).

乙烯加聚反应篇8

【关键词】碳化硼;聚乙烯醇;前驱体;溶胶-凝胶法

碳化硼作为高性能陶瓷材料中的一种重要原料,具有广泛的应用。随着特种陶瓷的发展,对陶瓷材料提出了新的要求,因此需要制备出高纯度的颗粒细小的碳化硼超细粉体。但现在国内外碳化硼的生产存在着高品质的碳化硼价格高,制备成本高,能耗大的缺点。因此,开发一种低能耗、产品粒度易于控制的碳化硼合成方法是一件十分有意义的事情。

本项目采用一种有机前驱物热解法制备微纳米碳化硼,即开发一种低温合成碳化硼超细粉体的工艺。其原料的选择以价廉易得的聚乙烯醇为有机碳源,以硼酸为硼源,在温和的条件下首先合成一种含硼和碳的有机聚合物,然后在较低温度下热解这类聚合物获得粒度易控的纯度较高的碳化硼微粉。同时分析和研究了碳化硼合成过程中的影响因素、热力学研究,对前驱体的制备、低温裂解过程以及高温碳热还原等工艺过程进行深入研究,以期用于指导今后的实际生产。

1 实验部分

1.1实验试剂及设备

实验试剂:聚乙烯醇1750±50、聚乙烯醇AH-26、硼酸、盐酸、氢氧化钠、甘露醇。

实验设备:SKQZ-6-16管式气氛炉、KSY-D-16马弗炉、DF-101S型集热式恒温磁力搅拌器、T6328B电光分析天平、AL204电子天平、D/MAX-2400型X射线衍射仪(XRD)、EQUINOX55傅里叶变换红外光谱仪、SA-CP3离心粒度仪、JSM-5600LV扫描电镜。

1.2 实验方法与过程

(1)硼酸溶液和聚乙烯醇溶液的配置

(a)聚乙烯醇溶液的配置:先将一定量的聚乙烯醇加入室温水中搅拌5min,停止搅拌后静置浸泡30min.分散均匀后继续搅拌并升温至85℃。直至完全溶解。

(b)硼酸溶液的配置:实验用水浴加热溶解硼酸。将6.2g硼酸溶解与100ml的蒸馏水中配制成1mol/L的硼酸溶液。

(2)溶胶凝胶合成反应:将配置好的聚乙烯醇溶液置于水浴锅中加热,并将硼酸溶液按照一定的比例缓缓滴加到聚乙烯醇溶液中,边滴加边搅拌。产生絮状的白色凝胶体沉淀。

(2)干燥除水:将沉淀物放置在100-130℃的烘箱中干燥除水,研磨后得到白色的B-C化合物前驱体粉末。

(3)低温裂解反应:将研磨后的白色前驱体粉末,放在氧化铝坩埚中空气条件下500-850℃焙烧2h,得到多孔状黑色固体,在研钵中研磨20分钟得到黑色粉末。

(4)高温碳热还原反应:将粉末置于磁舟中,在氮气保护下1100-1500℃高温还原2h;最后得到碳化硼超细粉体。

2 结果与讨论

2.1 前驱体制备

图2.1为原料聚乙烯醇(b)、硼酸(c)和聚乙烯醇硼酸酯(a)的红外谱图。从聚乙烯醇硼酸酯的红外谱图看出,在3432cm-1处出现的吸收峰对应的是O-H伸缩振动吸收峰;2913cm-1处对应的是C-H键的伸缩振动吸收峰;而B-O键和B-O-C键的振动吸收峰分别出现在1430cm-1和1058cm-1处,说明硼酸与聚乙烯醇已经发生反应形成了B-O-C键。与所用原料硼酸与聚乙烯醇的红外谱图相比,峰型与峰位都发生了变化,证实了缩合反应的发生。

2.2 聚合反应配比的确定

由于反应时聚乙烯醇用量的不同,会对聚合反应的进行程度产生影响,因此硼酸参与反应量会有所变化。固定硼酸的用量,逐渐增加聚乙烯醇的用量,考察聚乙烯醇与硼酸的摩尔比为2:1、2.5:1、3:1、3.5:1、4:1、4.5:1时硼酸利用率和聚合物产率的变化,最后选定聚乙烯醇与硼酸的摩尔比4:1为适宜的反应配比。

图2.1 聚乙烯醇硼酸酯(a),聚乙烯醇(b)和硼酸(c)的红外谱图

2.3低温裂解

图2.2所示为前驱体聚合物在氩气流下以10℃/min的升温速度测得的TG和DTG曲线。从TG曲线中看出,第一次失重发生在100到280℃之间,这是由于凝胶体聚合物中自由水的消失引起的。接下来的两次失重分别是从300到400℃和从400到500℃之间,这是由于聚合物低温下支链的断裂和高温时骨架的断裂引起的。在500℃时前驱体的剩余质量约为18%。从600到1100℃质量几乎保持不变,在1100℃时又有一次失重发生。这说明聚合物的裂解在600℃之前已经反应完全,而碳热还原反应发生在1300℃以上。

图2.2 聚合物的TG和DTG曲线

2.4 高温碳热还原

碳热还原温度对碳化硼的制备有很大的影响,适当的还原温度能促使碳化硼晶体的形成和生长。将裂解后的前驱体在氮气保护下的管式气氛炉中分别于1100℃、1200℃、1250℃、1300℃、1350℃、1400℃、1450℃和1500℃碳热还原2h,对其产物进行X射线衍射分析,结果如图2.4所示。

上一篇:元宵节吃汤圆的寓意范文 下一篇:学雷锋做有道德的人作文范文