电子元件在交通车辆中的可行性

时间:2022-10-08 05:09:07

电子元件在交通车辆中的可行性

作者:支崇珏 单位:武汉铁路职业技术学院

近年来电力电子器件的发展使变流技术领域产生了根本性的变革,同时也极大地促进了轨道车辆牵引技术的发展,使交流传动的优越性得以明显发挥。

1.轨道车辆牵引领域电力电子器件的发展

1.1电力电子器件的发展自1957年晶闸管问世,标志着电力电子技术的诞生,从此电子技术向两个分支发展。一支是以晶体管集成电路为核心形成对信息处理的微电子技术,其发展特点是集成度愈来愈高,集成规模越来越大,功能越来越全。另一支是以晶闸管为核心形成对电力处理的电力电子技术,其发展特点是晶闸管的派生器件越来越多,功率越来越大,性能越来越好。传统的电力电子器件已发展到相当成熟的阶段,但在实际中却存在两个制约其继续发展的致命因素。一是控制功能上的欠缺,因为通过门极只能控制其开通而不能控制其关断,属于半控型器件。二是此类器件立足于分立元件结构,开通损耗大,工作频率难以提高,一般情况下难以高于400Hz,因而大大地限制了其应用范围。因此,半控制器件的发展已处于停滞状态。到了70年代末,可关断晶闸管(GTO)器件日趋成熟,标志着电力电子器件已经从半控型器件发展到全控制型器件。进入80年代以后,伴随着GTO器件的发展及成熟,MOS器件的开发则繁花似锦。绝缘栅双极晶体管(IGBT)独占鳌头。至此电力电子器件又从电流控制型器件发展到电压控制型器件。90年代,电力电子器件又在向智能化、模块化方向发展,力求将电力器件与驱动电路、保护电路、检测电路等集成在一个芯片或模块内,使装置更趋小型化、智能化,其典型器件是IPM。而IGCT器件既具有IGBT器件的开关特性,同时又具有GTO器件的导通特性,且制造成本较低(与GTO和IGBT相比),可以获得和GTO晶闸管一样的产量,即其集IGBT与GTO二者优势于一身,预计今后会在更多的工业和牵引领域中发挥作用。总之,电力电子器件的发展经历了从半控到全控、从电流控制型到电压控制型、从单个元件到模块化再到智能化的发展过程。

1.2轨道车辆牵引领域电力电子器件的发展趋势根据电力电子器件的发展现状及趋势,预计在今后几年,电力电子器件将在以下方面取得进展:(1)已进入实用化的全控型器件将在功率等级、易于驱动和更高工作频率这三个方面继续改善和提高。(2)由于MCT、IGBT、IGCT等器件的大容量化及实用化,在更多的领域,IGBT和IGCT将取代GTO。(3)IGCT等新型混合器件将逐步得以推广应用。(4)功率集成电路将会有更进一步的发展。这将预示着电力电子技术将跃入一个新的时代。(5)新型半导体材料SiC的问世,将预示着在不远的将来会诞生一种集高耐压、大电流、高开关速度、无吸收电路、简单的门极驱动、低损耗等所有优点于一身的新型SiC电力器件。

2.轨道车辆牵引领域电力电子器件的应用

2.1电力电子器件在轨道车辆牵引中的应用发展80年代以前,在轨道车辆牵引领域,电力电子器件主要用于直流传动系统中的整流器和斩波器以及辅助传动系统。电力电子器件主要是晶闸管。进入80年代以后,随着交流传动技术日趋成熟,电力电子器件又有了新的用武之地,其在牵引领域的应用主要包括:整流器、斩波器、电力制动、逆变器以及辅助传动系统。这一时期在这些应用领域采用的电力电子器件主要是晶闸管和GTO。进入90年代以后,交流传动在电力机车、内燃机车及动车组上得以大量地推广应用,使电力电子器件在轨道车辆牵引领域中有了更广阔的应用前景。这一时期其在牵引领域的应用主要是牵引变流器,主要采用的电力电子器件是GTO和IGBT。

2.2IGBT在轨道车辆牵引变流器的应用由于IGBT器件属电压驱动的全控型开关器件,脉冲开关频率高,性能好,损耗小,且自保护能力也强。为此,目前世界上无论是干线铁路还是城市轨道的电动车辆的电气系统中均采用IGBT模块来构成。随着IGBT性能的迅速发展,IGBT模块的电压等级和电流容量在不断提高,从1991年生产出了小型IGBT模块,其电压等级为1200V/300A,很快取代了在工业上通用变频器中所用的双极型晶体管;1993年出现了1700V/300A的IGBT,并已开始在城市电车上获得推广应用;到2000年后更出现了1700V/2400A,3300V/1200A和6500V/600A的高压IGBT,这些高压HVIGBT很快地应用到铁道与城市地铁轻轨车辆中,由于其性能优越,加之其为绝缘型模块,整机的结构设计紧凑轻巧,且采用了低感母线技术与软门极的驱动技术并解决了热循环的寿命问题,目前,HVIGBT模块已成为轨道电力牵引系统中应用的主导元件。随着城市发展,城轨交通供电网压制也从早期的600VDC和750VDC发展为1500VDC网压制,以适应大城市大客流量发展的需要。网压的提高对电力电子器件的电压等级提出了更高的要求,IGBT模块的电压等级也从1200V发展到L700V,3300V以及4500V和6500V电压等级水平。

