一种面向应用主题的多源遥感卫星需求建模方法

时间:2022-10-08 05:16:39

一种面向应用主题的多源遥感卫星需求建模方法

摘 要

面向海上台风监测、海上溢油监测和森林火灾监测等典型应用主题对多源遥感卫星协同观测的复杂任务要求,研究面向应用主题的多源遥感卫星需求建模方法,开展典型应用主题的多样化需求建模、多源卫星观测能力建模和多源卫星协同观测策略建模研究,并基于上述模型开展多源卫星协同观测策略建模研究,为多星协同任务规划提供优化目标和约束条件,并完成相关模型方法的软件实现。

【关键词】遥感卫星 应用主题 需求建模 协同观测

1 问题概述

1.1 研究现状

遥感卫星需求建模是对卫星观测任务的要求进行定义、量化和综合的过程,也是对不同类型的应用需求进行统筹、提高应用需求满足度的过程,是卫星任务规划的优化目标,是确保任务规划结果的正确性、合理性的基础,也是卫星观测应用效能充分发挥的基础。早期遥感卫星需求建模以简单的轨道覆盖需求为主,主要用于单一遥感卫星、单一观测任务的访问时间窗任务规划;随着遥感卫星功能性能的提升、应用领域的扩展和卫星数量的增多,遥感卫星需求建模开始关注空间分辨率、载荷谱段、侧摆范围等多要素的整体需求建模,为多源卫星的多任务规划提供支撑。

1.2 主要问题

目前遥感卫星需求建模存在的主要问题是:在需求模型要素体系构建方面,虽然在观测需求模型中已开始考虑分辨率、载荷谱段等观测能力指标要求,但这些单纯的指标要求并不能全面完整反映卫星遥感应用,例如国土、海洋、林业、减灾等业务应用领域的应用需求,缺乏将最终应用需求转化为卫星观测能力指标和工作约束条件的模型;在多星协同观测需求建模方面,虽然在需求模型中已开始引入多星、多任务及任务协作的观测要求,但这种需求模型通常与具体的应用场景联系不密切,没有从应用目的对多源卫星协同观测的要求出发开展协同观测需求建模。

上述传统的遥感卫星需求建模方法,在当今卫星遥感应用在响应时效性、手段综合性、任务精准性等要求日益突出,遥感卫星多星组网协同观测能力持续提升的背景下,愈来愈难以适应满足复杂多样应用需求、提升任务规划有效性、发挥多源卫星系统综合效能的要求。因此亟需面向若干典型应用主题,开展多源遥感卫星需求建模方法研究,为充分发挥多源遥感卫星针对复杂应用任务的综合效能奠定技术基础。

2 基本模式

面向应用主题的多源遥感卫星需求建模与任务规划的基本模式是:

(1)首先进行典型应用主题的多样化需求建模,采用统一的需求定义模板,将不同应用主题的差异化需求转化为结构统一、参量各异的定量化需求模型;

(2)其次进行多源卫星观测能力建模,同样采用统一的约束定义模板,将不同卫星的轨道、姿态、成像等观测能力约束条件转化为统一的观测能力模型;

(3)然后进行多源卫星协同观测策略建模,根据不同应用主题的观测要求,按照观测任务间的逻辑与时序关系,构建多源卫星的协同观测策略组合;

(4)进而开展应用需求与卫星观测能力模型关联分析,通过应用需求模型各参量与观测能力模型各参量间的映射关系,将各自应用主题的应用需求转化为卫星观测能力约束条件,筛选出观测能力约束条件满足应用需求的卫星及其载荷资源;

(5)最后进行多源卫星协同任务规划,基于模型关联分析得到的可用卫星及其载荷资源,按照上文构建的观测策略组合,针对观测目标进行访问时间窗计算,在消解访问冲突后得到任务规划结果;如果结果不满足应用需求,则可通过调整应用需求或卫星观测能力的模型设置,通过迭代修正进行优化

面向应用主题的多源遥感卫星需求建模与任务规划的基本模式如图 1所示。

3 建模与分析方法

3.1 典型应用主题的多样化需求建模方法

传统的遥感卫星任务调度方法对观测需求通常只考虑任务目标区域可覆盖、任务时间不超出给定范围等指标,很少从特定应用对观测资源和能力的要求出发,包含分辨率、观测谱段、协同观测时序等应用能力指标的观测需求模型。典型应用主题的多样化需求建模方法流程如图 2所示。

(1)确定所需观测的应用主题,例如海上台风监测、海上溢油监测、森林火灾监测等应用主题,记为A;

