陶瓷材料成形工艺的研究新进展

时间:2022-09-10 12:41:36

陶瓷材料成形工艺的研究新进展

摘要 当前阻碍陶瓷材料进一步发展的一个关键就是成形工艺技术没有突破。本文介绍了胶态成形、固体无模成形工艺及气态成形工艺,对上述工艺的原理、工艺过程及特点进行了比较,提出了陶瓷成形工艺的关键问题,并重点介绍了水基非塑性浆料的注射成形新工艺。

关键词 陶瓷,胶态成形,固体无模成形,气态成形,胶态注射成形

1前 言

陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域还是在新兴的高技术领域都有着广泛的应用。然而陶瓷所固有的高强度、高硬度等优点却同时给陶瓷件的成形、加工带来了很多困难。因此,研究各种陶瓷的成形技术变得至关重要。

粉料成形技术的目的是为了得到内部均匀和高密度的坯体,提高成形技术是提高陶瓷产品可靠性的关键步骤[1]。成形是陶瓷生产过程的一个重要步骤,其过程就是将分散体系(粉料、塑性物料、浆料)转变为具有一定几何形状和强度的块体,也称素坯。成形的方法很多,本文主要介绍胶态成形工艺、固体无模成形工艺、陶瓷胶态注射成形技术这几种主要的陶瓷成形工艺的成形原理、基本工艺及特点。不同形态的物料适合不同的成形方法,而究竟选择哪一种成形方法则取决于对制品各方面的要求和粉料的自身性质(如颗粒尺寸、分布、表面积)。

2胶态成形工艺

2.1 挤压成形(Extrusion)[2~3]

将粉料、粘结剂、剂等与水均匀混合,然后将塑性物料挤压出刚性模具即可得到管状、柱状、板状以及多孔柱状成形体。其缺点主要是物料强度低、容易变形,并可能产生表面凹坑、起泡、开裂以及内部裂纹等缺陷。挤压成形用的物料以粘结剂和水作为塑性载体,尤其需用粘土以提高物料相容性,故其广泛应用于传统耐火材料如炉管、护套管以及一些电子材料的成形生产。

2.2 压延成形(Sheet Forming)[3~4]

将粉料、添加剂和水混合均匀,然后将塑性物料转到滚柱压延,而成为板状素坯。压延法成形密度高,适于片状、板状物件的成形。

2.3 注射成形(Injection Molding)

陶瓷注射成形是借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成形的,成形之后再把高聚物脱除。注射成形的优点是可成形形状复杂的部件,并且具有高的尺寸精度和均匀的显微结构;缺点是模具设计加工成本和有机物排除过程中的成本比较高。在克服传统注射成形缺点的基础上,水溶液注射成形(Aqueous Injection Molding)和气相辅助注射成形(Gas-assisted Ceramic Injection Molding)相应发展起来[5~6]。水溶液注射成形采用水溶性的聚合物作为有机载体,很好地解决了脱脂问题。水溶液注射成形技术可以很容易地实现自动控制,比起传统的注射成形来说降低了成本。气体辅助注射成形是把气体引入聚合物熔体中而使成形过程更容易进行,该技术开辟了许多新的应用途径,比如适用于腐蚀性流体,另外高温高压下流体的陶瓷管道也可以应用此方法生产[7]。

2.4 注浆成形(Slip Casting)

SC工艺利用石膏模具的吸水性,将制得的陶瓷浆料注入多孔质模具,由模具的气孔把浆料中的液体吸出,而在模具中留下坯体[8]。注浆成形工艺成本低、过程简单、易于操作和控制,但成形形状粗糙,注浆时间较长,坯体密度、强度也不高。人们在传统注浆成形的基础上,相继发展了新的压滤成形(Pressure Filtration)和离心注浆成形(Centrifugal Casting),借助于外加压力和离心力的作用,来提高素坯的密度和强度,避免了注射成形中复杂的脱脂过程,但由于坯体均匀性差,因而不能满足制备高性能、高可靠性陶瓷材料的要求。

2.5 流延成形(Tape Casting)[2]

