煤矿计算机瓦斯监测系统设计与实现

时间:2022-09-23 06:38:28

煤矿计算机瓦斯监测系统设计与实现

[摘 要] 煤矿瓦斯监测系统的重要内容是加强煤矿安全生产管理,以防止煤矿事故的发生。所以,在煤矿瓦斯监测系统工作中务必提高应对各种突发事故的能力,因此加强煤矿瓦斯监测系统建设的专业素质至关重要,此外,还应加强制度上的规范管理,不断的提高煤矿瓦斯监测系统设计水平,加强对现场的巡视和设备维护等都是必不可少的环节。笔者结合煤矿开采环境,对瓦斯监测系统在煤矿安全生产监督中的应用进行了分析。

[关键词] 瓦斯监测系统; 煤矿; 安全生产

作为煤矿安全生产监控工作的关键性内容,信息的获得无疑至关重要,而获得信息的主要手段就是监测技术。一般而言,通过煤矿安全生产现有的客观资料,我们可以初步确定监控的初始方案,进而在煤矿工程运营过程中根据监测数值、经验方法等内容,开展反馈分析等工作,修正初步方案与施工网络计划,以保证工程按照最优的设计与施工方案进行。因此,监控工作的重要性也就显而易见了。针对我国煤矿工程质量中的一些不安全因素,监测技术在监控中的应用能够很好的解决此类问题,它不但可以很好地掌握工程的工作运营状态,利用监控数据对流量方案进行整改,并指导开采质量作业;还可以预见事故风险,采取一系列的事前措施,给建筑的安全管理提供信息,将事故突发率降至最低,保证了煤矿安全生产的稳定性。通过太阳能光伏技术,我们可以很好地将太阳能转换为电能,并广泛应用在瓦斯监控系统当中,太阳能供电部分监控结合了煤矿开采的相关特点,对煤矿地点的自然环境等因素进行分析,确定了系统设计相关参数,优化了供电系统的相关参数,对煤矿领域的网络瓦斯监控起到了一定的作用。

1 煤矿瓦斯监测系统的准备工作

1.1 规范制度,端正思想

一个良好的组织机构,除具备较好的运行机制和管理制度之外,还应该具有健全的岗位制度而且能够将之贯彻执行。因此,在煤矿安全生产网络瓦斯监控过程中,我们需要一个合适的监控管理结构,以便于明确各个工作人员的职权问题,保证个人任务到位,避免权力交叉和责任推诿的现象发生,这些问题都可以通过建立健全的岗位责任制度得以解决。此外,工作人员不但要对网络瓦斯监控知识有一定了解,思想上时刻保持着“安全第一”意识,保证将综合自动化安全意识渗透到工作的每一个层面,全面提升安全作业人员的工作责任心与使命感。

1.2 加强瓦斯监测系统的设备管理

加强设备巡视管理是网络瓦斯监控的重点,预防设备异常的发生是监控运行管理的主要内容。为了保障监控仪器的准确性,应该建立完善的设备定检制度,仪器设备需要进行定期的检测,对于一些使用频率高的仪器,更是要依据规定检测并建立相应的维护记录以随时了解其运转状态,保证其正常的运行和及时的维护。

1.3 提高瓦斯监测系统的技术管理

由于煤矿瓦斯监测系统存在很大程度上的特殊性,而作为贯彻于瓦斯监测系统整个流程的重要要素,技术管理在中的作用不容小觑。因此,加强设备的绝缘监督工作,利用声波检测、光谱分析等监督手段,及时地发现并排除故障无疑势在必行。煤矿安全工作一旦脱离了技术的支持,就难以称作是有效的工作。对于系统运行工作的异常情况,及时采取跟踪测温,利用图谱库进行分析对比,并提出检测修改的建议,以此来加强设备的有效运行。

