陶瓷膜管与金属材料连接的研究

时间:2022-09-18 07:35:20

陶瓷膜管与金属材料连接的研究

摘要:本研究针对现有除尘装置的现状,在广泛调研和理论研究的基础上,将无机膜分离技术引入除尘装置的研究开发,该装置中的关键部分:陶瓷膜管与金属管板的连接存在不少问题。通过对现有陶瓷一金属连接方法的考察,发现陶瓷-金属在焊接上存在很多技术困难,由于粘接方法具有简单,成本低,适应性广泛、便于批量生产等特点,本研究采用粘接技术对陶瓷-金属进行连接。

关键词:陶瓷膜管金属粘接连接

1、陶瓷--金属连接概述

陶瓷是人们生活和现代化建设中不可缺少的一种材料,它与金属材料、有机高分子材料并称为当代三大固体材料,并被列为二十一世纪优先发展的关键领域之一。科学技术的发展使各类相对独立的材料(如金属、陶瓷、高分子等)相互渗透、相互结合,陶瓷-金属连接技术正是随着多学科的交叉而形成和发展起来的,是材料的应用和延伸,是一门工艺性和实用性都很强的基础技术。陶瓷材料的开发、应用为工程选材开辟了新的领域。航空航天、能源、电子、汽车、机械和化工产业迫切要求材料具备高强度、高韧性、耐高温、抗氧化、耐磨损、抗腐蚀、高温蠕变小等优良性能,为了满足这种日益高涨的需求,多年来,研究人员进行了大量的基础研究和应用开发工作,并进行了不懈的努力,在材料制备工艺和材料性能以及实际应用等方面取得了很大的进展和令人欢欣鼓舞的成就。

陶瓷材料的耐高温、耐腐蚀、耐磨损以及抗绝缘性好等优点使其在高温结构领域中占有非常特殊的地位;但是由于其脆性大、延性低、难以变形和切削加工等,使陶瓷的进一步广泛应用受到了限制。因此将陶瓷与金属进行连接,既可以发挥陶瓷的优点,又可以满足塑性和延性的要求,连接所得复合构件可以兼顾两者的特性。

从广义上讲陶瓷与金属材料的连接_「艺最早起源于十五世纪我国明代景泰蓝制作,到十九世纪八十年代西方出现电气陶瓷金属化专利,牢固的连接技术始于二十世纪三十年代,当时德国首先研制成功了一种陶瓷金属化工艺并应用到电子管外壳的连接上。到五十年代初,由于活性金属法和M0--Mn金属化工艺的出现,连接技术才进入了迅速发展时期,连接工艺的成熟及连接机理研究的逐步深入,进一步促进了连接技术的发展。随着陶瓷材料的发展及工业应用的要求,相继出现了一些新的特殊连接工艺。

2、陶瓷--金属连接的方法

陶瓷--金属的连接发展到今天,已有很多连接方法,通常可分为三大类:焊接连接、机械连接、粘接连接。

(1)焊接连接

陶瓷的焊接根据母材的不同可以分为陶瓷一金属的焊接以及陶瓷一陶瓷的焊接。陶瓷一金属之间的焊接从一开始就成为人们研究的焦点,这缘于在一些研究计划中陶瓷件能取代部分不能满足工况条件(如高温、高应力)的金属零件。陶瓷一金属焊接连接方法主要有:

a)烧釉连接

烧釉连接是在空气中在陶瓷上烧结硅酸盐玻璃类物质,再在还原气氛下与金属焊接。等将玻璃釉经过火焰喷熔在管道内外壁形成一种无机非金属涂层,该涂层不老化、耐腐蚀,可极大提高喷瓷管道的使用寿命。采用氧气一石油液化气火焰在金属管道表面热喷涂玻璃釉涂层,利用焊接热模拟技术研究喷瓷管道近缝区瓷层的耐蚀性变化规律,控制热循环的峰值温度可以有效地控制瓷管道瓷层、界面及基体金属质量。但烧釉连接接头的釉层易龟裂,内应力集中。

b)烧结金属粉末法

在陶瓷表层涂覆金属粉末并烧结形成涂层,再用焊料对陶瓷与金属焊接,多用于电子元件陶瓷与金属的连接。

c)熔焊

熔焊方法有:激光焊、电子束焊、等离子弧焊、电弧焊等,目前主要研究激光熔焊和电子束焊。熔焊的优点是速度快、效率高,能够制造高温性能稳定的连接接头,但为了降低连接应力,防止裂纹的产生,必须采用辅助热源进行预热和缓冷,且工艺参数难以控制,设备投资高,目前仍处于尝试阶段,它的应用受到很多的限制。例如,陶瓷很难熔化,它们的熔点通常比金属高得多,有一些则在熔化之前就分解了,其次,能够熔化焊接的陶瓷与金属组合是非常有限的,因为不仅要求被焊的金属和陶瓷,而且要求熔池中形成的复杂材料在熔点和热收缩特性上都要达到非常理想的匹配,这种相似性在实践中是很难达到的。

