碳化硅陶瓷范文

时间:2023-12-02 15:55:47

碳化硅陶瓷

碳化硅陶瓷篇1

关键词 SiC微孔陶瓷过滤板,孔隙率,烧结温度,成孔剂,玻璃相

1引言

碳化硅主要为共价键化合物,碳化硅结晶中存在呈四面体空间排列的杂化键sp3,sp电子的迁移,使其能量稳定,存在牢固的共价键,从而形成具有金刚石晶体结构的碳化硅[1]。用SiC作骨料制备的微孔陶瓷过滤器,有较高的孔隙率,耐高温、导热率高、导电性好,有优良的抗化学腐蚀性能和冷加工性能[2]。因此,碳化硅微孔陶瓷过滤器可以用于液体和气体过滤、布气材料、催化剂载体[3~5]和吸音材料[6],还可用作敏感元件[5]、隔膜材料[7]、生物工程材料[8]等。

本文采用多孔陶瓷常用制备方法[9]之一的固态烧结法制备SiC微孔陶瓷,考察烧成温度、成形压力、烧成时间、成孔剂的加入量和玻璃相无机粘结剂的数量等因素对SiC微孔陶瓷过滤板孔隙率及微观结构的影响,从而为制备性能良好的SiC微孔陶瓷过滤器提供理论依据。

2实验

实验仪器有:电子天平、球磨机、万能材料实验机、马弗炉、电炉、电子显微镜。试验所用的原材料有:工业纯的SiC骨料、粘土(18μm)、长石、甲基纤维素和化学纯的Al(OH)3(2μm)。

3结果与讨论

3.1 烧成温度对SiC陶瓷过滤板孔隙率的影响

按配方制备制品,不同烧成温度对SiC陶瓷过滤板孔隙率的影响如图1所示。由图可知,在1200~1300℃范围内随着温度的升高,SiC微孔陶瓷过滤板的孔隙率呈逐渐下降的趋势,下降的幅度为5.5%左右。这是因为粘结剂在约1200℃时开始熔融,较低温度时粘结剂所接触的局部区域出现液相,成孔剂挥发的气体沿坯体内在成形过程中残余的气体通道向表面扩散,形成较多的开口气孔,表现出较高的孔隙率。随着温度的升高,玻化程度提高,同时出现液相,使粘结剂润湿,溶解骨料并与骨料发生作用形成低共熔物,溶于液相中促进烧结。当温度较高时,样品中玻璃相增加,玻璃相的粘度下降,流动性增加,较多地填充空隙,此时,已接近完全烧结阶段,故孔隙率会有所下降。所以,要提高孔隙率,烧结温度不能太高。这样既能保证SiC陶瓷过滤板有一定的强度,又有较高的孔隙率,故选用1300℃作为烧结温度较为恰当。

3.2 成形压力对SiC微孔陶瓷过滤板孔隙率的影响

固定配方在1300℃下烧成并保温3h,研究成形压力对制品性能的影响。

从图2中可以看出,随着成形压力的增大,材料的孔隙率大体上呈下降趋势,由50.0%减小到42.7%。这是因为随着成形压力的提高,坯体致密度相应提高,孔隙率随之减小。在保证制品有一定的强度时,则尽量降低成形压力,成形压力为40kN时为最佳。

3.3 烧成时间对SiC微孔陶瓷过滤板孔隙率的影响

在固定配方、烧成温度与成形压力不变的情况下,探讨烧结保温时间的变化对试样孔隙率的影响。

由图3可以看出:随着保温时间的延长,孔隙率呈微弱的下降趋势。但是孔隙率下降的幅度比较小,保温1h和6h的制品孔隙率仅差2.5%。这主要是因为试样的温度在由室温升至1300℃的过程中,各种反应和变化可以得到充分的进行,故保温时间对样品孔隙率的影响较小。随着保温时间的增加,试样在烧结的过程中将获得更多的能量,使得试样的结构更加致密化,孔隙率减小。

另外,由于实验的成孔剂在300℃左右就会分解,在升温至1300℃并保温的情况下,成孔剂的反应已基本进行完全,不会对制品的孔隙率造成很大的影响。这时,粘结剂随着烧结时间的延长所发挥的作用更大,它使试样内部颗粒连接更加紧密孔隙逐渐变小。综合SiC微孔陶瓷过滤器孔隙率和强度考虑,合适的烧结保温时间为4h。

3.4 成孔剂的加入量对SiC微孔陶瓷过滤板孔隙率的影响

SiC微孔陶瓷过滤器微孔的形成有多种方法,本文主要采用添加成孔剂的方法,使其在烧结之前占位,在烧结过程中发生氧化或分解,从而形成三维相互贯通的微孔。根据实验条件,本试验选用Al(OH)3微粉(2μm)作成孔剂。在SiC骨料和粘结剂的比例保持不变的情况下,仅改变Al(OH)3成孔剂的加入量,按表1中所给出的配方进行配料。

试样先在400℃下保温1h,使Al(OH)3充分分解(Al(OH)3分解温度为300℃,发生反应为:2Al(OH)3 =Al2O3+3H2O)。在1300℃下保温3h,再进行性能测试。从图4中可以发现,随着成孔剂用量的增大,试样的气孔率随之升高。这是因为随着成孔剂含量的增加,其分解反应后在SiC微孔陶瓷过滤器中形成的孔隙也相应增大,故孔隙率上升。但成孔剂量的增加必然会减少颗粒间的结合程度,甚至使骨架成形时难以联成一体而散开解体,影响制品的强度,所以成孔剂的加入量不能过多,实验认为加入16.5%的Al(OH)3较为适宜。

3.5粘土的加入量对SiC微孔陶瓷过滤板孔隙率的影响

在Al(OH)3成孔剂加入量的比例保持不变的情况下,仅改变粘土的加入量,按表2中所给出的配方进行配料。

从图5可以看出:随着粘土加入量的增大,制品的孔隙率呈下降趋势。这是因为在一定范围内,随着粘土的增加,气孔率下降。粘土物料要选择能在980℃左右形成低共熔物,出现液相,将SiC骨料结合起来的物质。

4结论

烧成温度、成形压力、烧成时间、成孔剂的加入量和玻璃相的加入量等对SiC微孔陶瓷过滤板孔隙率及微观结构有着较大的影响。研究发现:随着烧成温度的提高,SiC微孔陶瓷的孔隙率降低,气孔形状呈不规则变化;成形压力的增加和烧成时间的延长则会导致SiC微孔陶瓷孔隙率的减小;随着成孔剂含量的加大,制品的孔隙率变大,而粘结剂含量越大,产品的孔隙率越小。更为优化的制备条件为:烧成温度1300℃、成形压力40kN、烧成时间4h,成孔剂的加入量为16.5%。