(2)基于给定的应用主题A,提取和筛选应关注的重点观测目标,目标形态可以是点目标、线目标或区域目标,目标数量可以是单个也可以是多个,目标状态可以是静止目标、固定时敏目标或位置移动目标,这些观测目标记为T1,T2……Tm,m为观测目标数量;

(3)针对观测目标Ti(i=1,2……m),从发现、识别、确认、量测、属性分析等应用要求与观测信息提取程度出发,构建相应目标的观测特征要素体系,例如位置、尺寸、形态、色调、纹理、光谱、空间结构等,这些特征记为S1,S2……Sn,n为观测目标Ti数量;

(4)针对特征要素Sj(j=1,2……n),使用通用的观测指标体系,例如覆盖范围、空间分辨率、光谱谱段、观测频次、响应时长等,对每一个观测目标特征要素的观测需求进行定量化的描述,这些指标记为X1,X2……Xr,r为观测目标Ti的特征Sj数量;

(5)根据应用主题A对上述特征要素S1,S2……Sn观测需求的优先度差异,以及获取不同类型特征要素间内在的逻辑关系,构建不同特征要素在时序与优先级上的逻辑关系,用函数表示为F(X1,X2……Xr)。

完成上述流程后,面向给定典型应用主题的多样化需求模型即构建完成,该需求模型是面向应用主题的多源遥感卫星需求建模的初始条件,也是多源卫星协同任务规划的规划目标。

3.2 多源卫星观测能力建模方法

对遥感卫星及其载荷的观测能力建模,定量描述卫星及其载荷能力约束条件,是多源遥感卫星需求建模和任务规划的基本要求。传统的遥感卫星任务调度方法的卫星及载荷能力约束条件一般只考虑轨道、姿态、载荷视场等特性,某些场合增加一些卫星能源、数据存储方面的约束,但很少考虑成像质量、响应时效性、信息获取能力等卫星应用能力约束条件。多源卫星存在应用对象复杂、卫星性能多样、应用能力不一等特点,若采用传统方法存在卫星及载荷能力约束与应用需求相脱节的问题。多源卫星及载荷多样化能力建模方法基于不同卫星各自的平台、载荷等性能指标及其成像能力,构建跨卫星、跨载荷的多源卫星观测能力指标体系,将个别的、具体的卫星观测能力指标转为一般的、通用的卫星观测能力模型,以适应多源卫星协同观测的需要。多源卫星观测能力建模方法如图 3所示。

(1)根据给定的应用主题A,以及给定可用的多源遥感卫星W1,W2……Wr(r为卫星数量),识别出卫星及其载荷观测能力的共性要素,例如轨道、姿态、成像质量、信息获取能力等,记为P1,P2……Pm,m为共性要素数量;

(2)针对要素Pi(i=1,2……m),按照不同观测能力要素的特点,分别用不同方法构建要素Pi的描述模型,例如:对于轨道要素可用二体运动模型、J2模型、两行根数模型等进行公式化的描述,对于姿态要素可用姿态参数序列等进行序列化的描述,对于成像质量要素可用包含空间分辨率、光谱谱段、视场角、信噪比等参量进行指数化的描述,对于信息获取能力可用是否具备立体观测能力、是否具备全天候观测能力等进行模板化的描述;

(3)针对要素Pi(i=1,2……m)的描述模型,确定其模型参数,记为Q1,Q2……Qn,n为模型参数数量,从而使得要素Pi的模型可用函数G(Q1,Q2……Qn)表示,例如:对于轨道模型中的二体模型可用轨道六根数作为模型参数,对于姿态模型可用滚动、俯仰、偏航三轴姿态角的时序参数作为模型参数;

(4)从全部给定可用卫星中,选定卫星Wj(j=1,2……r),其中若一颗卫星有多个载荷,因不同载荷的观测能力存在差异,可将同一卫星的不同载荷也等同于多个卫星;

(5)对选定的卫星Wj(j=1,2……r)的模型参数Q1,Q2……Qn进行量化,具体参数量化值可来自于卫星设计参数、地面测试参数或在轨运行监测参数。

上述步骤即是多源卫星观测能力建模方法的基本流程,完成这一过程即为多源卫星需求建模和协同任务规划提供了基本约束条件。

3.3 多源卫星协同观测策略建模方法

上述卫星观测能力建模完成后,各个卫星自身的观测能力即可得到定量化描述,但是多源遥感卫星协同观测与单星观测的区别除了卫星数量的增多、重访周期的缩短等外部特点以外,其本质特点在于通过多个遥感卫星及其载荷间的引导、互补、覆盖、接力、融合、多视角等关联性,实现单个卫星、单一观测手段难以实现的观测能力,使得多源卫星协同观测的整体观测能力大于各个单一卫星独立观测能力的总和。多源卫星协同观测主要有以下几种策略:

(1)引导协同策略:指的是以某一颗或某一类遥感卫星的观测结果,作为其它遥感卫星进行观测的引导信息,从而实现不同遥感卫星间的信息引导观测。例如:在森林火灾监测这一典型应用主题中,首先使用大幅宽但是空间、光谱分辨率较低卫星进行大范围的区域普查,发现疑似火点信息,然后再引导高光谱、高空间分辨率的卫星进行精细识别,从而实现森林火灾等目标的快速感知与精细识别的统一,提高卫星用于应急响应的应用能力;

(2)互补协同策略:指的是具备不同观测能力的多颗、多类遥感卫星,根据不同的观测条件,选择满足观测条件最优的卫星进行观测,从而实现不同遥感卫星信息获取手段上的互补,提高观测可靠性与有效性。例如:在海上船只识别这一典型应用主题中,当观测时段为白天、天气条件良好的情况下优先选用光学遥感卫星进行观测,而当观测时段为黑夜或天气条件恶劣的情况下则优先选用SAR遥感卫星进行观测,从而实现光学和SAR两种类型遥感卫星间的互补协同,最终实现对海上船只的全天候观测能力;

(3)覆盖协同策略:指的是多颗遥感卫星针对大范围区域目标,为各颗卫星分别指定不同观测区域,从而实现多颗遥感卫星对大范围区域的快速观测,减少或避免无效的重复观测,缩短整体观测周期,提升信息获取时效性;

(4)接力协同策略:指的是对同一目标,通过多个卫星在短时间内依次过境进行多次观测,延长对同一目标的整体观测时长,实现对同一目标特别是固定时敏目标或位置移动目标的连续观测能力。例如:在海上船只监测这一典型应用主题中,可以通过多颗卫星在短时间内连续通过目标区,实现十余分钟至数十分钟的连续监视,从而实现对海上船只运动过程、运动状态的观测;

(5)融合协同策略:指的是对同一目标,通过多种不同类型卫星或载荷分别进行观测,获取不同类型观测信息,对这些观测信息进行像素、特征或决策等不同尺度的信息融合处理,实现多种信息源的融合应用。例如:全色卫星载荷与多光谱卫星载荷融合便是典型的融合协同观测,可以实现对同一目标的高空间分辨率与高光谱分辨率信息融合应用。

(6)多视角协同策略:指的是对同一目标,通过多颗遥感卫星从多个角度同时或在较短时间内进行多次观测,从而不仅可以获取目标各个方向、各个角度的信息,更可以通过摄影测量处理获取目标的三维立体信息。

多源卫星协同观测策略建模的基本方法如图 4所示。

(1)确定协同观测策略类型:基于给定的典型应用主题A,从上述协同观测策略或更多的协同观测策略中,选取一种或多种多源遥感卫星协同观测策略类型,记为C;

(2)筛选协同观测卫星及其载荷资源:在给定的协同观测策略类型C条件下,从给定可用的多源遥感卫星W1,W2……Wr(r为卫星数量)中,选取若干遥感卫星及其载荷作为参与协同观测的卫星资源,记为K1,K2……Kl(l为参与协同观测的卫星数量);

(3)定义多源卫星及其载荷观测时序:根据协同观测策略类型C,以及应用主题A和参与协同观测的卫星资源K1,K2……Kl等条件,同时考虑不同卫星及其载荷间的数据特征依赖关系,定义多颗遥感卫星协同观测的时序,包括一般意义上的时间顺序,也包括逻辑上的前后承接关系,例如:假设Ki为大幅宽、中低分辨率卫星资源,Kj为小幅宽、高分辨率卫星资源,在观测时Ki卫星首先进行大范围普查观测,Kj卫星然后进行小区域精细观测,则上述两颗卫星观测的时序可记为KiKj;

(4)定义多源卫星及其载荷多次观测的间隔时间要求:在确定多源卫星及其载荷观测时序后,进一步定义相邻时序的前序卫星资源观测事件与后续卫星资源观测事件的间隔时间要求,包括最小间隔时间和最大间隔时间,例如:对于卫星观测时序KiKj,其最小间隔时间记为ΔTmin,最大间隔时间记为ΔTmax;

