公路桥头跳车现象的原因分析和施工处理

时间:2022-10-23 05:25:34

公路桥头跳车现象的原因分析和施工处理

前 言

目前,已投入使用的公路中,普遍存在一个问题:路面在台背回填处出现不同程度的沉降断裂(沉降值一般为10~30 cm,有的甚至超过60 cm),使车辆通过时产生跳跃和冲击,从而对桥涵和路面造成附加的冲击荷载,使司机和乘客感到颠簸不适,甚至造成车辆大幅度减速,严重的可导致交通事故(特别是车辆机械事故)。因此,如何解决公路桥头跳车问题,本文提出了一点肤浅的认识与见解,从理论与施工上进行了摸索和探讨。

2桥头跳车产生的原因及其对行车速度的影响

2.1 桥头跳车产生的原因

2.1.1 软土地基处治不标准引起的沉降

桥涵通常位于沟壑地段,地下水位较高,且多属软土。由于软土一般都具有天然含水量高、孔隙比大、压缩性强和抗剪强度低等特点,在软土上填筑路基,便极易产生沉降(包括瞬时沉降、固结沉降和次固结沉降)。同时,桥头路基填筑高度较其它地段大,产生基底应力相对较大,更易引起地基沉降,特别是工后沉降较大。通过公路调查结果表明,软基路段由于地基沉降引起的桥头跳车现象主要是施工图设计时,地质钻探布孔过少,钻探深度不够,未能及时发现软基存在,或者未能准确探明软基范围和深度以及软土的物理力学性质等等,导致桥头路堤软土地基处治遗漏,或采取的处治方法不恰当。此外,采用的软基处治理论计算方法和选用的计算参数与软基实际情况存在一定差距,导致软基处治设计未能达到预期效果和技术要求。另外,雨水侵蚀造成路堤填土流失和强度降低,也是造成路堤沉降的主要原因。

2.1.2 台背填料压缩引起路基的沉降

公路建设中几乎所有桥梁、通道和明涵等都要求台背填土处治。然而,台背填土压实度受施工的用料、顺序、机械、经验和施工作业面等工程管理因素的影响,普遍存在台背填土压实度未能满足设计要求的现象,这是产生不均匀沉降的基本原因之一。台背填料因含水份,存在孔隙,施工中采取任何措施也难将填料颗粒间的孔隙完全消除。在公路自重及车辆的垂直荷载与振动荷载作用下,孔隙率逐渐降低,填料逐渐压缩,密实度逐渐增大,会形成土基塑性变形的积累,导致路桥间的差异沉降,从而影响公路路面的平顺程度。因此,压缩沉降主要取决于填料性质、施工条件及台前台背的防护排水工程的设置等情况。根据有关资料调查研究:当土堤压实度为95%时,每米填土工后的沉降约为1 cm。

2.1.3 刚柔突变引起的沉陷跳车

刚度不同的路面在跳车处所产生的振动效果不同,柔性材料对能量的吸收要比刚性材料大。由于结构物桥台一般采用刚性很大的坚石砌筑或钢筋混凝土浇注而成,具有较大的整体刚度,属刚性体;而与结构物桥台相连的道路,具有刚性较小柔性较大的特性,属弹塑性体。显然,道路与结构物桥台之间存在着较大的刚度差,这个刚度差的存在必然引起道路与结构物桥台之间产生较大的塑性变形相对差和较大的刚度突变,势必增强桥头跳车的振动效果。

2.2 桥头跳车对行车速度的影响

由于桥台背沉陷、断裂而形成了台阶,使车辆的行驶速度受到不同程度的影响。车速的降低幅度与台阶高度、路面类型、道路等级、车辆类型和行驶的初速度等有关。根据实地观察和有关资料调查表明,当桥头台阶达1.5 cm时,对车速就产生明显的影响,台阶每增加1 cm,速度就会降低3 km/h左右;而当台阶高达5 cm时,车辆行驶显著减速,其减速幅度平均可达9~13 km/h,对行车产生严重影响。刚性路面对车速的影响要比柔性路面大;以60~80 km/h速度行驶时减速幅度要比小于60 km/h和大于80 km/h速度行驶时大;较高台阶对小车行驶的影响较大,而载重货车对台阶不如空车敏感。抗振性能不同的车辆以同一速度在同一路面上行驶,其振动的效果也不一样。一般来说,汽车遇到桥头台阶,要提前150~180 m实行减速,驶达台阶以后还在大约相同的距离进行加速以恢复正常速度行驶。当然,司机的心理状态,对道路的熟悉程度等,对通过台阶时的速度降低也有不同程度的影响。

3解决桥头跳车的措施:

3.1 软土地基处理

处理好桥头软弱地基,是控制跳车的关键。目前对桥头软弱地基处理,国内已有加固土桩法、料粒桩法、竖向排水体预压法、堆载预压法和浅层处治法等措施,下面介绍几种行之有效的常用方法。

3.1.1 采用深层搅拌法加固桥头软基

该法属加固土桩类型,主要适应于软弱粘性土。深层搅拌法是本世纪60年代由日本和瑞典分别开发的软土加固新技术,一般借助于压缩空气,采用专门深层搅拌机械设备,从不断回转的中心轴端向四周被搅松的土中喷出浆体或粉体固化剂(如水泥等),经叶片搅拌,并吸收周围水份,在加固的深层软土中进行一系列物理――化学反应,使软土硬结成具有整体性和一定强度的优质复合地基,从而提高桥头软土地基承载力,减少沉降量(特别是工后沉降),缩短固结期,提高边坡稳定性。其主要施工工艺程序:整平原地面钻机定位钻杆下沉钻进上提喷粉(或喷浆)、强制搅拌复拌提杆出孔钻机移位。施工过程中路基填土速率不受限制,且无振动、无污染,对周围环境及建筑物无不良影响,已在多条高等级公路得以广泛应用。其最大优点是工后沉降小,缺点是造价较高。

3.1.2 采用砂桩加固桥头软基

该法属料粒桩类型,适用于松砂地基、杂填土或软土,对地基土起置换作用、竖向排水作用和挤密作用,在本世纪30年代起源于欧洲。主要施工工艺程序:整平原地面机具定位桩管沉入加料压密拔管机具移位。为加速地基固结,减少后期沉降,一般根据实际情况,配合堆载预压或超压施工,使地基强度显著提高,同时改善地基的整体稳定性。砂桩堆载预压法造价在深层搅拌法与堆载预压法之间。

3.1.3 塑料排水板堆载预压法。

该法属竖向排水体预压类型,主要适用于透水性低的软弱粘性土。塑料排水板是由芯体和滤套组成的复合体,或是由单一材料制成的多孔管道板带,自1983年在天津塘沽新港施工试验成功以来,在全国各地高速公路软基处理都得以广泛推广应用,其主要施工工艺程序:整平原地面摊铺下层砂垫层机具就位塑料排水板穿靴插入套管拔出套管割断塑料排水板机具移位摊铺上层砂垫层。为加速排水固结,减少后期沉降,一般都配合堆载预压或超压施工,使地基土的有效应力增大、抗剪强度和承载力及稳定性都得以提高。其特点是施工简便快捷,造价较低,但效果比上述两种类型略差,仍存在少量工后沉降。

3.2 路基处理

3.2.1桥台台背路堤加铺土工格栅

当土工格栅与土一起承受车辆荷载和土体自身荷载的同时,土工格栅能使土体的抗剪强度得到充分发挥,约束土体的侧向变形,控制路基填土的侧向位移,增强路基的整体稳定性,从而增大了路基的变形模量;由于土工格栅与路基填土的摩擦作用,使上部荷载可以在路基中重新分配,降低了桥台台背局部范围土中的垂直应力,使路基土体承载力得到提高,从而减少沉降;由于水平摊铺的土工格栅具有弹性,在车辆荷载的反复作用下,会减少或不会产生变形的累积。由于在路桥过渡段铺设土工格栅具有明显的工程效果,因此在路桥过渡段高填方路堤可采用桥台台背回填加铺土工格栅的结构型式。土工格栅的设置间距和长度应满足规范要求,通过计算确定。

3.2.2 台背填料的选择和回填处理方式:

桥台后宜选用摩擦角大、强度高、压实快、透水性好的填料,如岩渣、砾石、砂砾等。同时,选用内摩擦角较大的填料也有利于从台背缝隙中渗入的雨水沿盲沟或泄水管顺利排到路基外,从而减缓雨水的危害,而且也有利于改善压实性能,使路基容易达到设计要求的密实度。填料的铺筑一般在基底处沿路堤纵向长度距桥台背不小于2 m、且与路基相接处按不大于1∶1设置斜坡或台阶,回填高度视路堤高度而定,一般取2~4 m。桥头回填处理的另一方式是在路基上部(约50 cm范围内)设置水泥稳定料改善层次,使路堤体的刚度有所提高。一般稳定层结构是沿路堤纵向距桥台背约10 m长,用一定剂量(如4%~6%)的水泥进行稳定,并且远桥台端与路基相衔接处,采用1∶1设置斜坡。上述两种处理方式均能达到减少竖向变形和刚柔突变的成效。如两种方式同时考虑,则效果更佳。