参考文献

1 李世普主编.特种陶瓷工艺学[M].武汉工业大学出版社,1990:82

2 姚治才.环境问题与陶瓷[J].咸阳陶瓷研究设计院,1999,1:7~12

3 Bloomfield, et.al. USP5965010, October 12,1999

4 Smojver.USP5690900, November 25,1997

5 陈俊彦译.最新精细陶瓷技术[M].工业调查会编辑部编,中国建筑工业出版社,1986:81

6 张晓霞,山玉波,李伶.多孔陶瓷的制备与应用[J].现代技术陶瓷,2005,4:37~40

7 Nies, et al.USP5650108, July 22,1997

8 Ikushina, et al.USP5869548, February 8,1999

碳化硅陶瓷篇2

陶瓷材料一般分为传统陶瓷和现代技术陶瓷两大类。传统陶瓷是指用天然硅酸盐粉末(如黏土、高岭土等)为原料生产的产品。因为原料的成分混杂和产品的性能波动大,仅用于餐具、日用容器、工艺品以及普通建筑材料(如地砖、水泥等),而不适用于工业用途。现代技术陶瓷是根据所要求的产品性能,通过严格的成份和生产工艺控制而制造出来的高性能材料,主要用于高温和腐蚀介质环境,是现代材料科学发展最活跃的领域之一。下面对现代技术陶瓷三个主要领域:结构陶瓷、陶瓷基复合材料和功能陶瓷作一简单介绍。

一、结构陶瓷

同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3),因而在许多场合逐渐取代昂贵的超高合金钢或被应用到金属材料根本无法胜任的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类;氧化物陶瓷、非氧化物陶瓷和玻璃陶瓷。

1、氧化物陶瓷

主要包括氧化铝、氧化错、莫来石和钦酸铝。氧化物陶瓷最突出优点是不存在氧化问题,原料价格低廉,生产工艺简单。氧化铝和氧化错具有优异的室温机械性能,高硬度和耐化学腐蚀性,主要缺点是在1000℃以上高温蠕变速率高,机械性能显著降低。氧化铝和氧化错主要应用于陶瓷切削刀具、陶瓷磨料球、高温炉管、密封圈和玻璃熔化池内衬等。莫来石室温强度属中等水平,但它在1400℃仍能保持这一强度水平,并且高温蠕变速率极低,因此被认为是陶瓷发动机的主要候选材料之一。上述三种氧化物也可制成泡沫或纤维状用于高温保温材料。钛酸铝陶瓷体内存在广泛的微裂纹,因而具有极低的热膨胀系数和热传导率。它的主要缺点是强度低,无法单独作为受力元件,所以一般用它加工内衬用作保温、耐热冲击元件,并已在陶瓷发动机上得到应用。

2、非氧化物陶瓷

主要包括碳化硅、氮化硅和赛龙(SIALON)。同氧化物陶瓷不同,非氧化物陶瓷原子间主要是以共价键结合在一起,因而具有较高的硬度、模量、蠕变抗力,并且能把这些性能的大部分保持到高温,这是氧化物陶瓷无法比拟的。但它们的烧结非常困难,必须在极高温度(1500~2500℃)并有烧结助剂存在的情况下才能获得较高密度的产品,有时必须借助热压烧结法才能达到希望的密度(>95%),所以非氧化物陶瓷的生产成本一般比氧化物陶瓷高。

这些含硅的非氧化物陶瓷还具有极佳的高温耐蚀性和抗氧化性,因此一直是陶瓷发动机的最重要材料,目前已经取代了许多超高合金钢部件。现有最佳超高合金钢的使用温度低于1100℃,而发动机燃料燃烧的温度在1300℃以上,因而普遍采用高压水强制制冷。待非氧化物陶瓷代替超高合金钢后,燃烧温度可提高到1400℃以上,并且不需要水冷系统,这在能源利用和环保方面具有重要的战略意义。

非氧化物陶瓷也广泛应用于陶瓷切削刀具。同氧化物陶瓷相比,其成本较高,但高温韧性、强度、硬度、蠕变抗力优异得多,并且刀具寿命长、允许切削速度高,因而在刀具市场占有日益重要地位。它的应用领域还包括轻质无陶瓷轴承、密封件、窑具和磨球等。

3、玻璃陶瓷

玻璃和陶瓷的主要区别在于结晶度,玻璃是非晶态而陶瓷是多晶材料。玻璃在远低于熔点以前存在明显的软化,而陶瓷的软化温度同熔点很接近,因而陶瓷的机械性能和使用温度要比玻璃高得多。玻璃的突出优点是可在玻璃软化温度和熔点之间进行各种成型,工艺简单而且成本低。玻璃陶瓷兼具玻璃的工艺性能和陶瓷的机械性能,它利用玻璃成型技术制造产品,然后高温结晶化处理获得陶瓷。工业玻璃陶瓷体系有镁一铝一硅酸盐、锂一镁一铝一硅酸盐和钙一镁一铝一硅酸盐系列,它们常被用来制造耐高温和热冲击产品,如炊具。此外它们作为建筑装饰材料正得到越来越广泛的应用,如地板、装饰玻璃。

二、陶瓷基复合材料

复合材料是为了达到某些性能指标将两种或两种以上不同材料混合在一起制成的多相材料,它具有其中任何一相所不具备的综合性能。陶瓷材料的最大缺点是韧性低,使用时会产生不可预测的突然性断裂,陶瓷基复合材料主要是为了改善陶瓷韧性。基于提高韧性的陶瓷基复合材料主要有两类:氧化错相变增韧和陶瓷纤维强化复合材料。

氧化锆相变增韧复合材料是把部分稳定的氧化锆粉末同其它陶瓷粉末(如氧化铝、氮化硅或莫来石)混合后制成的高韧性材料,其断裂韧性可以达到10Mpa,以上,而一般陶瓷的韧性仅有3Mpa左右。这类材料在陶瓷切削刀具方面得到了非常广泛的应用。

纤维强化被认为是提高陶瓷韧性最有效和最有前途的方法。纤维强度一般比基体高得多.所以它对基体具有强化作用;同时纤维具有显著阻碍裂纹扩展的能力,从而提高材料的韧性。目前韧性最高的陶瓷就是纤维强化的复合材料,例如碳化硅长纤维强化的碳化硅基复合材料韧性高达30 Mpa以上,比烧结碳化硅的韧性提高十倍.但因为这类材料价格昂贵,目前仅在军械和航空航天领域得到应用。另一引人注目的增强材料是陶瓷晶须。晶须是尺寸非常小但近乎完美的纤维状单晶体.其强度和模量接近材料的理论值,极适用于陶瓷的强化。目前这类材料在陶瓷切削刀具方面已经得到广泛应用,主要体系有碳化硅晶须一氧化铝一氧化铅、碳化硅晶须一氧化铝和碳化硅晶须一氮化硅。

三、功能陶瓷

功能陶瓷是具有光、电、热或磁特性的陶瓷,已经具有极高的产业化程度。下面简介几类主要功能陶瓷的性能。

1、导电性能

陶瓷材料具有非常广泛的导电区间,从绝缘体到半导体、超导体。大多数陶瓷具有优异的电绝缘性,因而被广泛用于电绝缘体。半导体分为电子型和离子型半导体,以晶体管集成电路为代表的是电子型半导体。离子型半导体仅对某些特殊的带电离子具有传导作用,最具有代表性的是稳定氧化锆和β一氧化铝。稳定氧化钻仅对氧离子具有传导作用,主要产品有氧传感器(主要用来测定发动机的燃烧效率或钢水中氧浓度)、氧泵(从空气中获得纯氧)和燃料电池。β一氧化铝仅对钠离子具有传导作用,主要用来制造钠一硫电池,其特点是高效率、对环境无危害和可以反复充电。陶瓷超导体是近10年才发展起来的.它的临界超导转化温度在所有类超导体中最高,已经达到液氮温度以上。典型的陶瓷超导体为钇一钡一铜一氧系列材料,已经在计算机、精密仪器领域得到广泛应用。

