POS工作原理及辅助摄影测量流程研究

时间:2022-10-16 08:22:33

POS工作原理及辅助摄影测量流程研究

摘 要:本文基于笔者多年从事航空摄影测量的相关工作经验,以pos辅助航空摄影测量为研究对象,论文首先分析了POS的工作原理,进而探讨了以关中某地区航摄测量为背景的POS辅助航摄测量试验,论文详细探讨了整个试验的流程和方法,给出了试验结论,相信对从事相关工作的同行能有所裨益。

关键词:POS 航空摄影测量 辅助 试验 RC-30

中图分类号:P23 文献标识码:A 文章编号:1672-3791(2014)01(c)-0060-02

航空摄影测量技术是在飞机上利用航摄相机对地面连续摄取像片,结合地面控制点测量、处理和立体测绘等步骤,绘制出地形图的作业,是我国获取基础地理信息数据的主要手段之一。目前,我国重大自然灾害监测与预警、资源利用与环境监测等领域都需要大量的高分辨率、高精度的地理信息数据,这些数据与我国经济的可持续发展紧紧相关。

传统航空摄影测量一般需要使用野外控制点并通过空中三角测量加密求解外方位元素,而野外控制点的布设工作繁琐,在荒漠、高山等困难地区野外控制点更是难以布设,因此,尽量减少乃至摆脱对野外控制点的依赖而直接对像片定向一直是摄影测量的重要研究方向之一。为此,人们一直试图在航空摄影飞行过程中直接记录或确定航摄相机的位置和方向,并利用这些定向数据实现航摄像片的绝对定向。

20世纪90年代,GPS(Global Position System,全球定位系统)辅助空中三角测量的方法得到了广泛应用,利用GPS获得的定位信息用来辅助空中三角测量,展现了导航技术在测绘领域的应用前景。GPS技术虽然解决了像片的定位问题,但是无法获取像片的姿态参数,不能彻底摆脱地面控制。随着航空摄影测量技术和惯性导航技术的发展,一种新的方法开始应用于航空摄影测量―― 定位定向系统(Position and Orientation System,简称POS系统)辅助航空摄影。机载POS系统集GPS技术与惯性导航技术于一体,使准确地获取航摄相机曝光时刻的外方位元素(GPS测量得到位置参数,惯性导航系统得到姿态参数)成为可能,从而实现了无(或少量)地面控制点,甚至无需空中三角测量加密工序,即可直接定向测图,从而大大缩短航空摄影作业周期、提高生产效率、降低成本。因此,POS系统的出现,将从根本上改变传统航空摄影的方法,进而引起航空摄影理论与技术的重大飞跃。随着计算机技术的发展及其惯性、GPS器件精度水平的提高,POS无论定位定向精度还是实时数据处理能力都会有质的提高,将会在航空摄影测绘方面发挥越来越重要的作用。POS系统高精度定位定向技术是POS系统应用的关键技术,它的研究可以极大的推动POS系统的发展。

1 POS工作原理

IMU惯性测量单元最大优点是不依赖于任何外界信息,能够进行完全自主的导航。惯性测量单元能够连续长时间的工作,可以提供多种导航信息如位置、速度、航程、航向,还可以提供水平及方位基准,精度较高。但是,惯性测量单元的精度主要取决于惯性器件(陀螺仪和加速度计)的精度,并且其定位误差随时间积累,精度逐渐降低,这对于需要长时间工作的情况是极为不利的。而且其初始对准时间长,所以想到利用其它定位手段作为参考信息源,定期或不定期地对惯性测量单元进行综合校正,对惯性器件的漂移进行补偿。

GPS卫星导航系统具有定位精度高的特点,而且能够进行全球、全天候、全天时、多维连续定位,其精度不随时间变化。然而,GPS是非自主式的系统,不能提供诸如载体姿态等参数,运动载体上的GPS接收机不易捕获和稳定跟踪卫星信号,动态环境造成中信噪比下降。这些原因都容易产生周跳。而且由于GPS信号在传播途中的干扰,使得系统定位精度有所下降,定位结果较为离散。