d)摩擦焊

是使两焊件相对旋转并加压摩擦,待金属表面加热至塑性状态后停转,施加较大的顶锻力使焊件连接。接头处既有机械结合又有化学键结合。摩擦焊广泛用于同类和异种金属的连接,对不同类材料,如陶瓷与金属的摩擦焊尚属起步阶段,该法仅限于圆棒、管件等的焊接。

e)微波焊接

微波加热不同于传统的加热技术,其热量来自于材料对微波的吸收,这种内部的、局部的加热方式优点是无论小工件和大工件都可以被快速均匀地加热。因此,微波工艺用于连接有如下优点:与传统工艺相比,可以用中等的功率快速加热;在连接区域局部加热;不同材料对微波的吸收率不同,对材料的加热有选择性;可在线控制。作为一种新的焊接工艺,微波焊接尚在发展阶段。

(2)机械连接

机械连接是一种借助结构设计的方法,利用机械手段(如锚、夹等)实现金属--陶瓷的连接,有螺栓连接和热套连接两种。热套连接是利用热胀冷缩的原理进行连接,但连接所产生夹持应力常会产生严重的应力集中。机械连接由于方便己在部分增压转子与金属的连接中应用,但机械连接中的热套连接法不能用在高温场合。机械连接的接头应力集中,因而使用范围有限。

(3)粘接连接

粘接是以适宜的胶粘剂,采用适当的接头形式和合理的粘接工艺,将材质、形状、大小、厚度以及硬度相同或不同的两个或多个构件(或材料),结合成为一个连续、牢固、稳定的整体的一种连接方法。粘接过程一般包括表面处理、涂胶、合拢、固化等基本环节。粘接时,先将胶粘剂涂敷在被粘物表面上,并浸润表面;尔后胶粘剂经过链段、大分子漫流、流变、扩散,与被粘物紧密结合。若胶粘剂层与被粘物表面的距离小于5nm,则会相互吸引形成氢键、范德华力、共价键、配价键、离子键等,加上渗入孔隙中胶粘剂,固化后产生机械嵌合获得牢固的粘接。粘接在迄今所有连接(包括焊接、铆接、螺纹连接、嵌接和粘接)技术中,历史最为悠久,且在很多方面优于其他方法。随着科学的进步,粘接技术早己渗透到国民经济体系中的各行各业。然而,传统的粘接技术己无法满足各行各业进一步发展的要求,近年来越来越多的特种粘接技术如雨后春笋般不断涌现,在较大程度上取代了传统的粘接技术,并解决了焊接、铆接、螺栓连接、过盈配合、键桥固定、机械加固、红套、热压定型、热处理、表面处理等许多传统技术不能或不易解决的许多难题,降低了成本,提高了效率,使得特种粘接技术具有了很强的生命力。根据某些特殊需要,还可以进行混合连接,如粘接-焊接、粘接-铆接和粘接-螺纹联接等方式。同时,粘接具有固化速度快,使用温度范围宽、抗老化性好等特点。采用粘接连接,界面作用为物理力、化学键,残余应力小。粘接连接金属与陶瓷已泛应用于航空航天、电子、汽车、机械制造等高技术领域。澳大利亚和美国自20世纪70年代以来就采用复合材料部片对损伤的匕机结构进行胶接修理,目前已经成功地应用到了多种飞机上。粘接技术用在陶瓷--金属连接上具有工艺简单、效率高和成型性能好的特点,正越来越受到航空坛行器制造业的关注。

3、陶瓷--金属连接存在的主要问题研究

陶瓷与金属是两类性质不同的材料,相互结合时在界面上存在着化学及物理性能的差异,特别是化学键差异较大,加之陶瓷材料本身特殊的物理化学性能,所以无论是与金属连接还是与陶瓷本身的连接都存在不少的特点与难点,采用常规的焊接方法很难实现有效的连接,因此,实现陶瓷一金属之间的可靠连接是陶瓷材料能够发挥作用的关键。

a)它们的结品结构不同,陶瓷是金属和非金属元素的固体化合物,与金属有相似之处,也有品粒聚集体及晶粒和品界,但它与金属有本质上的不同,导致熔点极不相同;

b)陶瓷不含大量的白由电子,而是以离子键、共价键或两者的混合键结合在一起,稳定性很高,品体的强大键能使元素扩散极困难,致使金属对陶瓷的润湿性很差,两种材料的相容性很差;

c)金属和陶瓷的热膨胀系数和杨氏模量相差悬殊,导致接头产生很大热应力,会在陶瓷侧产生裂纹;

d)陶瓷的相组成比金属复杂的多,其显微组织有晶体相、玻璃相和气相,结合面产生脆性相、玻璃相会使陶瓷性能减弱。

上一篇:市政工程项目管理的研究 下一篇:成功投标的策略与技巧