2、介电性能

大多数陶瓷具有优异的介电性能,表现在其较高的介电常数和低介电损耗。介电陶瓷的主要应用之一是陶瓷电容器。现代电容器介电陶瓷主要是以钛酸钡为基体的材料。当钡或钛离子被其它金属原子置换后,会得到具有不同介电性能的电介质。认酸钛基电介质的介电常数高达l000以上,而过去使用的云母小于10,所以用钛酸钡制成的电容器具有体积小、电储存能力高等特点。钛酸钡基电介质还具有优异的正电效应。当温度低于某一临界值时呈半导体钟电状态,但当温度超过这一临界值时,电阻率突然增加到倍成为绝缘体。利用这一效应的产品有电路限流元件和恒温电阻加热元件。许多陶瓷,如错钛酸错,具有显著压电效应。当在陶瓷上施加外力时,会产生一个相应的电信号,反之亦然,从而实现机械能和电能的相互转换。压电陶瓷用途极其广泛,产品有压力传感元件、超声波发生器等。

3、光学性能

陶瓷在光学方面的应用主要包括光吸收陶瓷、透光陶瓷、陶瓷光信号发生器和光导纤维。利用陶瓷光吸收特性在日常生活中随处可见.如涂料、陶瓷釉和珐琅。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面应用非常广泛。陶瓷也可被制造用来透过不同波长的光线,其中最重要的就是红外线透射陶瓷,它仅允许红外光线透过,被用来制造红外窗口,在武器、航空航天领域和高技术设备上得到广泛应用。这类材料的典型代表有硫化锌陶瓷和莫来石等.陶瓷还是固体激光发生器的重要材料,典型代表有红宝石激光器和忆榴石激光器。光导纤维是现代通讯信号的主要传输媒介,它是用高纯二氧化硅制成的,具有信号损耗低、高保真性、容量大等特性,是金属信号传愉线无法比拟的。

4、磁学性能

金属和合金磁性材料具有电阻率低、损耗大的特性,尤其在高频下更是如此,已经无法满足现代科技发展的需要。相比之下,陶瓷磁性材料有电阻率高、损耗低、磁性范围广泛等特性.陶瓷磁性材料的代表为铁氧体一种含铁的复合氧化物。通过对成份的严格控制,可以制造出软磁材料、硬磁材料和矩磁材料。软磁材料的磁导率高,饱和磁感应强度大,磁损耗低.主要用于电感线圈、小型变压器、录音磁头等部件。典型的软磁材料有镍一锌、锰一锌和锂一锌铁氧体。硬磁材料的特性是剩磁大、矫顽力大、不易退磁,主要应用为永久磁体,代表材料为铁酸钡。矩磁材料的剩余磁感应强度非常接近于饱和磁感应强度.它是因磁滞回线呈矩形而得名,主要应用于现代大型计算机逻辑元件和开关元件,代表材料为镁一锰铁氧体。

四、厦门大学材料系现代技术陶瓷研究现状

厦门大学材料系前身为厦门大学化学系材料化学专业,1997年从化学系独立出来。现代陶瓷的研究开始于1985年.已有多名归国博士先后加人并从事这一国际前沿性的理论和应用方面的研究工作。现将主要研究领域及进展简介如下:

1、结构陶瓷及陶瓷基复合材料

主要从事碳化硅晶须强化陶瓷丛复合材料的研究。选用的基体材料为碳化硅一氧化铝和氮化硅一氧化铝.目标产品为陶瓷切削刀具。由于采用晶须可控定向技术.使复合材料的强度、模量和韧性显著提高。目前这一成果已经申报国家专利。

此外,将上述晶须可控定向技术应用到陶瓷晶须强化的聚合物基复合材料中,晶须选用廉价的钦酸钾,基体选用聚氯乙烯或聚四氟乙烯等。同传统纤维强化复合材料相比,产品的强度和模量大幅度提高,并可用现有的工业设备生产。产品主要用于工业管道、化工容器等。

2、功能陶瓷

碳化硅陶瓷篇3

    一、结构陶瓷同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3),因而在许多场合逐渐取代昂贵的超高合金钢或被应用到金属材料根本无法胜任的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷和玻璃陶瓷。

    1、氧化物陶瓷主要包括氧化铝、氧化锆、莫来石和钛酸铝。氧化物陶瓷最突出优点是不存在氧化问题,原料价格低廉,生产工艺简单。氧化铝和氧化锆具有优异的室温机械性能,高硬度和耐化学腐蚀性,主要缺点是在1000℃以上高温蠕变速率高,机械性能显著降低。氧化铝和氧化锆主要应用于陶瓷切削刀具、陶瓷磨料球、高温炉管、密封圈和玻璃熔化池内衬等。莫来石室温强度属中等水平,但它在1400℃仍能保持这一强度水平,并且高温蠕变速率极低,因此被认为是陶瓷发动机的主要候选材料之一。上述三种氧化物也可制成泡沫或纤维状用于高温保温材料。钛酸铝陶瓷体内存在广泛的微裂纹,因而具有极低的热膨胀系数和热传导率。它的主要缺点是强度低,无法单独作为受力元件,所以一般用它加工内衬用作保温、耐热冲击元件,并已在陶瓷发动机上得到应用。

    2、非氧化物陶瓷主要包括碳化硅、氮化硅和赛龙(sialon)。同氧化物陶瓷不同,非氧化物陶瓷原子间主要是以共价键结合在一起,因而具有较高的硬度、模量、蠕变抗力,并且能把这些性能的大部分保持到高温,这是氧化物陶瓷无法比拟的。但它们的烧结非常困难,必须在极高温度(1500~2500℃)并有烧结助剂存在的情况下才能获得较高密度的产品,有时必须借助热压烧结法才能达到希望的密度(>95%),所以非氧化物陶瓷的生产成本一般比氧化物陶瓷高。这些含硅的非氧化物陶瓷还具有极佳的高温耐蚀性和抗氧化性,因此一直是陶瓷发动机的最重要材料,目前已经取代了许多超高合金钢部件。现有最佳超高合金钢的使用温度低于1100℃,而发动机燃料燃烧的温度在1300℃以上,因而普遍采用高压水强制制冷。待非氧化物陶瓷代替超高合金钢后,燃烧温度可提高到1400℃以上,并且不需要水冷系统,这在能源利用和环保方面具有重要的战略意义。非氧化物陶瓷也广泛应用于陶瓷切削刀具。同氧化物陶瓷相比,其成本较高,但高温韧性、强度、硬度、蠕变抗力优异得多,并且刀具寿命长、允许切削速度高,因而在刀具市场占有日益重要地位。它的应用领域还包括轻质无润滑陶瓷轴承、密封件、窑具和磨球等。

    3、玻璃陶瓷玻璃和陶瓷的主要区别在于结晶度,玻璃是非晶态而陶瓷是多晶材料。玻璃在远低于熔点以前存在明显的软化,而陶瓷的软化温度同熔点很接近,因而陶瓷的机械性能和使用温度要比玻璃高得多。玻璃的突出优点是可在玻璃软化温度和熔点之间进行各种成型,工艺简单而且成本低。玻璃陶瓷兼具玻璃的工艺性能和陶瓷的机械性能,它利用玻璃成型技术制造产品,然后高温结晶化处理获得陶瓷。工业玻璃陶瓷体系有镁-铝-硅酸盐、锂-镁-铝-硅酸盐和钙-镁-铝-硅酸盐系列,它们常被用来制造耐高温和热冲击产品,如炊具。此外它们作为建筑装饰材料正得到越来越广泛的应用,如地板、装饰玻璃。

