关于输电线路的电力设施保护措施

时间:2022-10-09 07:34:57

关于输电线路的电力设施保护措施

中图分类号:C35文献标识码: A

摘要:电力工业是国民经济的重要基础产业,输电线路电力设施是电力工业发展的物质基础。尤其是电力系统的继电保护是电网安全稳定运行的重要保证,特别是当前,大容量机组的增加、电网容量的不断扩大,电网的安全稳定运行问题显得更加的重要。由此,就必须对输电线路电力设施采取一定的保护措施,以下就对这些措施进行了简单的总结。关键词:输电线路 电力设施 保护 措施

引言:输电线路是电力系统的重要组成部分,是电网运行的主动脉,起着传输电能的重要作用。近年来,随着地方经济对电力需求的持续增长,电网建设与改造日益加大。本文针对输电线路电力设施保护措施中的线路纵联保护、光线电流差动保护以及线路的后备保护等方面进行了简单的总结和分析。

1 线路纵联保护

纵联保护由于能够反映被保护线路上任何一点的故障并以瞬时速度跳闸,因而被定义为超高压线路的主保护。一般用于220kV线路。根据信号的传输方式,纵联保护主要分为两大类,即:由载波通道及保护装置共同构成的线路纵联保护、由光纤通道及保护装置共同构成的线路纵联保护。根据保护的原理,可分为纵联方向、纵联距离、纵联差动、电流相位差动等保护。500kV线路目前都是光纤差动保护,220kV线路目前也有很多线路将光纤差动作为主保护,但仍有一部分线路的主保护采用以载波通道为传输方式的纵联保护。但均按双重化配置。

1.1 纵联方向保护

纵联方向保护是比较被保护线路两端的短路功率方向,由载波通道和方向保护元件构成,载波通道分专用和复用两种。保护又分为闭锁式和允许式。

1.1.1 闭锁式

当被保护线路发生区内故障时,线路两侧保护中的起动元件(由负序、零序或正序电流突变量元件构成)立即起动本侧发信机发信(称为闭锁信号),两侧方向元件判定为正方向故障时,方向元件动作使发信机停信,当收信回路收不到对侧及本侧信号时,即输出信号,同方向元件动作信号构成“与”门,发出跳闸脉冲。当发生区外故障时,两侧起动元件同时起动发信,但这时只有处于远故障点侧的方向元件动作,使本侧发信机停信,而处于近故障点侧的方向元件不动作,不使本侧停信,因两侧收发信机使用同一频率,故两侧仍然能收到高频信号,两侧收信机均不输出允许跳闸的信号,因此,两侧均不跳闸。

1.1.2 允许式

当被保护线路发生区内故障时,两侧的起动元件动作但不起动发信机发信,由方向元件判断为正方向故障后,方向元件动作起动发信(称为允许信号),对侧受到允许信号后,如对侧的方向元件动作,则收信输出信号和方向元件动作信号构成“与”门,发出跳闸脉冲。当发生区外故障时,两侧的起动元件起动,不发信。这时,远故障点一侧的方向元件动作,起动发信,由于近故障点侧的保护为反向,方向元件不动作,也就不起动发信,也不发跳闸脉冲。处于远故障点一侧的保护,虽然方向元件动作,但由于没有收到对侧的允许信号,“与”门不输出信号,因此,也不发跳闸脉冲。

1.2 纵联距离保护

纵联距离保护与纵联方向保护相同,作为220kV线路的主保护。一般由专用载波通道和三(四)段式相间和接地距离保护构成,而且采用闭锁式的形式较多。当被保护线路发生区内故障时,线路两侧保护中的起动元件(由负序、零序或正序电流突变量元件构成)立即起动本侧发信机发信(称为闭锁信号),然后由主保护中带方向的阻抗元件(一般按大于1.3倍线路阻抗整定)动作后立即停信,两侧都停信后收信回路即有输出,与带方向的距离阻抗元件构成“与”门,发出跳闸脉冲。当故障发生在线路一端的出口处(区内)时,近故障点侧的起动元件动作,起动发信。主保护中的带方向的阻抗元件动作停信。远故障点侧的起动元件动作后起动发信,这时由于主保护中带方向的阻抗元件按大于被保护线路阻抗整定,能够可靠动作停信,收信回路的输出信号和带方向的阻抗元件的动作信号构成“与”门,瞬时跳闸。达到了纵联保护全线速动的目的。当发生区外故障时,虽然远故障点侧方向阻抗能够停信,但近故障点侧处于反向,阻抗元件不动作、不停信,始终发闭锁信号,两侧保护均不跳闸。