如上所述,GPS和IMU惯性测量单元各有所长,具有可互补的特点,两者的组合不仅具有两个独立系统各自的主要优点,而且随着组合水平的提高,它们之间信息传递、融合、使用的加强,组合系统的总体性能要远优于任一独立系统。

组合导航把无线电导航长期精度高与惯性测量短期精度高和不受干扰的优点结合起来,因而GPS与IMU的组合被认为是目前导航领域最理想的组合方式,其基本原理如图1所示。POS都是采用这样的组合系统,其优点主要表现在以下几方面。

(1)GPS/IMU组合提高了系统的精度。

高精度GPS信息作为外部测量信息输入系统,在运动过程中频繁修正IMU测量值,以控制减弱其随时间积累的误差;而短时间内IMU定位结果可以很好的解决GPS动态环境中由于信号失锁和周跳导致的精度跳跃下降问题。因而,GPS/IMU组合测量误差实际上比单独的GPS或IMU的误差都小。

(2)GPS/IMU组合加强系统的抗干扰能力。

由于IMU可以独立进行导航,因而当GPS信号受到干扰时,IMU不仅能提供导航信息,而且其导航解可作为辅助信息,对GPS码和载波的再捕获起辅助作用,大大缩短了GPS恢复工作的时间,提高了GPS接收机的跟踪能力。而GPS信息对IMU的辅助可使IMU在运动中不断进行初始对准。

(3)GPS/IMU组合解决了GPS动态应用采样频率低的问题。

由于GPS的数据采样率低,不能达到某些动态应用中的要求,这时高频IMU数据可以在GPS定位结果之间高精度内插所求事件发生的位置,如航空相机曝光瞬间的位置,从而保证了组合系统对整个航线的各个摄影位置的高精度定位。当然GPS本身的采样频率也随着设备的发展不断提高。

(4)GPS/IMU组合将降低对惯导系统的要求。

长期以来,IMU的高价格一直是限制其广泛应用的主要原因。而组合系统提供另一种解决方案,利用IMU的速度信号解决动态跟踪问题,而高精度定位则由GPS来实现,因此可以采用较低性能的IMU,从而降低了组合系统的成本。

2 试验概况

POSAV510辅助RC30相机在2006年关中地区进行了两次试验飞行。根据试验的目的和技术要求,结合实际工作的需要选定试验测区。测区内分布有水系河流、城镇市区、山区和主要交通道路等典型地形地貌,较有利于对设备精度的评估。选择了1∶10000和1∶40000两个摄影比例尺。如表1所示。

3 试验区控制点的布设

为了对POS的精度做出客观的评估,在关中某试验区内根据《GB/T13977-921∶5000、1∶10000地形图航空摄影测量外业规范》《GB/T13990-92 1∶5000、1∶10000地形图航空摄影测量内业规范》《P0S/TRACKER系统应用航空摄影试飞方案》技术设计书进行试验区控制点布设。

3.1 A区控制点布设方案

根据《POS/TRACKER系统试验区航空摄影技术设计书》要求,A区范围覆盖6幅(3×2)1∶50000地形图。依据关于1∶50000比例尺成图丘陵地和山地的区域网布点及构架航线的布点要求,A区控制点布设如图1所示。

3.2 B区控制点布设方案

根据《POS/TRACKER系统试验区航空摄影技术设计书》要求,B区范围覆盖2幅(1×2)1∶10000地形图。关于1∶10000比例尺成图平地的区域网布点要求,同时结合检校场控制点布设要求。B区控制点布设如图2所示。

为了提高量测精度,在像片上更准确地判别出控制点的位置,本次试验在B区采用了先布控后飞行的方法。根据控制点周围的环境情况,对B区100 km2内的42个控制点分别用埋石、砸木桩及铁钉的方法将控制点标记到位,其中大标石6个(预计作为检校场控制点永久保留)、小标石11个、木桩19个、铁钉6个。