    二、陶瓷基复合材料复合材料是为了达到某些性能指标将两种或两种以上不同材料混合在一起制成的多相材料,它具有其中任何一相所不具备的综合性能。陶瓷材料的最大缺点是韧性低,使用时会产生不可预测的突然性断裂,陶瓷基复合材料主要是为了改善陶瓷韧性。基于提高韧性的陶瓷基复合材料主要有两类:氧化锆相变增韧和陶瓷纤维强化复合材料。氧化锆相变增韧复合材料是把部分稳定的氧化锆粉末同其他陶瓷粉末(如氧化铝、氮化硅或莫来石)混合后制成的高韧性材料,其断裂韧性可以达到10mpam1/2以上,而一般陶瓷的韧性仅有3mpam1/2左右。这类材料在陶瓷切削刀具方面得到了非常广泛的应用。纤维强化被认为是提高陶瓷韧性最有效和最有前途的方法。纤维强度一般比基体高得多,所以它对基体具有强化作用;同时纤维具有显著阻碍裂纹扩展的能力,从而提高材料的韧性。目前韧性最高的陶瓷就是纤维强化的复合材料,例如碳化硅长纤维强化的碳化硅基复合材料韧性高达30mpam1/2以上,比烧结碳化硅的韧性提高十倍。但因为这类材料价格昂贵,目前仅在军械和航空航天领域得到应用。另一引人注目的增强材料是陶瓷晶须。晶须是尺寸非常小但近乎完美的纤维状单晶体,其强度和模量接近材料的理论值,极适用于陶瓷的强化。目前这类材料在陶瓷切削刀具方面已经得到广泛应用,主要体系有碳化硅晶须-氧化铝-氧化锆、碳化硅晶须-氧化铝和碳化硅晶须-氮化硅。

    三、功能陶瓷功能陶瓷是具有光、电、热或磁特性的陶瓷,已经具有极高的产业化程度。下面根据性能对几类主要的功能陶瓷作一简介。

    1、导电性能陶瓷材料具有非常广泛的导电区间,从绝缘体到半导体、超导体。大多数陶瓷具有优异的电绝缘性,因而被广泛用于电绝缘体。半导体分为电子型和离子型半导体。以晶体管集成电路为代表的是电子型半导体。离子型半导体仅对某些特殊的带电离子具有传导作用,最具有代表性的是稳定氧化锆和β-氧化铝。稳定氧化锆仅对氧离子具有传导作用,主要产品有氧传感器(主要用来测定发动机的燃烧效率或钢水中氧浓度)、氧泵(从空气中获得纯氧)和燃料电池。β-氧化铝仅对钠离子具有传导作用,主要用来制造钠-硫电池,其特点是高效率、对环境无危害和可以反复充电。陶瓷超导体是近10年才发展起来的,它的临界超导转化温度在所有类超导体中最高,已经达到液氮温度以上。典型的陶瓷超导体为钇-钡-铜-氧系列材料,已经在计算机、精密仪器领域得到广泛应用。

    2、介电性能大多数陶瓷具有优异的介电性能,表现在其较高的介电常数和低介电损耗。介电陶瓷的主要应用之一是陶瓷电容器。现代电容器介电陶瓷主要是以钛酸钡为基体的材料。当钡或钛离子被其他金属原子置换后,会得到具有不同介电性能的电介质。钛酸钡基电介质的介电常数高达10000以上,而过去使用的云母小于10,所以用钛酸钡制成的电容器具有体积小、电储存能力高等特点。钛酸钡基电介质还具有优异的正电效应。当温度低于某一临界值时呈半导体导电状态,但当温度超过这一临界值时,电阻率突然增加到103~104倍成为绝缘体。利用这一效应的产品有电路限流元件和恒温电阻加热元件。许多陶瓷,如锆钛酸铅,具有显著压电效应。当在陶瓷上施加外力时,会产生一个相应的电信号,反之亦然,从而实现机械能和电能的相互转换。压电陶瓷用途极其广泛,产品有压力传感元件、超声波发生器等。

    3、光学性能陶瓷在光学方面的应用主要包括光吸收陶瓷、透光陶瓷、陶瓷光信号发生器和光导纤维。利用陶瓷光吸收特性在日常生活中随处可见,如涂料、陶瓷釉和珐琅。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面应用非常广泛。陶瓷也可被制造用来透过不同波长的光线,其中最重要的就是红外线透射陶瓷,它仅允许红外光线透过,被用来制造红外窗口,在武器、航空航天领域和高技术设备上得到广泛应用。这类材料的典型代表有硫化锌陶瓷和莫来石等。陶瓷还是固体激光发生器的重要材料,典型代表有红宝石激光器和钇榴石激光器。光导纤维是现代通讯信号的主要传输媒介,它是用高纯二氧化硅制成的,具有信号损耗低、高保真性、容量大等特性,是金属信号传输线无法比拟的。

碳化硅陶瓷篇4

关键词:新型 复合陶瓷刀具 改革 机械加工

随着科学技术的不断发展,为工业和机械加工工艺等都带来了一系列的改革,同时,这也就对在机械加工过程中的要求提出了更高的要求,尤其是对于机械加工中如何使生产成本降低、如何提高加工生产率的要求也大大的提高了,再加上数控机床的迅猛发展,各种具有超硬度、高硬度、高强度、耐磨、耐高温等特性的具有高难度的切削材料也在不断地增加。在当代的加工过程中,国内外对新型复合陶瓷刀具的广泛应用也在一定程度上说明了新技术正在不断地发展。

1 陶瓷刀具的种类和性能

1.1 陶瓷刀具的种类

1.1.1 氮化硅基陶瓷刀具。在70年代的时候就新研制出一种新型的刀具材料,也就是氮化硅基陶瓷刀具,其是以高纯度的氮化硅基作为原料,在氮化硅基中加入适量的碳化物晶体通过热压挤压而成,以此来提高刀具的抗断裂韧性。氮化硅基陶瓷刀具在对于高锰钢、轴承钢和高铬钢等进行切削加工的时候具有良好的效果。

1.1.2 氧化铝基陶瓷刀具。一般情况下,氧化铝基陶瓷刀具主要包括纯氧化铝陶瓷、氧化铝-碳化物系陶瓷、氧化铝-金属系陶瓷和氧化铝-碳化物-金属系陶瓷几种。纯氧化铝陶瓷基本上是在具有99.9%纯度以上的氧化铝中增加一些玻璃氧化物而进行热压或冷压而制成的;氧化铝-碳化物系陶瓷是一种使用性能比较好、发展比较快的陶瓷刀具,其是在氧化铝中添加定量的碳化物在热压的条件下烧结而制成的,其具有相当高的硬度和抗弯强度;氧化铝-金属系陶瓷是在氧化铝中添加少量的金属元素而制成金属陶瓷的,其抗氧化性能比较差,在切削加工中较少采用;氧化铝-碳化物-金属系陶瓷是在氧化铝-碳化物中添加少量的金属从而提高氧化铝陶瓷工具的使用性能。