流延成形是将粉料与塑化剂混合得到流动的粘稠浆料,然后将浆料均匀地涂到转动着的基带上,或用刀片均匀地刷到支撑面上,形成浆膜,干燥后得到一层薄膜,带膜厚度一般为0.01~1nm。60年代中期,Wentworth等首次将流延法用于铁电材料的浇注成形。此外,它还被广泛用于多层陶瓷、电子电路基板、压电陶瓷等器件的生产中[9]。

2.6 凝胶注模成形(Gel Casting)[10]

凝胶注模成形是20世纪90年代开发出的一种新型胶态成形工艺,由美国橡树岭国家实验室Mark A.Janney教授等人首先发明。它将传统陶瓷工艺和化学理论有机结合起来,将高分子化学单体聚合的方法灵活地引入到陶瓷的成形工艺中,通过将有机聚合物单体及陶瓷粉末颗粒分散在介质中制成低粘度、高固相体积分数的浓悬浮体,并加入引发剂和催化剂,然后将浓悬浮体(浆料)注入非多孔模具中,通过引发剂和催化剂的作用使有机聚合物单体交联聚合成三维网状聚合物凝胶,并将陶瓷颗粒原位粘结而固化成坯体。

目前的研究重点主要还是如何在结构陶瓷的成形上选择低毒性凝胶体系,清华大学的谢志鹏等将琼脂糖凝胶大分子用于陶瓷的原位凝固成形[11],成功制备出涡轮转子等异形陶瓷坯体。目前生物大分子壳聚糖已经用于凝胶注模陶瓷坯体。研究表明,角澡胶可和多种树脂组合并用于凝胶注模的成形。无毒体系Na-alginae(藻酸钠)-CaIO3-PVP已应用于铝陶瓷的成形[12]。Omatete[13]等发明了一种使用羟基-甲基-丙烯酰胺(Hydroxy Methyl Acrylamide,HMAM)单体的体系,其特点是固相高、湿坯易脱模,成形制品密度可达理论值的99%,有较大的研究价值。美国东北大学Montgomery等人发明了热可逆转变凝胶注模成形工艺(TRG),当温度高于某值时,其混合物料呈液态,反之则呈凝胶的固态。

凝胶注模成形作为一种新型的胶态成形方法,可实现净尺寸成形形状复杂、强度高、微观结构均匀、密度高的坯体成形,烧结成瓷的部件较干压成形的陶瓷部件有更好的电性能。该技术已广泛应用于电子、光学、汽车等领域,但需要具体解决的问题有:高固相低粘度浆料的制备、素坯干燥新方法和固相含量高带来的浆料中气泡排除问题,以及制备薄膜、厚膜时,坯体的开裂、变型、氧阻凝带来的表面起皮等问题[14]。

2.7 直接凝固注模成形(Direct Coagulation Casting)

直接凝固注模成形[15~17]是瑞士苏黎世高校的L.Gaucker教授T.Graule博士发明的一种近净尺寸原位凝固胶态成形方法。这种方法利用了胶体化学的基本原理。其成形原理如下:对于分散在液体介质中的微细陶瓷颗粒,所受作用力主要有胶粒双电层斥力和范氏引力,而重力、惯性等影响很小。根据胶体化学DLVO理论,胶体颗粒在介质中总势能Ut是双电层排斥能Ur和范氏吸引能Ua之和,即Ut=Ur+Ua。当介质pH值发生变化时颗粒表面电荷随之变化。在远离等电点IEP,颗粒表面形成的双电层斥力起主导作用,使胶粒呈分散状态,即可得到低粘度、高分散、流动性好的悬浮体。此时增加与颗粒表面电荷相反的离子浓度,可使双电层压缩;或者改变pH值靠近等电点,均可使颗粒间排斥能减少或为零;而范氏引力占优势,使总势能显著下降,浆料体系将由高度分散状态变成凝聚状态,若浆料具有足够高的固相含量(>50vol%),则凝固的浆料将有足够高的强度以便成形脱模。

该成形方法已经成功地应用于成形氧化铝、氧化锆、碳化硅和氮化硅复杂形状的部件。该工艺的主要优点为不需要或只需少量的有机添加剂(<1%),坯体不需脱脂,坯体密度均匀,相对密度高(55~70%),可以成形大尺寸形状复杂的陶瓷部件。

2.8 水解辅助固化成形(Hydrolysis Assisted Solidification)[30]