除上述主保护外,纵联距离保护还设置了后备相间和接地距离保护。根据距离保护的原理和特性,在电力系统发生振荡时,距离保护的阻抗元件将会误动。如按最长的振荡周期考虑,一、二段阻抗元件因动作时间短,无法躲过系统振荡的时间,而三段阻抗因其动作时间较长,则可以躲过系统振荡。此外,当发生PT断线时阻抗元件也会误动。因此,在距离保护中,都设有振荡闭锁和PT断线闭锁,防止发生上述两种情况时距离保护误动。

2 光纤电流差动保护

超高压输电线路的光纤电流差动保护是220kV、500kV线路的主保护。与普通的电流差动保护在原理上区别不大。就电流差动保护本身而言,具有原理简单,不受运行方式变化的影响、动作灵敏度高、快速、可靠,而且能适应电力系统振荡、非全相运行等优点。是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道,保证了传输电流幅值和相位的正确可靠。进一步提高了继电保护运行的安全性和可靠性。

光纤电流差动保护通过光纤电缆传输继电保护需要的模拟量信号和开关量信号。正常运行时,通过光缆将线路对侧的电流幅值和相位传送到本侧,与本侧的电流幅值和相位进行比较。线路正常输送负荷的情况下,两侧的电流幅值相等,相位互差180° 。保护中的差电流为0,保护装置不动作。当被保护线路发生区内故障时,两侧的电流相位相差0°,两侧保护瞬时跳开本侧开关。区外故障时,两侧电流的相位与正常运行时相同,相差180°。两侧电流的幅值则因为故障电流的大小不同而不等。特别是当区外故障电流较大时,由于两侧CT的特性差异,会造成电流差动保护中的不平衡电流增加,差流增大,导致保护误动。为此,光纤电流差动保护具有比率制动特性,可有效的保证区外故障时保护不会误动。

线路的光纤电流差动保护中还设置了后备保护。后备保护通常是三段式距离和零序电流保护。当光线通道异常、电流差动保护退出运行时,起到后备保护的作用。对后备距离、零序保护的要求与纵联保护相同。

3 线路的后备保护

3.1 距离保护

距离保护一般设置为三段,一段为瞬动段,即在一段范围内发生故障时,距离一段瞬时动作跳闸。一段的整定范围为被保护线路全长的(接地距离短些,60%~70%。)这是由于距离保护第1段的动作时限为保护本身的固有动作时间,为了和相邻的下一条线路的距离保护第1段有选择性的配合,两者范围不能有重叠的部分,否则,本线路第1段的保护范围会延伸到下一线路,造成无选择动作。另外,保护定值计算用的线路参数有误差,电压互感器和电流互感器的测量也有误差,考虑最不利的情况,如果这些误差为正值相加,而且第I段的保护范围为被保护线路全长的100%,就不可避免地要延伸到相邻下一条线路。此时,若下一线路出口故障,则相邻的两条线路都将跳闸,这将使保护失去选择性,扩大停电范围。所以,阻抗一段定值按线路末端故障可靠不动作整定,取线路全长的80%~85%。接地距离由于相邻线路出口故障时,有可能会误动,因此保护范围稍短些。二段和三段为延时动作段,也称为后备段,二段阻抗整定范围不超过相邻线路I段的保护范围。为保证选择性,延时0.5S左右(微机保护为0.4S)动作。三段阻抗按躲开正常运行时负荷阻抗来整定。动作延时按规程要求,应大于1.5S。

3.2 零序电流保护和方向性零序电流保护

零序电流保护是线路的后备保护。当超高压线路发生接地故障时,起后备保护作用。零序电流保护一般设置三段或四段。零序电流保护原理简单、动作速度快,但要有选择性,保护定值整定要与相邻线路保护配合。

结束语:通过上文的总结和分析,输电线路的电力设施保护措施主要有线路纵联保护、光线电流差动保护以及线路的后备保护等几个方面,在进行这几个措施的选择时,一定要根据其特点和作用来进行合理的选用。

参考文献:

[1]胡岩,贾冰.电力工程项目管理的三要素分析[J].东北电力大学学报:社会科学版,2008-09-15.

[2] 宋国兵 高淑萍 蔡新雷 张健康 饶菁 索南加乐 高压直流输电线路继电保护技术综述 电力系统自动化 2012(22)

[3] 陈健民 邱智勇 韩学军 大电网继电保护技术应用与发展 华东电力 2007(11)

上一篇:河流水质单因子评价综合指数方法的研究 下一篇:建筑墙体节能保温材料与检测探讨