1.2 陶瓷刀具的性能

1.2.1 氮化硅基陶瓷刀具性能。氮化硅基陶瓷刀具具有非常高的硬度,其独特的耐磨性、化学稳定性、耐热性和耐冲击性使其在切削加工中具有很大的发展前景。一般来说,氮化硅基陶瓷的抗弯强度可以达到900-1000MPa,而氮化硅基与其他一般的金属元素发生化学反应比较小,并且氮化硅基还具有良好的抗氧化,耐冲击性也是其他元素的2-3倍。

1.2.2 氧化铝基陶瓷刀具性能。氧化铝基陶瓷刀具比传统的陶瓷刀具具有更好的耐热性和耐磨性,其在高温条件下的化学稳定性比传统的陶瓷刀具都要好得多,且与铁元素之间不易发生化学反应和相互扩散的现象出现,因此,氧化铝对于基本的各种金属材料都能进行切削加工。由于陶瓷里的主要组成元素就是氧化铝,因此,在陶瓷工具和陶瓷物中大量的存在着铝元素,而氧化铝与金属铝之间具有较强的亲和力,因此,在加工和切削铝合金之类的材料的时候,氧化铝基陶瓷刀具会产生较大的磨损,因此对于铝合金之类的材料不宜应用氧化铝基陶瓷刀具进行切削加工。

2 新型复合陶瓷刀具为传统机械加工工艺带来的变化

随着加工产业的不断发展,在工业生产过程中最为广泛、最为重要的基本加工工艺就是切削加工,切削加工工艺对于工业生产中的能源消耗、生产所需的成本和生产的效率具有最直接的影响,因此,新型复合陶瓷刀具作为新型刀具出现在工业加工工艺中,为传统的机械加工工艺改革带来了巨大的变化。

2.1 三氧化二铝元素作为基础原料大量存在于地壳中,新型复合陶瓷刀具大量采用具有丰富元素的三氧化二铝,大大的节省了其他稀有的贵金属元素。

2.2 新型复合陶瓷刀具可以实现对于一些具有高硬特性的材料进行高速的切削,从而大大的简化了传统的机械加工工艺的时间和内容,使材料的加工效率提高了3-10倍,取得了高效率、省时、省电、省地和省物良好效果。

2.3 新型复合陶瓷刀具对于传统的机械加工刀具无法进行加工或是难以加工的过硬原料都可以进行加工,从而可以避免和节省使用退火加工而产生的电力,对于工件的硬度也在一定程度上得到提高,使原本的机器设备的使用寿命得到延长。

2.4 新型复合陶瓷刀具不仅能够进行断续切削、铣削、刨削等具有巨大冲击力的材料进行加工,还能够对超硬材料进行加工,其加工的粗精质量和外观都得到广泛的许可。

3 新型复合陶瓷刀具在切削加工中切削原理和应用

3.1 新型复合陶瓷刀具在切屑加工中的切削原理。经过近年来在各个加工企业和加工工厂中的应用,再一次体现了新型复合陶瓷刀具在生产加工过程中是一种不可缺少的切削工具,给传统的机械加工工艺带来了革命性的变化。在过去,传统的机械加工工艺中所使用的陶瓷刀具不管是在配料、粘结剂或是温度等方面没有进行全面充分的考虑,使陶瓷刀具的材料无法从根本上得到质的飞跃;也由于在工艺和原材料上的忽视,使传统陶瓷刀具无法解决其的强硬度问题,而使加工过程中出现大量的消耗。

新型复合陶瓷刀具出于对实际生产中所出现的问题考虑,从而提高了切削加工工艺的效率。新型复合陶瓷刀具主要是以三氧化二铝为骨架,能够在高温下对其进行加压而使它们形成一个比较牢固的具有高强度高硬度的固溶体,其切削原理主要是以具有高深度高内涵的高温烧结原理为依据,进行摆兵布阵从而使陶瓷刀具的刀片具有良好的质量。

3.2 新型复合陶瓷刀具在切削加工中的应用。由于受到科学技术不断发展的作用,陶瓷刀具的加工性能也在不断地提高,由于其具有的独特高强度、高硬度等的特性,使其在切屑加工的工艺中得到广泛的应用。新型复合陶瓷刀具能够使用的原材料和工件材料主要有各种钢材。包括高强度钢、合金钢、炮钢等;各种铸铁,包括高强度铸铁、硬铸铁、灰铸铁等;还包括其他的一些耐热、耐磨的钢合金、有色金属、铝合金、非金属、硬橡胶等原材料的切削加工。新型复合陶瓷刀具在对于上述原材料进行切削的时候,刀具的切削速度和刀具的耐用度是传统陶瓷刀具的几倍以上,其使得加工企业、加工工厂的加工成本大大的降低,而加工的效率却不断地提高。新型复合陶瓷刀具不仅能够适用于普通的切削加工工艺中而且还能在具有巨大冲击力作用下进行加工切削,对于铣削、车削、刨削、镜削等都有很大的作用。

4 结论

近年来,随着社会改革的不断发展,工业产业在一定程度上迅速的发展,国内的陶瓷刀具也紧跟着快速的发展,不断的增多品种和不断的提高性能,使得高速切削工艺在硬切削和干切削的应用也逐步的增多。通过大量的应用新型复合陶瓷刀具所特有的切削能力和复合陶瓷刀具具有的硬度,对于一些在加工过程中难以加工的材料得到了解决,从而促使经济效益不断地提高。由于复合陶瓷刀具不单单能够对超硬度材料进行加工,使其粗精加工明显,而且还可以对一些具有巨大冲击力的刨削、铣削进行加工。复合陶瓷刀具已经逐渐的成为了我国机械工业中机械加工的重点,在机械工业加工过程中得到广泛的应用从而促使我国的传统机械加工工艺的改革迈出了新一步。

参考文献:

[1]孙和.陶瓷刀具研究及应用分析[J].中国科技信息,2012(4).

[2]宫笃.浅议陶瓷刀具材料的性能与应用[J].科技致富向导,2012(30).

[3]刘含莲,黄传真,朱洪涛,邹斌.Al203基纳米复合陶瓷刀具切削不锈钢的实验研究[J].制造技术与机床,2011(1).

[4]吴连富.组合陶瓷刀具在生产中的应用[J].中国科技纵横,2011(21).

碳化硅陶瓷篇5

机械加工相关的工艺正在快速进步,与之相应的加工刀具也增加了新类型。在机械加工的传统领域内引入新型的刀具,在更大范围内提升了总体的加工质量同时也减低了耗费的成本。最近几年,机械加工配备了数控式的新机床,为此有必要选取耐高温的、耐磨及强度更高的新式切削原材[1]。在这种情况下,复合陶瓷刀具表现出更显著的适应性。运用复合陶瓷的新型刀具来改进总体的机械加工,在根本上提升机械加工的综合质量。

一、复合新型刀具的加工机理

陶瓷的复合型刀具可在根本上改进沿用的机械加工方式,经过改进可以获得更优的加工实效。加工的机理为:陶瓷刀具配备了耐高温的骨架,通常为三氧化二铝的材质。遇到高温时,刀具可转变为固溶体因此具备了优良的刀具强度及硬度。经过高温烧结,陶瓷刀片将会更坚硬,因此复合的新式刀具具备了优良的切削质量。