水解辅助固化成形(简称HAS)结合了水泥性物质的硬化、直接凝固注模成形(DCC)和凝胶注模成形(GC)的优点,此方法建立于AlN等物质在热激发下的加速水解反应。反应式为:

AlN + 3H2O = Al(OH)3 + NH3

AlN加入陶瓷浆料之后发生热水解,浆料中的水被消耗,固相体积分数增高。同时氨气的产生使浆料的pH值移向高pH值点,对于Al2O3浆料来说pH值移向了其等电点,可引起陶瓷浆料的固化。另一方面,作为AlN的水解产物的Al(OH)3在加热时可以胶态化,从而起到辅助固化、增加坯体强度的目的。HAS工艺的优势在于工艺简单、浆料流变性好、固化快、密度高。主要缺点在于需额外的设备收集和中和氨,而且该工艺不适合于所有陶瓷,目前适用于制备含有氧化铝,或至少将其作为次要相的陶瓷材料,如氧化铝陶瓷、氧化铝增韧氧化锆陶瓷、Sialon陶瓷等[18]。

2.9 电泳浇注成形(EFD)

EFD体系是将一个外部电场作用于浆料上,促进带电粒子的迁移(电泳),随后沉积在相反电极上[19]。EFD工艺中,颗粒必须保持稳定分散状态,从而可以各自独立向电极运动,进而颗粒可以分别沉积,不发生团聚。悬浮颗粒必须具有高的电泳移动能力,沉积过程中,由于颗粒移动时双电层发生变形,即靠近基体的离子和颗粒浓度增加,稳定性条件发生变化。当电泳和静电力仍超过范德华力,颗粒开始堆积,从而开始形成吸引颗粒网络。而胶态参数(Zeta电位、粘度和电泳迁移率)和电导率在EFD工艺中非常重要。

EFD工艺由于其简单性、灵活性、可靠性而逐步应用于多层陶瓷电容器、传感器、梯度功能陶瓷、薄层陶瓷试管以及各种材料的涂层等。

3固体无模成形工艺

3.1 层片叠加成形法(Laminated Object Manufacture)

LOM法是美国的Helisys公司开发并实现商业化的一项工艺,其成形工艺如图1所示。LOM公司利用激光在x-y方向的移动来切割每一层薄片材料。每完成一层的切割,控制工作平台在z方向的移动以叠加新一层的薄片材料。激光的移动由计算机控制。层与层之间的结合可以通过粘结剂或热压焊合。由于该方法只需要切割出轮廓线,因此成形速度较快,且非常适合制造层状复合材料。Helisys和Peak Engineering等公司将其用于陶瓷的成形,用于叠加的陶瓷材料一般为流延薄材。Curtis Criffin等采用LOM法制成了Al2O3部件,结果表明其性能与采用传统干压工艺成形的相差不大[20~21]。

3.2 熔化沉积成形(Fused Deposition of Ceramics)

FDC技术是由FDM(Fused Deposition Modelling)技术发展而来的。FDM技术是由Stratasys公司成功开发并实现商业化的。在FDM中,通过计算机控制,将由高分子或石蜡制成的细丝送入熔化器,在稍高于其熔点的温度下熔化,再从喷嘴挤至成形平面上。通过控制喷嘴在x-y方向和工作平台z方向的移动可以实现三维部件的成形。Rutgers大学和Argonne国家实验室将这种技术应用于陶瓷生产,并称之为Fused Deposition of Ceramics(FDC)。Stephen等对Si3N4、Al2O3的成形进行了研究,但由于细丝缺乏足够的柔韧性而不能连续进给,而且部件密度较低,需要进一步研究来加以解决[20~23]。

3.3 立体印刷成形(Stero Lithography)

立体印刷成形以光敏树脂为原料,采用计算机控制下的紫外激光,以预订原型各分层截面的轮廓为轨迹进行逐点扫描,使被扫描区的树脂薄层产生光聚合反应后固化,从而形成一个薄层截面。当一层固化后,向上(或下)移动工作台,在刚刚固化的树脂表面布放一层新的液态树脂,再进行新一层扫描、固化。新固化的一层牢牢地粘合前一层,如此重复至整个原型制造完毕。Michelle L.Criggith等研究了SiO2、Si3N4、Al2O3的成形,Brady等用SL法制备了PZT材质的压电陶瓷件。