2 煤矿瓦斯监测系统的设计

2.1 联网设计

为达到网络带宽的预定要求,在瓦斯监测系统的设计中采取分层瓦斯转发、本地局域网组播的设计方案,也就是在每个网络层构设瓦斯转发服务端口,并且在煤矿现场、区县市局成立监控管理中心,完善各部门瓦斯解码器、电视播放墙等设施。具体的瓦斯监控系统联网设计如图1所示。由于煤矿施工长期通常都较为偏远,带宽并不充裕,这种联网设计则可以很好地应用于广域瓦斯联网,若考虑到以后省级平台瓦斯联网模式,这种设计方案无疑当前2 Mb带宽的最佳选择,不然很容易致使监控网络不稳定甚至不能使用。该联网设计借助已知煤炭网的部分节点,经上级授权之后连接并登录瓦斯流管理服务端口,就可以轻松观看该服务器监控矿区的生产工作瓦斯,且不会增加前端带宽负荷,可同时向多个用户共享图像信息。

2.2 安全系统体系结构设计

在图2中,我们可以清楚地看到安全系统体系结构的设计方案。通过4个监控工作站或D1单画面轮巡,将画面进行分割并上传到瓦斯流管理服务端口,然后统一由瓦斯流管理服务端口对瓦斯信号进行存储和,这样有效地避免工作人员直接访问客户端而导致网络拥塞现象。开展瓦斯监控工作时,前端摄像机瓦斯线依次对前端画面处理器、瓦斯服务器和光端机实施连接,通过光缆把接受到的瓦斯信号传输到监控中心。在这个时候,其他用户很容易不会根据已经规定好的操作流程来对系统进行操作和数据处理,而且由于不受时间、地域的限制,他们还可能会通过输入地址直接对数据库实施访问。如此一来,就很容易造成客户肆意操作,最终致使后台数据库随时都有崩溃的威胁。所以说,我们应该采取一些可运用的技术对系统进行尽可能全面的安全防范,比如说系统加密、防火墙、真实身份认证、授权控制技术等等。监控中心在接收瓦斯信息后,第一时间想远端的瓦斯服务器发出云台控制信号,最终传输到摄像机云台控制线,并直接上传到系统客户端。

2.3 瓦斯控制系统

在煤矿保护层上的回收期,我们可以将高抽巷侧上方的石板巷回风巷段封闭采空区瓦斯抽放管,同时与上隅角采空区瓦斯抽采。抽巷形成的采空区瓦斯的顶板裂隙排水渠,对下部采空区瓦斯发挥作拉动用,减少采空区气体排涌向工作面和的上隅角。通过分段砌筑封闭墙,在封闭墙中铺设管路进行瓦斯抽采,抽采管路为240mm的铁管,抽采流量为91 m3/min,封闭墙间距为110m。封闭墙的组成由砌筑两道墙体,并在其内部充填黄泥,墙体厚度800mm,墙与墙之间的距离不小于4m,这样可以很好地起到密闭和防爆的作用。每个封闭墙内铺设两道管路,在新的封闭墙砌筑充填完成时,根据瓦斯抽采量适时关闭里段抽采阀门,保障了高抽巷瓦斯抽采的连续性。

2.4 瓦斯流管理服务器设计

在瓦斯监控设计中,瓦斯流管理服务器无疑是IP瓦斯监控系统的精神内容。建立瓦斯流管理服务端口,不但可支持瓦斯管理系统同时被多名用户访问,而且还很好地解决了前端瓦斯受网络带宽限制的问题,从而保证了各部门及领导可以直接通过桌面计算机对瓦斯监控系统进行访问,随时可浏览监控现场图像和瓦斯。服务器端拥有通过查询数据库,进而实现对煤炭安全生产信息化的作用,可以为计算机提供很多实用服务。瓦斯流管理服务器与空间数据库建立连接,可提供大量查询服务,例如属性查询服务、矢量和栅格地图服务等。在网络瓦斯监控系统组成部分中瓦斯流管理缓存服务器模块是相当重要的,服务器端缓存模块主要分为缓存管理组件和索引管理组件。两部分组件分工合作,缓存管理组件是根据索引分析所得出的结果,在缓存中处理请求数据然后向客户端发送,或者利用数据库中已存数据,而索引管理组件先索引分析客户端请求,制作出瓦片空间待处理数据列表。若能发展好缓存数据的利用,数据库交互即可免去,同时数据的响应速度也会大大提高。总的来说,瓦斯流管理服务端为煤矿的安全生产提供了有效的图像监视选择和瓦斯存储的功能,可以彻底实现用户权限管理、自动报警与生产安全建议。