机械加工最近几年正在引入新式工艺,各类企业都倾向于选用新型刀具用于日常性的加工。在这种趋势下,更多企业青睐于新型材质制作的复合刀具。针对于机械加工的传统流程,新型刀具表现出全方位的加工优势,因而也变更了常用的加工流程。这是因为,新型陶瓷材质的加工刀具综合考虑到更全面的加工要素,例如加工温度、粘结剂及配料等。与此同时,陶瓷的复合型刀具也具备更优的硬度强度,由此减小了加工时的原材损耗[2]。

二、复合刀具的特性及类别

(一) 复合陶瓷的特性

氮化硅型的刀具很坚硬并且很稳定,同时也具备了耐热及耐磨的优势。从切削加工来看,这类陶瓷刀具是受到青睐的。通常状态下,氮化硅陶瓷具备了1000Mpa的抗弯强度。从金属反应来看,氮化硅也不易产生反应,可在更大限度内抗冲击并且抗氧化,最大可达3倍的耐冲击度。

相比于常见陶瓷,氧化铝陶瓷表现出最佳的耐磨及耐热状态。遇到高温时,氧化铝陶瓷显示出更稳定的化学属性。同时,铁元素不会与氧化铝融合或者扩散,这种优势更适合用在切削操作中。在陶瓷组成中,氧化铝被视作必要元素,陶瓷制品通常都含有较高比例的氧化铝。然而,氧化铝陶瓷材质的刀具并不适用于切削铝制品,这是由于切削过程中的损耗是偏大的。例如铝合金,就不适合选用氧化铝陶瓷的复合刀具来切削[3]。

(二)新型刀具的具体类别

第一类为氧化铝材质的复合刀具。通常来看,氧化铝制作成的新式刀具可分为碳化物类、纯净氧化铝类、金属陶瓷类的不同刀具。在纯净氧化铝中可以适量添加玻璃物质而后冷压得到刀具。陶瓷和碳化物混合型的刀具拥有优良的前景,这类刀具是经过烧结和热压并且加入碳化物制作成的,因而具备抗弯强度及必要的硬度。此外,金属系氧化铝的复合刀具添加了较少比例的金属,这样做可在总体上确保最优的刀具硬度。

第二类为氮化硅材质的刀具[4]。早在上世纪末,陶瓷刀具就包含了氮化硅的特定材质。具体在制作时,刀具的原料为氮化硅,这种基础上再去适时加入晶体性的碳化物。经过挤压以及热压,陶瓷刀具将会表现出更优的韧性及抗裂性。针对于轴承钢或高锰钢这类切削材料,氮化硅制作的新型陶瓷刀具都是很适用的。

三、具体的工艺改进

近些年,陶瓷复合刀具广泛用来加工机械原材,在工艺流程中的复合刀具也表现出加工优势。改进机械加工的传统工艺,选用新型刀具来减低总体的耗能,企业进而也获得了更优的加工成效。详细来看,改进机械加工时如果选用复合材质的新型陶瓷刀具,可以依照如下的具体路径:

首先,在刀具加工中,新型刀具可优先选用三氧化二铝这类的原材。相比于其他元素,三氧化二铝这类材质较容易取材,因而也节省了后续加工附带的成本。选用这类元素用来制作刀具,也节省了贵重且稀有的其他重金属。针对较硬的材质,新型陶瓷刀可快速予以切削。这样做,在根本上简化了常见的机械切削,短时即可创造出10倍左右的切削速率[5]。

其次,探析新型刀具的加工及切削方式,要注重于全面的加工质量改进。针对较硬材质或很难加工的原材,新型陶瓷刀在加工时省略了繁琐的退火加工等,在根本上强化了原材的坚硬度,进而也延长了刀具的年限。此外,新型刀具还可适用在铣削、刨削或断续式的加工中,改进了精加工及粗加工获得的外观和原料质量。复合陶瓷可抵抗加工时的较大冲击作用,因而广泛适应了多样的新式机械加工。

第三,具体在改善机械加工时,可以依据实情来拓展复合加工达到的领域。例如柱塞加工,可以选用复合陶瓷的新式刀具。这是因为陶瓷刀具适合加工铸铁件等,尤其是冷硬的铸铁。在充分加工基础上,还需改进刀具本身的耐磨特质并且增强韧性。最近几年,金属陶瓷制作的混合型刀具正被推广选用,尤其是Ti这类金属具备了断裂韧性,在机械切削时刀具也表现出更强的耐磨属性。

结语:

碳化硅陶瓷篇6

关键词:氮化硅结合碳化硅;耐磨材料;矿山机械;应用

对于矿山机械而言,其在实际工作中往往会因强烈磨损、物料腐蚀与摩擦等而失去效用,这样会因部件频繁检修与更换而过多停工,影响矿山作业的连续性,导致物力和人力的浪费。为了提高矿山机械设备的使用年限,需要大力开发新型的耐磨材料,如氮化硅结合碳化硅耐磨材料,保证材料的硬度和强度,促进矿山作业的顺利实施。

一、氮化硅结合碳化硅耐磨材料概述

对于氮化硅结合碳化硅耐磨材料而言,其特性主要表现在以下几方面:一是良好的抗热震性和高温抗蠕变性。碳化硅具有良好的导热性能,而氮化硅则具有较低的热膨胀率,将两者进行有效结合形成氮化硅结合碳化硅材料,则该材料则具有良好的抗热震性能。如果在冷热循环使用时,尺寸大小基本保持不变,温度由1300℃冷却为20℃时,需要进行数百次的加热循环,但是这不会对材料产生破坏,有效缩短烧成周期。此外,在氮化硅结合碳化硅耐磨材料的制造过程中,其尺寸变化都低于1%,并且由于玻璃相的缺乏,材料在高温状况下基本不会出现变形情况,因此废品和制品变形等情况也不会发生。二是良好的抗氧化性、耐磨损性和耐腐蚀性。相较于碳化硼、立方氮化硼和金刚石等物质而言,碳化硅和氮化硅的显微硬度相对较小,并且氮化硅具有较小的摩擦系数和良好的自性。因此氮化硅结合碳化硅的复合材料具有良好的化学性能,其能够承受大部分碱液腐蚀和无机酸腐蚀,具备良好的抗氧化性能,能够有效抵抗熔融铝和铝合金熔液的润湿以及有色金属的侵蚀,高温点的绝缘性能良好。三是较强的抗折强度。相较于粘土碳化硅制品而言,氮化硅结合碳化硅耐磨材料的抗折强度更强,其室温抗折强度达到粘土碳化硅制品的2倍。如果不包括无定形相,室温保持在1200℃~1400℃的范围内,该耐磨材料的强度会进一步增加,达到粘土碳化硅制品的9倍。

二、氮化硅结合碳化硅耐磨材料在矿山机械中的应用及前景

(一)具体应用

氮化硅结合碳化硅耐磨材料在矿山机械中的应用,其具体可从几下方面进行分析:首先是重介质旋流器和水力旋流器方面。一般在利用重介质旋流器分选原煤时,其环境相对复杂化,所处的密度场和速度具有一定的复杂性,因此其内部磨损形式也相对较为复杂,并且冲蚀磨损具有多样化的类型,如表面疲劳磨损、腐蚀磨损、微切削磨损和撞击磨损等。此外,硬度、颗粒形状、原煤粒度大小和受入料的压力等因素也会影响旋流器内部的磨损。此外,氮化硅结合碳化硅陶瓷在水力旋流器的应用,其主要是用于弯头、耐磨板、喷嘴、内衬和沉砂口等部位。国外企业在对碳化硅复合材料加以生产后,将其用于较小冲击和其他应力的水力旋流器沉砂口的制作中,从而减小材料的磨损速度,降低机械的维修费用,延长机械的使用寿命。

