特变电工风光互补项目综述

时间:2022-10-05 02:27:45

特变电工风光互补项目综述

【摘要】本文笔者结合自身多年工作经验,以新疆吐鲁某工程为案例,对特变电工风光互补技术进行了分析,供业内人士参考。

【关键词】特变电工;风光互补;光伏发电

一、项目概况

1 世界和我国风光互补发电现状

风能与太阳能在时间和空间上具有互补性, 风光互补发电是比单一的风力或太阳能发电更有效的方式。

国外在新能源领域的研究主要集中于大型并网发电场及单独风力发电和单独太阳能光伏发电的控制,风光互补发电方面的研究比较少,但也有一些初步的研究成果。

在我国,风光互补发电主要是小型带蓄电池的孤立用户,主要集中在青藏高原、内蒙古等偏远地区,采用独立式发电。1998年和2000年,我国的长江源自然保护站分别安装了600W/400Wp(Wp为光伏发电功率)和1000W/400Wp 2套独立运行的风光互补发电系统,用于解决保护站内的生活和工作用电。当前,我国风光互补发电的研究主要集中在风光互补发电场体系结构的优化设计、底层设备的控制及系统仿真。

2 项目概况

本工程建设地点位于新疆吐鲁番市境内,吐鲁番大河沿火车站南侧。

吐鲁番小草湖风区风资源、太阳能资源都很丰富,从直观和统计的角度看,小草湖白天风速相对较小,日照非常丰富;晚上风大光伏不发电。这就为在小草湖地区建设风光互补发电项目提供了基础资源条件。其主要特点是:(1)弥补独立风力发电和太阳能光伏发电系统的不足,向电网提供更加稳定的电能;(2)充分利用空间,实现地面和高空的合理利用,发挥风、光资源的互补优势,实现两种资源最大程度的整合;(3)共用一套送变电设备,降低工程造价;(4)同用一套经营管理人员,提高工作效率,降低运行成本。将风力发电与太阳能发电技术加以综合利用,从而构成一种互补的新型能源,将是本世纪能源结构中一个新的增长点。

本项目建设规模规划总容量为(100MW+100MWp),一期建设容量为(49.5MW+50MWp)。项目分期进行,本期建设风光互补并网电站,包括49.5MW风力发电系统、50MWp太阳能光伏发电系统及相应的配套上网设施,风电场与光伏电站共建一座110kV升压站,升压站位于光伏电站西北部。

二、设计思路

首先介绍当前风光互补发电系统的概况,然后对吐鲁番小草湖地区风能资源特性和太阳能资源特性进行分析比较,得出本工程风能和太阳能在时间出力上具有较强的互补性的结论,重点从分析小草湖区域的风电实际开况、现有电网送出能力及负荷消纳能力的角度出发,并结合电网发展规划,研究本工程的建设必要性和建设方案。然后对特变电工风光互补荒漠并网电场一期项目接入新疆主电网方案进行研究,对风、光发电单元对电网的影响及相关要求作简要分析。工程占地遵守节约用地原则,施工运行交通方便,依据推荐的建设方案确定本期工程建设规模,并进行相关的电气计算和分析,编制工程投资估算。

通过本项目的建设实施,可为将来更大规模的风光互补并网技术打下基础,提供可靠的技术支持,通过该电站的示范作用,记录电站的运行数据,总结运行状态,考察其技术和经济的可行性,对光伏产业的发展趋势作出合理的预测,为决策部门提供合理的决策依据,讨论切实可行的并网指导政策,推动我国风光互补并网乃至整个新能源开发的发展。

三、本工程要解决的问题

1风光互补发电系统的互补特性

风电和光电系统都存在一个共同的缺点,就是风和光资源的不确定性导致发电与用电负荷的不平衡,传统的风电和光电系统都须通过蓄电池储能才能稳定供电。如传统的小型户用光伏发电系统都是利用了蓄电池组稳定光伏发电和风电的出力,因此风光发电系统互补首要解决的一个问题就是混合发电系统的稳定出力。