(5)量化描述单次观测的特定观测条件:对于任意一次观测事件Ki,对其特定的观测条件,例如:卫星观测指向角、单次连续观测时长、是否要求立体成像等用量化指标进行描述,可以是指数型参数,也可以是状态型参数,记为Y1,Y2……Yh(h为单次观测的特点观测条件参数数量)。

通过上述步骤,即完成了多源卫星协同观测策略建模,为多源卫星需求建模和协同任务规划提供了协同观测约束条件。

3.4 应用需求与卫星观测能力模型关联分析方法

在典型应用主题的多样化需求建模、多源卫星观测能力建模和多源卫星协同观测策略建模完成后,以同类模型参数为纽带,构建典型应用主题的多样化需求模型的需求指标参数与多源卫星观测能力模型的卫星及载荷能力指标参数间的映射关系,实现“应用任务需求参数――卫星及载荷能力参数”的关联与转化;同时以卫星轨道运动模型为基础,将多源卫星协同观测策略模型的相关策略参数转化为时间序列事件,并引入卫星轨道运动时间序列中,从而实现将多源卫星协同观测策略模型参数转化为多源卫星观测能力模型附有时间条件的约束参数;最终基于卫星轨道运动模型及目标访问计算进行任务规划,得到满足给定应用需求与卫星观测能力的可用任务集。

应用需求与卫星观测能力模型关联分析基本流程如图 5所示。

(1)获取典型应用主题的多样化需求模型的模型参数集:这里的模型参数主要指需求模型特征参数X;

(2)获取多源卫星观测能力模型的模型参数集:这里的模型参数主要指卫星及载荷观测能力指标参数Q;

(3)需求与观测能力模型参数关联与转化:构建典型应用主题的多样化需求模型的模型参数集X与多源卫星观测能力模型的模型参数集Q两者间的同类型模型参数间的映射关系,例如:应用需求模型的空间分辨率参数为Xi,卫星观测能力模型的某卫星资源空间分辨率指标参数为Qj,则建立Xi到Qj的映射;

(4)卫星及载荷资源筛选:根据需求与观测能力模型参数的关联关系,通过模型参数比对分析,计算卫星观测能力参数是否满足应用需求参数的要求,筛选出满足要求的卫星及载荷资源;

(5)获取多源卫星协同观测策略模型参数集:这里的模型参数主要指策略条件参数Y;

(6)策略分解为时序事件:将设置的多源卫星协同观测策略Y按照策略中定义的事件的时间序列分解,构建时序事件Y(t),将协同观测策略用一系列卫星动作事件的时间序列来表示;

(7)策略时序事件关联与转化:将多源卫星协同观测策略时序事件Y(t)与经过卫星与载荷资源筛选的多源卫星观测能力模型的模型参数集Q进行关联,根据策略时序事件Y(t),分别为每一步时序事件设置对应的卫星观测能力模型参数;

(8)目标访问任务规划:在上述模型参数关联分析的基础上,基于卫星轨道模型进行目标访问计算,得到满足应用需求与卫星观测能力要求的观测任务序列。

上述步骤完成后,即完成了整个的面向应用主题的多源遥感卫星需求建模,从而将用户的观测应用需求,转化为符合卫星及载荷观测能力约束条件,并通过任务规划得到满足应用需求的观测任务,从而为卫星观测任务计划制定提供依据。

4 软件实现

基于上文所述的建模方法,面向海上台风监测、海上溢油监测和森林火灾监测等典型应用主题,以目前在轨的高分、资源、环境等国产遥感卫星为卫星资源,研制多源遥感卫星协同数据获取需求建模软件,实现面向应用主题的多源遥感卫星需求建模方法软件实现。

整个软件采用“平台+插件”的体系架构,构建统一的基础支撑平台,实现对处理数据、计算资源和模块插件的统一管理;上文所述的各个模型开发为相对独立的算法模块插件,可被软件基础支撑平台灵活调用,并通过不同插件之间的组合,形成不同的处理流程和完整的面向应用主题多源遥感卫星需求建模功能。

软件主要包括三大组成部分:观测需求分析软件、观测任务管理软件、分析结果可视化软件。观测需求分析软件实现对典型应用主题多样化需求的建模和多源卫星观测能力的建模,观测任务管理软件实现对多源卫星协同观测策略的定制以及任务规划分析,分析结果可视化软件实现对基于需求建模的任务规划分析结果三维可视化展示。