其次是砂浆泵方面。砂浆泵多用于矿山作业中的腐蚀性、高浓度与强磨损的渣浆中,如煤泥、灰渣、精矿砂、输送尾、清淤和采矿等工作,这些工作对材料的耐腐蚀性能和耐磨性能具有较高的要求。目前我国大多数渣浆泵耐磨零部件材质,其都是选用高铬铸铁,其使用寿命仅仅只达1~2个月,为了提高高铬铸铁的使用期限,不断创新与升级泵用材料,使其经历了铸铁―特种金属合金―橡胶制品――工程塑料―陶瓷等过程。一般而言,利用改性聚氨酯弹性体能够延长砂泵的使用期限3~10倍,而利用氮化硅结合碳化硅的复合材料,则至少可提高其使用期限的10倍。目前我国已经开始利用氮化硅结合碳化硅陶瓷材料来制作叶轮,但是砂浆泵的利用则较少。

(二)应用前景

由于氮化硅结合碳化硅材料具有良好的耐磨性和耐热性,其被广泛应用在磨料磨具和耐火材料等行业,但是在矿山机械方面的应用相对较少,需要转变观念,积极尝试。目前氮化硅结合碳化硅陶瓷在应用过程中,应有效提高其与其他部件的连接、冲击韧性和结合的均匀性,并科学利用碳化硅晶须―氮化硅来改善其韧性。稀土和氧化物活化剂应用于氮化硅和碳化硅,能够改善常温耐压与抗折的强度,促进烧结时间的缩短。此外,氮化硅结合碳化硅材料的应用可从生产成本的降低、喷涂工艺、粘结与成型技术等方面考虑,促进其在矿山机械中适用范围和灵活性的提高。

结束语

综上所述,氮化硅结合碳化硅耐磨材料具有良好的抗热震性、高温抗蠕变性、氧化性、耐磨损性、耐腐蚀性和抗折强度,将其应用在矿山机械中,能够有效提高机械的作业率与性能,优化矿产资源配置。在今后的发展过程中,我国需要进一步提高机械制造工艺,大力研发高性能和高效率的机械,不断更新机械材质,从而实现矿产资源的高效利用。

参考文献:

[1]赵军伟,常永强,聂飞,林峰.氮化硅结合碳化硅耐磨材料在矿山机械的应用[J].中国矿业,2014,04:118-120.

[2]李勇,朱晓燕,王佳平,陈俊红,薛文东,孙加林.反应烧结氮化硅-碳化硅复合材料的氮化机理[J].硅酸盐学报,2011,03:447-451.

碳化硅陶瓷篇7

关键词:硅酸盐工程玻璃技术应用

中图分类号: O741+.4 文献标识码: A

引言:

硅酸盐工程中在玻璃材料按照常用分类,可分为传统玻璃和现代技术玻璃两类。传统玻璃是用天然硅酸盐粉末为原料生产出的玻璃产品。但是由于此类玻璃成分中含有粘土、高岭土之类的原材料,成分比较混杂,如果对原材料的控制有一些疏忽,就会直接导致玻璃产品的的性能出现波动,所以此类玻璃产品适合用于民用,如果日常一些民用玻璃制品;现代功能玻璃是根据用户提出的玻璃产品的性能和用途,对其原材料进行极为严格的控制,采用最先进的生产工艺,通过高温制造出来的一种高性能玻璃制品,也是现在玻璃行业中科技发展不断进步的一个领域之一。下面根据本人多年的一线工作经验,对硅酸盐工程中现代功能玻璃技术应用进行一些探讨。

一、现代功能玻璃

1、现代功能玻璃的磁学性能

现代功能玻璃相比于磁学性能金属和合金磁性材料具有损耗低、电阻率高、磁性范围广泛等特性。玻璃磁性材料的代表为铁氧体,它是一种含铁的复合氧化物,通过对其成份的严格控制,我们可以制造出软磁材料、硬磁材料和矩磁材料。在这三种材料中,软磁材料的磁导率高,饱和磁感应强度大,磁损耗低;硬磁材料的特性是剩磁大、矫顽力大、不易退磁;矩磁材料的特性是剩余磁感应强度非常接近于饱和磁感应强度,它是因磁滞回线呈矩形而得名。

2、现代功能玻璃的导电性

现代功能玻璃的导电性具有非常广泛的导电区间,从绝缘体到半导体、超导体。大多数玻璃制品具有优异的电绝缘性,因此被广泛用于电绝缘体。半导体分为离子型半导体和电子型半导体。离子型半导体仅对某些特殊的带电离子具有传导作用,电子型半导体是以晶体管集成电路为代表的。超导体是近十年才刚刚发展起来的一种新技术材料,它的临界超导转化温度在所有类超导体中最高,这种技术已经在计算机和精密仪器领域得到广泛应用。

3、现代功能玻璃的介电性

现在功能玻璃大多都具有非常优异的介电性能,它常常表现在其低介电损耗和较高的介电常数。现代电容器介电玻璃主要是以钛酸钡为基体的材料。当钛或钡离子被其他金属原子置换后,会得到具有不同介电性能的电介质。钛酸钡基电介质的介电常数高达10000以上,而过去使用的云母小于10,所以用钛酸钡制成的电容器具有体积小、电储存能力高等特点。钛酸钡基电介质还具有优异的正电效应。当温度低于某一临界值时呈半导体导电状态,但当温度超过这一临界值时,电阻率突然增加到百倍成为绝缘体。

4、现代功能玻璃的光学性能

现代功能玻璃的光学性能的应用主要包括光吸收玻璃、透光玻璃、玻璃光信号发生器和光导纤维。利用玻璃光吸收特性在日常生活中随处可见,玻璃也可被制造用来透过不同波长的光线,其中最重要的就是红外线透射玻璃,它仅允许红外光线透过,被用来制造红外窗口,在武器、航空航天领域和高技术设备上得到广泛应用。这种玻璃还是固体激光发生器的重要材料。光导纤维是现代通讯信号的主要传输媒介,它是用高纯二氧化硅制成的,具有信号损耗低、高保真性、容量大等特性,是金属信号传输线无法比拟的。

二、玻璃陶瓷玻璃和陶瓷的区别

它们的主要区别在于结晶度,玻璃是非晶态而陶瓷指的是多晶材料。玻璃在远低于熔点以前存在明显的软化,而陶瓷的软化温度同熔点很接近,因而陶瓷的机械性能和使用温度要比玻璃高得多。玻璃的突出优点是可在玻璃软化温度和熔点之间进行各种成型,工艺简单而且成本低。玻璃陶瓷兼具玻璃的工艺性能和陶瓷的机械性能,它利用玻璃成型技术制造产品,然后高温结晶化处理获得陶瓷。工业玻璃陶瓷体系有镁-铝-硅酸盐、锂-镁-铝-硅酸盐和钙-镁-铝-硅酸盐系列,它们常被用来制造耐高温和热冲击产品。此外它们作为建筑装饰材料正得到越来越广泛的应用。