3.4 三维打印成形(3-D Printing)

三维打印成形工艺是由美国麻省理工学院开发出来的,首先将粉末铺在工作台上,通过喷嘴把粘结剂喷到选定的区域,将粉末粘结在一起,形成一个层,然后工作台下降,填粉后重复上述过程直至做出整个部件。J.Grau等人[25]采用三维打印技术制备了Al2O3陶瓷膜。J.YOO等人用三维打印法结合热等静压工艺制备出致密的Al2O3陶瓷件。此外,Specific Surface公司使用该技术制造了复杂的陶瓷过滤器。

3.5 喷墨打印成形(Ink-jet Printing)

喷墨打印成形技术是由Brunel大学的Evans和Ediris ingle研制出来的,是将待成形的陶瓷粉与各种有机物配置成陶瓷墨水,通过打印机将陶瓷墨水打印到成形平面上成形。该工艺的关键是配制出分散均匀的陶瓷悬浮液,目前使用的陶瓷材料有ZrO2、TiO2、Al2O3等[26]。

3.6 选区激光烧结(Selective Laser Sintering)

SLS以堆积在工作平台上的粉末为原料,用高能CO2激光器从粉末上扫描,将选定区内的粉末烧结,做出部件的每一个层。对于塑性物料,激光完全烧结高分子粉末,得到最终成形件。陶瓷的烧结温度很高,很难用激光直接烧结。可以将难熔的陶瓷粒子包裹上高分子粘结剂并应用到SLS设备上,通过激光熔化粘结剂以烧结各个层,从而制备出陶瓷生坯,通过粘结剂去除及烧结后处理的过程就得到最终的陶瓷件。Marcus等利用这种技术制成了Al2O3齿轮[27]和其他零部件。

4气相成形

利用气相反应生成纳米颗粒,如能使颗粒有效而且致密地沉积到模具表面,累积到一定厚度即成为制品,或者先使用其它方法制成一个具有开口气孔的坯体,再通过气相沉积工艺将气孔填充致密,用这种方法可以制造各种复合材料。由于固相颗粒的生成与成形过程同时进行,因此可以避免一般超细粉料中的团聚问题。由于在成形过程中不存在排除液相的问题,从而避免了湿法工艺带来的种种弊端[28]。

5陶瓷胶态注射成形新工艺

清华大学黄勇教授[29]提出把胶态成形和注射成形结合起来的“陶瓷胶态注射成形新工艺”,该工艺即水基非塑性浆料的注射成形,其流程见图2。这种工艺是将低粘度、高固相体积分数的水基陶瓷浓悬浮体注射到非孔模具中,并使之原位快速固化,再经烧结,制得显微结构均匀、无缺陷和净尺寸的高性能、高可靠性的陶瓷部件,可大大降低陶瓷制造成本。

陶瓷胶态注射成形解决了两个重要的关键技术:陶瓷浓悬浮体的快速原位固化和注射过程的可控性。通过深入研究发现,压力可以快速诱导陶瓷浓悬浮体的原位固化,从而发明了压力诱导陶瓷成形技术。

通过胶态注射成形技术可以获得高密度、高均匀性和高强度的陶瓷坯体,这种成形技术可以消除陶瓷粉体颗粒的团聚体,减少烧结过程中复杂形状部件的变形、开裂,从而减少最终部件的机加工量,获得高可靠性的陶瓷材料与部件。同时避免了传统陶瓷注射成形使用大量有机物所导致的排胶困难问题,实现了胶态成形的注射过程。该新工艺适合于规模化生产,是高技术陶瓷产业化的核心技术。

6结 语

目前,陶瓷胶态成形工艺已取得很大进展,但仍面临着几个急需解决的问题。首先是如何制备分散良好、低粘度、高固相含量的浆料,其次是脱脂问题以及溶剂类型的转变问题。

固体无模成形技术制备陶瓷件的研究目前还处于研制阶段,各种成形的方法也各有其优缺点。选用的陶瓷材料也比较有限,但是这不能掩饰其快速制造复杂形状陶瓷构件的优点,而且其应用领域还相当广泛,因此必将在包括结构陶瓷和功能陶瓷在内的领域发挥更重要的作用。