观测需求分析软件的整体界面及典型应用主题多样化观测需求配置界面分别如图 6和图 7所示。

观测任务管理软件的整体界面及多源卫星协同观测策略配置界面分别如图 8和图 9所示。

分析结果可视化软件的需求建模与任务规划分析结果界面如图 10所示。

5 结论

本文面向多源遥感卫星的协同观测应用需求,针对典型应用主题开展了了多样化需求建模研究;针对多星、多载荷的差异化观测能力与协同观测要求,开展了多源遥感卫星观测能力建模与多源卫星协同观测策略建模研究;并基于上述建模结果,开展了应用需求与卫星观测能力模型关联分析研究,实现应用需求向卫星观测能力的转化;最后对相关模型开发相应软件,完成面向应用主题的多源遥感卫星需求建模软件实现。

本文所述的面向应用主题的多源遥感卫星需求建模方法可以为复杂卫星对地观测任务的任务规划提供技术支撑,也可以为卫星遥感应用效能优化提供验证手段。同时,本文所研究的建模方法还只以若干典型应用主题为个别应用场景开展研究,模型所用的卫星资源也只是常规遥感卫星资源,后续一方面应对所研究的应用主题进行拓展,使本文所述建模方法成为具有应用主题普适应的需求模型构建方法,另一方面应将敏捷卫星、静止轨道凝视卫星、视频卫星等新型卫星资源开展纳入建模体系并开展研究,应对卫星技术发展的需要。

参考文献

[1]马万权,张学庆,崔庆丰等.多用户对地观测需求统筹处理模型研究[J].测绘通报,2014(S0):141-143.

[2]巫兆聪,徐卓知,杨帆.遥感卫星应用需求满足度的模糊评估[J].应用科学学报,2015,33(3):299-308.

[3]Michel Vasquez,Jin-Kao Hao.Upper Bounds for the SPOT 5 Daily Photograph Scheduling Problem[J]. Journal of Combinatorial Optimization, 2003,7(1):87-103.

[4]贺仁杰.成像侦察卫星调度问题研究[C].国防科学技术大学,2004,13-16.

[5]Nicola Bianchessi,GiovanniRighini. Planning and scheduling algorithms for the COSMO-SkyMedconstellation[J]. Aerospace Science and Technology, 2008,12(7):535-544.

[6]李菊芳,姚锋,白保存等.面向区域目标的多星协同对地观测任务规划问题[J].测绘科学,2008,33(S0):54-56.

[7]慈元卓,谭跃进,贺仁杰等.多星联合对地搜索任务规划技术研究[J].宇航学报,2008,29(2):653-658.

[8]郭玉华.多类型对地观测卫星联合任务规划关键技术研究[C].国防科学技术大学,2009,19-57.

[9]Liu Xiaolu,BaiBaocun,ChenYingwu,etc.Multi satellites scheduling algorithm based on task merging mechanism[J].Applied Mathematics and Computaiton,2014,Vol:230.

[10]姜维,庞秀丽,郝会成.成像卫星协同任务规划模型与算法[J].系统科学与电子技术,2013,35(10):2093-2101.

[11]Jun Li,Jun Li,Ning Jing.A satellite schedulability prediction algorithm for EO SPS[J].Chinese Journal of Aeronautics,2013,26(3):705-716.

[12]刘浩,陈兆荣,陈浩.多载荷对地观测卫星任务驱动规划方法研究[J].计算机工程与应用,2012,48(S2):157-161,231.

[13]高黎.对地观测分布式卫星系统任务协作问题研究[J].国防科学技术大学,2007,29-47.

[14]Pei Wang,Gerhard Reinelt,Peng Gao.A model,a heuristic and a decision support system to solve the scheduling problem of an earth observing satellite constellation[J]. Computers&Industrial Engineering,2011,61(2):322-335.

[15]王冲.基于Agent的对地观测卫星分布式协同任务规划研究[C].国防科学技术大学,2011,29-48.

[16]XiaonanNiu,HongTang,LixinWu.Imaging-Duration Embedded Dynamic Scheduling of Earth Observation Satellites for Emergent Events[J].Mathematical Problems in Engineering,2015,Article ID 731734.

作者简介

张晓(1985-),男,四川省合江县人。硕士学位。现为航天恒星科技有限公司系统设计师、工程师。主要研究方向为天地一体化对地观测系统仿真、效能评估与数据处理。

作者单位

航天恒星科技有限公司 北京市 100086

上一篇:计算机软件开发的规范化分析 下一篇:有光学活性藻蓝蛋白的异源重组表达条件优化