三、现代技术玻璃的符合材料

现代技术玻璃的符合材料是为了达到某些性能指标将两种或两种以上不同材料混合在一起制成的多相材料,它具有其中任何一相所不具备的综合性能。玻璃材料的最大缺点是韧性低,使用时会产生不可预测的突然性断裂,玻璃复合材料主要是为了改善玻璃制品的韧性。而此类提高韧性的玻璃复合材料主要有两类:一是氧化锆相变增韧和玻璃纤维强化复合材料。氧化锆相变增韧复合材料是把部分稳定的氧化锆粉末同其他陶瓷粉末混合后制成的高韧性材料,其断裂韧性可以达到10Mpam1/2以上,而一般玻璃的韧性仅有3Mpam1/2左右。这类材料在玻璃切削刀具方面得到了非常广泛的应用。纤维强化被认为是提高陶瓷韧性最有效和最有前途的方法。纤维强度一般比基体高得多,所以它对基体具有强化作用;同时纤维具有显著阻碍裂纹扩展的能力,从而提高材料的韧性。目前韧性最高的玻璃就是纤维强化的复合材料,例如碳化硅长纤维强化的碳化硅基复合材料韧性高达30Mpam1/2以上,比烧结碳化硅的韧性提高十倍。但因为这类材料价格昂贵,目前民用领域几乎没有,仅在军械和航空航天领域得到应用。

结束语:

现代功能玻璃在现在的社会中应用是越来越广泛,它是具有光、电、热或者磁特性的玻璃产品,目前具有非常高的产业化程度。根据现代技术玻璃的符合材料的不同,玻璃的特性也有很大的区别,通过在生产过程中对其原材料的严格控制,先进生产工艺的采用,高性能玻璃制品也会根据各种需要而生产出来,通过本文的一些探讨,现代功能玻璃制品也在不断进步和发展。相信在不久的将来,越来越多的优质的玻璃制品能够为我们老百姓所应用。

参考文献:

[1]西北轻工业学院等,陶瓷工艺学,轻工业出版社:1985

[2]丽秀等,无机盐工业。1994

碳化硅陶瓷篇8

论 文摘 要 本文针对我国走可持续发展道路以及循环经济的战略,分析了废旧磨具的物资状况,提出了废旧磨具的再生技术路线,并探讨了废旧磨具再生的市场前景。

1前言

随着社会的发展,资源的有效利用已成为人们日益关注的焦点。资源的获取途径有开采、储备和再生三种。面对全球资源枯竭、国内资源紧张的现状,我国必须放弃单纯的储备“原生态”资源的狭窄思路,转而走“再生资源”之路,这也是我国搞循环经济必须面对的一个问题。与“储备”资源相比,“再生”资源可能是解决目前我国能源困境的一种有效途径。

如何实现废旧物资的再生已成为科研开发的重要课题之一;大批废旧磨具的回收再利用则是磨料、磨具行业的研究热点。

2废旧磨具市场状况

在机械加工行业,由于磨床结构设计、制造与技术方面的要求,磨削加工所用的磨具不可能完全被消耗,总会剩余约占磨具总质量1/3的残留量;另一方面,磨具生产企业由于生产工艺及过程控制不当,往往会产生一些废品(即便控制得当,也会产生大约1%的废品)。据统计,我国磨具年产量约20万吨,每年产生的废旧磨具近万吨,虽然一些技术工作者根据自身企业情况对废旧磨具进行了有效利用,但仍有相当数量的废旧磨具被当作垃圾处理掉。

近年来,磨料价格一直居高不下,节约和利废是当务之急。此外,从资源的角度来看,磨具的生产制造所用的基础原料,如铝矾土、石英、长石、粘土等都属于天然矿藏,经长期开采,其资源已相当有限。因此,磨具生产制造行业必须积极寻找新矿源、杜绝资源浪费、发展可再生资源。废旧磨具的再生将是磨具行业技术工作者不容回避的攻关课题。

3废旧固结磨具再生技术

固结磨具由磨料和结合剂两部分组成,经过配料、混料、成形、干燥、烧结或硬化而成。磨料主要包括刚玉系和碳化硅系两大类,是由基础原材料铝矾土、石英等经高温冶炼而成。磨料主要起磨削作用;结合剂主要起粘结磨粒、保持磨具硬度和强度的作用。在磨具制作和使用过程中,磨粒的物理化学性能并没有发生本质的变化,仍然保持其固有特性。当废旧磨具破碎加工后,每个颗粒都包含一定量的磨粒和结合剂,再生磨粒仍可保持其固有的磨粒特性。磨具根据加工工件的工艺要求分成不同类别,在制作过程中所用的磨料材质、结合剂的种类和用量也各不相同。因此,废旧磨具回收后要先分类,再处理:按结合剂种类将磨具分为陶瓷结合剂、橡胶和树脂结合剂三大类;再按磨料材质分为白刚玉、棕刚玉、微晶刚玉、单晶刚玉、铬刚玉、绿碳化硅、黑碳化硅等。不同结合剂的废旧磨具处理方法各不相同:对于树脂、橡胶结合剂的磨具要按磨料材质分类,然后投入焚烧炉焚烧,以便除去树脂、橡胶结合剂,这样处理后磨料性能基本没有变化,仍可按一级磨料被重新使用;陶瓷结合剂类磨具处理方法截然不同。由于陶瓷结合剂是无机化合物,在磨具高温(约1350℃)焙烧过程中玻化,已牢牢附着在磨料表面,很难用简单的物理、化学方法将其分离。但将陶瓷磨具物理破碎后形成的新磨粒,其磨削、自锐性能基本不会改变,因此,可以将陶瓷磨具按磨料材质分类后进行破碎、分级,并对再生磨料进行配方试验,重新制成磨具加以利用。

4废旧磨具再生的应用前景

对于陶瓷结合剂磨具再生磨料的利用,可以从以下几个方面入手:(1) 生产树脂切割片。树脂切割片是以树脂液和树脂粉为结合剂,将磨料粘结固化而成。对于切削要求不高的产品可以使用这种再生磨料生产;(2) 用于树脂磨具的夹心部分,替代优质磨料以降低生产成本。因为磨具用于磨削时通常仅使用外径部分,内径部分不参与磨削;(3) 在陶瓷磨具生产中替代部分优质磨料。由于再生磨料仍具有良好的磨削性能,则可以在不改变磨具的硬度、强度、磨削性能的前提下,通过调整配方、试验、主要性能检测等手段确定再生磨料的加入比例和新的生产工艺。

使用再生磨料可以减少资源浪费、降低企业生产成本。目前正品刚玉系磨料中棕刚玉市场价格约为2600元/t,白刚玉约8500元/t,而再生磨料中棕刚玉仅1300元/t、白刚玉4 000元/t;正品碳化硅系磨料均价约8500元/t,而再生碳化硅磨料仅4000元/t。再生磨料与正品磨料价格悬殊,按照我国年产20万吨磨具的市场状况,废旧磨具再生每年可创造近5000万元的经济效益,并且可以减轻环境负荷,符合我国的可持续性发展及循环经济战略。因此,废旧磨具再生有十分可观的经济效益和社会效益,其市场前景非常看好。

abstract: the material of the used abrasive tools and its recycle route were discussed in this paper,and the market prospect was also analyzed basing on the national sustainable policy and cycling economy.

上一篇:纳米陶瓷范文 下一篇:陶瓷薄板范文