3.2.3 台背回填处的压实

为减少桥涵两端路堤的工后沉降,从而使桥涵两端路堤与桥台结构物的相对沉降尽量小一些,一般可选填筑路堤预压,让路基排水固结,待路堤沉降基本完成以后再开挖涵洞或桥台位置土方,然后再施工桥涵。台背填筑前,宜在处理后的基底顶面上设置横向泄水管或盲沟。台背回填宜在完成台前防护工程及桥涵上部结构吊装之后进行,同时注意结构物两端对称填筑施工。台背回填的压实质量是影响台背回填沉降的一个主要因素。由于台背回填位于路基与桥台相衔接这个特殊位置,成为碾压的一个薄弱环节,压路机难以碾压到位,且大吨位机械振动力太大时,对桥台有影响。因此,台背回填近桥台处的压实机械宜选用小型压实机具,且严格控制每层填筑厚度(宜取10~15 cm内)碾压遍数,并对每层填筑质量实施检测,力求压实度达到96%以上;对于机械夯实碾压不到之处,应及时采用人工补充夯实。

3.2.4 合理设置缓和过渡段:

由于不同的结构型式,从桥台刚度大的混凝土结构逐步过渡到柔性的填土路基结构和沥青混凝土路面结构,其强度不一致。因此,软土地基处治时,各段不同强度之间需设置强度过渡段。同样地面上的路堤亦需要设置强度过渡段。世界银行贷款项目要求在刚性桥台和柔性路堤之间设置50m的强度渐变段,使用不同的级配填料,确保路堤强度过渡。如果设置50m渐变段有困难,建议渐变段长度不得小于30m。如果桥头引道不存在软土地基,若路桥过渡段的差异沉降控制标准为5cm,沉降坡差按0.4%控制,则强度渐变段长度应大于13m。

3.3 路面处理

3.3.1 设置桥台搭板

搭板设置可以使在柔性路堤产生的较大沉降逐渐过渡至刚性桥台上,使车辆通过时跳跃现象大为减少。桥头搭板长度设计应根据路基的容许工后沉降值计算确定,常取3~15 m(当超8 m时,宜设计成两段式或三段式搭板)。搭板的近台端一般搁置在桥台前墙顶面或其牛腿上。当桥头引道为刚性路面时,搭板的纵坡可采用与路面设计纵坡平行方式(称平置式搭板);而当引道为柔性路面时,则搭板的远台端常置于路面面层与基层之间(称斜置式搭板)。为预防搭板下沉,也可在搭板上先铺设一层沥青面层,通车后搭板若下沉时,则在其上加铺沥青混凝土或沥青砂。

3.3.2 设置变厚式埋板

为避免二次跳车,常在搭板的尾端加设一段浅埋的变厚式埋板,其长度一般取3~5 m,对于水泥混凝土路面,也可将与搭板连接处的路面板改为变厚式板。在搭板、埋板或变厚式板的下层,为保证与桥台连接部位的刚柔层次在水平和垂直方向均能渐次变化,建议采用强度及回弹模量均高于其它路段相对应的路面结构层材料,以提高该部位的整体受荷和抗冲能力,有利于减少错台幅度,调整不均匀沉陷,改善桥头跳车或二次跳车现象。

3.3.3 采用过滤性路面

根据桥涵的长度和路基的容许工后沉降值计算等情况,在桥头一定长度范围内铺设过渡性路面,待路堤沉降基本完成(一般为3~5年)后,再改铺原设计永久性路面。常用的过渡性路面类型有预制水泥混凝土六棱块(边长34.6 cm、厚20 cm)、条石铺砌(25 cm×25 cm×40 cm)、半刚性过渡层或沥青表处过渡层等。其中水泥混凝土六棱块和条石铺砌仅适应于水泥混凝土路面,最大优点是翻修处理速度快;但不易铺砌平整,行车仍有抖动感觉,且其砌缝应采用防水材料,以防渗入雨水损害路基。值得推广的简便有效方法是沥青表处过渡层类型,其优点是当出现较大沉降时,及时补充铺设一层沥青混凝土或沥青砂,以能确保行车畅顺,有效避免跳车现象。

4 结束语

路桥工程实践证明,在桥头刚性桥台和柔性路堤之间的强度渐变段易产生不均匀沉降,出现桥头跳车现象,成为公路工程建设的一个重要而又突出的问题。但是,根据工程地质条件,做好路桥过渡段地基处治,设计恰当结构,加强过渡段结构施工各个环节的控制,从客观上制定一套科学的管理程序,保证每道工序的工程质量和工作质量,就能防止或减少路桥过渡段的不均匀沉降,从而减轻甚至避免公路桥头跳车现象,提高公路使用性能和使用寿命。从而提高交通营运舒适性,安全性以及可靠性。

上一篇:初中生活的滋味 下一篇:日之升如,则日大明