3.轨道车辆牵引变流器的发展

3.1车辆用IGBT逆变器的开发当电压等级不够高时,在德国和日本曾用1200V和1700V等级IGBT构成三点式(三电平)逆变器用于750V和1500V电网。随着新一代IGBT迅速发展,尤其是3300V等级IGBT的批量生产,用这类电压等级的模块(器件)构成两电平(两点式)逆变器能够满足在3300V电网当中的应用,因而在上世纪末国外生产的地铁轻轨电动车辆以及部分干线电力机车动车都已采用这类高压HVIGBT模块。虽然三电平逆变器较两电平逆变器具有输出波形好、脉冲频率低、电压上升率也低及损耗小等优点,但是其主电路结构复杂,所用器件多出一倍,这是它不足之点。所以在城轨车辆中目前都采用IGBT构成的两电平逆变器,而在干线电力机车中,采用4500V等级或6500V等级的HVIGBT来构成两电平逆变器。当然,由于三电平逆变器输出的谐波分量低的突出优点,目前在日本仍有不少的应用。

3.2无吸收电路式逆变器在轨道车辆上要求结构紧凑、重量轻和体积小的装置,采用绝缘式IGBT模块比那些非绝缘式的GTO器件就更能体现出满足这一要求的特点。通过采用低感母线技术以尽量降低母线的寄生电感来达到抑制关断时的尖峰电压的目的,使逆变器可以取消吸收电路,这样进一步简化了结构,减轻了重量,缩小了体积。在1500V网压下,采用上述技术可以使其尖峰电能押制在2300V以内。应用了低感母线技术的主电路结构不仅在器件数量上有明显减少,而且重量和损耗也降低了。

3.3软门极驱动技术一般高压IGBT模块在关断时其电压上升率陡峭可达5000V/μS,通过应用软门极驱动技术可以大大抑制电压上升率dV/dt,将其降低到2000V/μS,尖峰电压也控制2300V之内。此外,这电压上升率dV/dt的降低对装置中工作的各类器件都是大为有利的。由于采用了软门极驱动技术同时也降低了IGBT的损耗。

3.4低噪音化的PWM控制牵引变流器采用变压变频的调速方法,也常将其称为变压变频逆变器(即VVVF)。要实现这点,要采用脉宽调制控制方式(PWM),它们主要有:高频全域异步控制方式,低频异步、同步并用控制方式,低频全域异步控制方式和异步扩大控制方式(GTO方式)。采用这些控制方式都会有大量的谐波存在,这些谐波也就是逆变器产生噪声之源。可以通过改变高次谐波分布范围的控制模式,如频谱扩散控制方式,可以降低电磁噪音。

3.5无速度传感器矢量控制对逆变器和异步电机构成的交流传动系统,目前均已采用性能优良的旋转矢量控制或直接转矩控制,这些控制中均需要电机速度的反馈信号。由于微电子技术迅速发展,计算功能越来越强,也就开发出采用无速度传感器的矢量控制技术。由于取消了速度传感器,轴向距离扩大,这对电机的设计的灵活性提供了很大的方便。无速度传感器的矢量控制是通过控制转矩电流以同时实现速度测算和高速转矩响应。这种控制方式的特点是不需要速度传感器及所带来的维护工作量,同时有利于提高系统的可靠性及电机设计的灵活性。

3.6全电制动停车控制现行的制动系统中停车控制主要是靠气制动实现停车,而气制动在低速时由于靠摩擦力制动的不稳定性,乘客会感觉到较明显的晃动。在目前制动系统的硬件基础上,通过控制上的改善实现全电制动控制停车,这将提高停车精度,降低停车冲击,降低制动块的摩擦损耗和制动噪音,从而进一步提高乘客的乘坐的舒适度。

4.结束语

从目前电力电子发展趁势来看,主牵引逆变器应采用HVIGBT模块来构成,无论其主电路结构还是控制理论与控制技术,还需要进一步研究、完善及优化。牵引领域传动技术的升级换代取决于电力电子器件发展,我国交流传动技术的研究始于70年代初,起步并不晚,但国际上80年代初交流传动机车就已经进入商用化,技术日趋成熟,而我国近几年才在这方面有所突破。因此我们只有跨过GTO阶段,直接发展我们自己的IGBT及更高的技术,才可能缩短我国与国际上当今先进技术的差距。对于那些进口的电气传动系统中采用GTO构成的地铁轻轨车辆都将面临由于GTO退出轨道车辆应用领域而导致无备品备件的局面,因而都应开展用IGBT替代的国产化研究。

上一篇:论电子元件故障检验的灰色理论方法 下一篇:电子行业一体化教育改革设想