为了使控制点在像片上容易判别,飞行前对测区100 km2内的42个控制点进行标志布设。根据控制点的情况,采用1 m×1 m的标志布和刷漆等办法,在飞机起飞前将标布设到位。

4 基准站布设

为保证POS辅助航空摄影飞行,需要在测区内布设基准站。考虑到基准站观测数据备份和检核,根据测区大小和试验为中、小比例尺航摄的特点,按照GB/T18314与GJB2228-1994规定的GPS基准站选址原则,结合已知大地测量控制成果,并经过现场踏勘,在摄区内布设1个地面GPS基准站。同时为了验证基准站距离对测量精度的影响,在宝鸡(距测区约200 km)和郑州(距测区约500 km)地区分别布设长基线和超长基线GPS基准站。

5 航摄飞行

根据《POS/TRACKER系统试验区航空摄影技术设计书》和《POS/TRACKER系统试验区航空摄影实施计划》,共飞行5架次,完成了试验区1∶10000及1∶40000的航摄工作,获取了1∶10000、1∶40000有效黑白像片323片,l∶10000彩色有效像片133片随后再次完成POS辅助RC30相机B区1∶10000飞行。

6 POS外方位元素解算

(l)偏心角解算。在1∶10000黑白影像扫描完毕,获得检校场像控测量数据以及检校场空三加密数据后,结合POS原始数据及基准站数据,利用PosPac软件中的PosGPs、PosPro及CalQc模块对偏心角进行解算,获得了305 mm镜头进行1∶10000飞行时的偏心角。同时解算出152 mm镜头进行1∶40000飞行时的偏心角。

(2)像片外方位元素的解算。将获得的偏心角输入PosPac软件的PosPEO模块进行解算,获得像片的外方位元素EO。

7 空三处理

由于现有的海拉瓦软件和适普软件都不支持POS数据的空三处理,因此,数据后期的空三解算采用了Leica公司的LPS软件。在LPS中建立与EO数据坐标相一致的工程,进行了直接定向法和POS辅助空三法两种方法的试验。

直接定向法。在LPS中建立工程,输入试验区影像,生成缩小片。在自动完成内定向后,在Fiducial orientation and Exterior Orientation Parameter Editor直接输入EO解算出的外方位元素,将其作为确定值,试验区的立体即可完全恢复,最终进行精度检测。

POS辅助空三法。前期与直接定向法一致,不过在输入外方位元素后,将其设为初始值,再按直接定向法检测出的精度给出一个外方位元素合适的标准方差。进入Orima软件,通过APM选点,判读合适的控制点,进行平差解算,最后将结果写出。退回到LPS中,进行精度检测。试验进行了仅有连接点无控制的平差、加入1个控制点的平差、加入4个控制点的平差。

8 POS数据直接定向精度分析研究

在内定向结束后,输入RC30的POS数据按照LPS中影像的数据顺序,依次将其对应的EO数据拷贝到相应的位置,获得POSEO数据直接定向的结果。从表2中可以看出:

(1)200X年B区直接定向,精度已经可以满足1∶10000成图要求。

(2)200X年B区直接定向,平面精度可以满足1∶10000成图要求,但高程精度超限。这是因为我国的外业大地高均为ITRF97或与其相似的框架下的大地高,而我们所采用的EO数据的大地高是初始WGS84的大地高,两者之间有固定差,在引入一个控制点平差后,高程精度马上符合精度要求。

9 结论

通过本次课题试验精度分析,POS辅助RC3相机航摄,在成小于1∶10000地形图时,可采用直接定向的方法。在成1∶10000或更大比例尺地形图时,应采用POS辅助空中三角测量的方法。

参考文献

[1] 甘倬.GPS/SINS组合导航工程实现及应用研究[J].科技资讯,2013,5:15-18.

[2] 查岩,GPS/INS组合导航系统的平滑滤波应用研究[J].科技创新导报,2013,6:16-18.

上一篇:网络时代高职院校图书馆读者服务工作探讨 下一篇:基于小波和分数阶傅里叶变换的混沌图像加密