2.5 KJ95安全监控系统

KJ95煤矿综合监控系统是由煤科总院常州自动化研究所开发的。该系统通过井下通信和工业电视监视设备,对煤矿井下作业进行全程生产监控。这一过程中的工业电视监视和井下通信不但可以任意搭配组合,还可以单独利用,能够很好地满足不同条件的矿井需求。在KJ95综合监控系统配置框架中,监测系统与通信系统两者之间相互独立,主线采用光纤为材料,以确保通信系统所发出的语音信号和监测系统采集到的数据可以同时被地面的电端机所接收,为方便光纤传输,光端机会将混合后的电信号转变成光信号,再通过矿井下的光端机把光信号转换成电信号传送至井下工作面,最终将数据和语音彻底分开。通过井下的电端机RS232口可以将数据信号传送到矿井下的传输接口,然后由传输接口将之输出带到各个分站。通过分线盒可以把语音信号分送到各个话机,这一系列过程中语音信号与监测数据都是双向传递的。

3 实现效果

计算机网络瓦斯监控技术应用到煤矿安全生产来,根据所监控出来的瓦斯数据,对煤矿生产过程实施自发监控,并且数据处理敏捷准确,而且它可以直接对煤矿生产中必要的地物进行自动标注,并将标注数据存储到数据库中,避免不必要的人为抄写错误。最后在监控成果表输出以后,表格格式规范、信息完整,并能直接进行打印实现了导线点计算、展点、制表一体化。系统界面可视化、操作性强,监控人员不必进行专门的学习或培训,操作使用十分简便。通过面板中输出的原始瓦斯监控画面,可以切实地反映煤矿生产的真实状况,它对煤矿监控系统全过程进行瓦斯拍摄,在瓦斯监控工作开展前掌握了煤矿各节点在实际结构中的相对位置及相互关系,很简单地就可以完成固定环境轮廓的拍摄,提高了煤矿安全生产监控的工作效率。计算机网络瓦斯监控管理不但简单迅速,而且通过数据维护自动更新、表格目录与导线名称检索等方法实施管理,煤矿安全生产监控的效率明显获得了提高。

4 结论

煤矿瓦斯监测系统建设涉及到煤矿生产工作的数百个指标,需要调用大量的数据和信息,并要综合平衡煤矿生产同劳动力之间、供求需要同可开采煤矿之间、煤矿企业自身效益同社会效益之间的各种关系,要求很高,业务性和技术性很强,煤矿煤矿瓦斯监测系统建设过程实际上是一个多目标动态决策过程。因此,顺应技术进步的潮流,以计算机网络技术为手段,辅助设计煤矿瓦斯监测系统,实现计算机对煤矿安全生产管理是非常必要的。

[参考文献]

[1] 孙继平;矿井监控系统现状与全矿井综合监控系统[J];煤炭学报;1997 (12).

[2] 谢旭阳,杜红兵,周心权等;基于 Internet 的煤矿安全管理信息系统[J];矿业安全与环保;2001,28(2):13.

[3] 宋正利;基于Web Services的煤矿安全计算网络模式[J];工矿自动化;2005 (5):63-65.

上一篇:模糊聚类分析在天然气水合物测井识别中的应用 下一篇:创建三甲医院中优化人力资源配置的实践探讨