对于本工程,其特殊性在于光伏发电容量和风力发电容量都较大,不同于小型户用风光互补发电系统。如果采用类似小型风光互补系统的蓄电池稳定出力,将造成投资过高,增加发电成本,不利于产业的发展。同时本工程也不具备类似抽水蓄能的方式来稳定发电出力。

本工程风能和太阳能在季节上具有较强的互补性,本地区春季风资源最丰富,也即风电春季出力最大,光伏发电则在夏季最大,春、夏、冬季基本上为新疆用电负荷高峰季节,风电和光伏发电的这种出力在季节上的特点可以互补单一电源在季节上的出力不均。

鉴于此,本工程的互补主要体现在光伏发电和风力发电在白天和夜间二者出力波动的日\季节互补以及电量上的日\月\年互补。

2探索研究风力发电和光伏发电在空间可否整合

风电场内两排风机之间间距约690m,如果可以将光伏电厂布置于风电场内,可以节省用地面积,降低成本。现对风机的阴影遮挡面积进行分析。

选用风机轮毂高80m,叶片直径90m,拟建厂址纬度约为42度22分,分析阴影最长的冬至日(12月22日)早上9:00至下午15:00的阴影轮廓如图8-6所示。风机阴影最长有663m,北侧509m,东西侧455m。

对整个风电场区域进行阴影分析,如图8-7所示,四台风机中间具有一个三角形区域,在上午9:00至下午15:00时间段内,不受风机阴影的影响,区域面积约为3.4万m3,相邻两区域间距离约为700m。如果在此区域布置光伏电池板,则太过分散,一方面由于低压线路过长,发电量损耗较大,另一方面很难设置保护围栏集中管理和定期清洗。

因此,对于风光互补在空间上的互补性还需要做进一步的探索和研究。本期暂不考虑将光伏电站布置在风电场内部。

3风力发电和光伏发电属于不稳定出力电源

电网系统中需要其他如火电、水电作为其调峰电源,因此出现了电力系统调度与调峰的问题,此时需要提高风电和光伏发电功率预测技术和完善预报制度,加强风电和光伏发电调度管理,改善电网电源结构等。

四、结论与建议

通过在吐鲁番建设100MW级风光互补荒漠并网示范电站,掌握100MW级风光互补发电系统高压并网光伏电站的关键技术研究和设备研制,并利用本示范电站的实际运行数据的分析比较和综合分析,提出适用于新疆荒漠地区使用的跟踪型光伏电站建设形式。研究100MW级风光互补发电荒漠并网电站的优化设计及系统集成、大容量太阳光伏阵列自动跟踪装置的机械和控制设计技术、高效率低并网电流谐波的1MW光伏高压并网控制逆变器设计技术等关键技术点;并制定大型荒漠光伏高压并网电站的建设规程。为我国发展大规模荒漠光伏并网电站提供技术支撑和实践经验。

本工程项目目前尚在起步阶段,有很多不确定因素,为更好地促进风光互补发电系统的发展, 使其成为一种具有竞争力的清洁电源, 还需做以下进一步的工作:①进一步研究风光互补发电系统的体系结构, 寻找更好的蓄能方式和备用发电装置, 合理配置互补发电场, 降低其建设费用;②研究风光互补发电系统的能量管理控制,实现互补发电场设备的动态优化组合, 降低系统运行成本,提高电场运行质量;③由于风光互补发电系统具有强非线性,利用传统的控制理论与方法进行控制是非常困难的,积极探索智能控制方法在风光互补发电系统中的应用将会对风光互补发电技术的发展起到很大的促进与提升作用。

参考文献:

[1] 王硕,李晓乐,向睿,秦颖. 风光互补发电数据采集监测系统的设计[J]. 信息与电脑(理论版). 2011(07)

[2] 孙兵. 风光互补发电集成装置及其控制系统设计[J]. 制造业自动化. 2012(22)

[3] 贾传圣,李龙康. 风光互补发电的研究[J]. 通信电源技术. 2012(05)

上一篇:基于移动医护零漫游系统的研究 下一篇:二战后澳大利亚教师教育政策的变革