当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未有新的突破。压力成形不能满足形状复杂性和密度均匀性的要求。上个世纪90年代以来发展起来的多种胶体原位成形工艺、固体无模成形工艺以及气相成形工艺有望促进陶瓷成形工艺得到突破。

参考文献

1 German R M,Hens K F.Key issues in powder injection molding[J].Ceram.Bull,1991,70(8):1294~1320

2 G.Y.Jr.Onoda.L.L.Hench.eds.Ceramic Processing Before firing. Wiley-Interscience.New York,1978

3 施剑林.现代无机非金属材料工艺学[M].长春:吉林科学技术出版社,1993

4 华南工学院等合编.陶瓷工艺学[M].北京:中国建筑工业出版社,1981

5 Okada K.Viscosity and powder dispersion in ceramic injection molding mixture[J].Journal of Chemical Engineering of Japan,2000,33(1):168~173

6 Nyborg L,Carlstrom E.Guide to injection moulding of ceramics and hard metals: special consideration of fine powder[J].Powder Metallurgy,1998,41(1):41~45

7 李淑静,李 楠.陶瓷胶态成型方法研究新进展.耐火材料[J]. 2005,39(2):135~139

8 Smith P A.Particle crowding analysis of slip casting[J].Am Ceram Soc,1995,78(3):809~812

9 C.Wentworth,G.W.Taylor.Am.Ceram.Soc.Bull,1967, 46(12):1186

10 O.O.Omatete.M.A.Janney.RA.Strehlow.Am.Ceram.Soc.Bull,1991,70(10):1641

11 谢志鹏,杨金龙,陈亚丽,黄 勇.琼脂糖凝胶大分子在陶瓷原位凝固成型中的应用[J].1999

12 Z.PXie,Y.Huang,Y.L.Chen,Y.Jia.A new gel casting of ceramic by reaction of sodium alginate and calcium iodate at increased temperatures[J].Journal of Materials Science Letters,2001,20:1255~1257

13 Omatete O O,Nick J J.Improved gel casting systems[J].Cream Eng Sci Proc,1999,20(30):241~248

14 晏伯武.凝胶注模成型工艺的研究[J].2006

15 司文捷,苗赫濯,黄 勇.陶瓷直接凝固注模(DCC)成型[J].现代技术陶瓷,1995,16(4)

16 庄志强,王 剑,刘 勇.陶瓷成型新方法及其应用的研究[J].陶瓷研究与职业教育,2004,2(1):43~47

17 陈学文,刘维良,陈建华.高性能陶瓷原位凝固成型技术的研究进展[J].陶瓷学报,2005,26(4):290~293

18 Kosmac T.Potential of the hydrolysis-assisted solidification (has) process for wet forming of engineering ceramics[J].Science of Engineering Ceramics.Pt.2.Proc.2nd Int.Symp.Osaka,1998:357~362

19 FerrariB,S nchez-Herencia A J,Moreno R.Aqueou selectrophoretic deposition of Al2O3 /ZrO2 layered ceramics[J].Materials Letters,1998,35:370~374

20 P.M Dickens,et al.Proc Instm Mech Engrs,1995(209):261~266

21 Curtis Griffin,et al.American Ceramic Society Bulletin,1994,73(8):109~113

22 Mukesh K. Agarwals, et al. The American Ceramic Society Bulletin, 1996, 75(11):60~65

23 Daniel Deitz. Mech Eng ,1990(2) :34~39

24 Gabriel T-M Chu. Solid Freeform and Additive Fabrication[J].MRS Symposium Proceedings, 1999,(542):119~123

25 Jason Grau.Ceramic Industry,1996,23(7):22~27

26 孙 勇,王秀峰.快速原型制造技术在陶瓷制件上的研究进展[J].陕西科技大学学报,2004,22:148~152

27 K Sub ram anian. Rapid Prototyping Journal,1995,1(2):24~35

28李懋强.关于陶瓷成型工艺的讨论[J].硅酸盐学报,2001,29(5):469~470

29 黄 勇,龙月洋.高性能陶瓷创新工艺-陶瓷胶态注射成型技术[J].中国陶瓷,2006,42(5):41~43

30 张学军,郑永挺,韩杰才.先进陶瓷材料胶态成型工艺研究进展[J].宇航材料工艺,2006,1:16~20

上一篇:二七年总目录 下一篇:浅谈浮雕壁画