高压直流输电线路继电保护技术研究

时间:2022-09-06 06:38:02

高压直流输电线路继电保护技术研究

摘 要:在电网技术水平的发展下,高压直流输电线路也在我国得到了广泛的使用,高压直流输电线路有着联网方便、线路走廊窄、功率易于调节、输送容量大的优势,有着良好的应用前景,截止到目前为止,我国高压直流输电工程比例已经超过了交流输电工程比例,成为了名副其实的高压直流输电大国。为了保证高压直流输电线路运行的安全性与稳定性,我们必须要对输电线路进行继电保护。

关键词:高压直流输电线路 继电保护技术 安全性

中图分类号:TM73 文献标识码:A 文章编号:1674-098X(2014)09(a)-0026-01

1 高压直流输电线路继电保护的影响因素

1.1 电容电流

高压直流输电线路电容大、波阻抗小以及自然功率小的特征,这就给差动保护整定带来较大的影响,为了保障高压直流输电线路运行的安全性与稳定性,必须要对电容电流采取科学合理的补偿措施。此外,在分布电容因素的影响下,一旦高压直流输电线路运行出现故障,故障距离与继电器测量阻抗之间的线性关系就会发生改变,成为双曲正切函数,此时,就不能使用传统继电保护措施。

1.2 过电压

高压直流输电线路在出现故障之后,电弧熄灭时间会延长,情况严重时甚至会发生不消弧的情况,在电路电容因素的影响下,两端开关不会在同一时间断开,此时,行波来回折反射就会严重影响整个系统的运行。

1.3 电磁暂态过程

高压直流输电线路长,在操作与发生故障时高频分量幅值较大,这就给高频分量的滤除工作带来较大的困难,这不仅会导致电气测量结果发生偏差,此时,半波算法在高频分量的影响下准确性难以保障,此时,电流互感器也会发生饱和现象。

2 高压直流输电线路继电保护设计原则与注意事项分析

2.1 输电线路的主保护

影响输电线路主保护的因素是多种多样的,必须要根据高压直流电路的实际情况进行选择,在设计时,需要使用两台不同原理的装置,第一套保护装置可以使用分相电流差动纵联保护装置;第二套保护装置可以使用相电压补偿纵向保护装置,两套装置分别来使用不同的通道。

2.2 输电线路的后备保护

输电线路后背保护是主保护的重要补充,在进行设计时,需要控制好线路两端切除故障差,配置好完整的接地距离保护与相间距离设备,距离保护特征不应该局限在四边形、圆形与椭圆形几种,可以将微机保护充分的利用起来,从根本上提升系统运行的安全性。

2.3 并联电抗器保护

高压直流输电线路中并联电抗器出现故障后,线路会发出相应的命令,启动自动保护装置,此时,并联电抗器就可以充分的发挥出其作用,若故障超过了高压直流输电线路允许的标准,则需要及时的将两侧断路器断开。

2.4 自动重合闸

高压直流输电线路常用的自动重合闸有三相重合闸、单相重合闸与快速重合闸集中模式,具体选择哪一种模式,还需要根据具体的过电压水平进行分析,为了防止过电压操作情况的发生,在非全相情况下过电压倍数在允许标准范围时,可以使用单相重合闸,若超过标准范围,就需要使用三相重合闸。在进行设置时,需要充分的考虑到线路两端的时间间隔与重合顺序,将其控制在标准范围内。

3 高压直流输电线路常用的继电保护技术

3.1 行波暂态量保护

如果高压直流输电线路出现故障,会出现反行波,要保障系统运行的稳定性,就需要做好行波保护工作,这也是高压直流输电线路的主保护措施。

就现阶段来看,常用的行波保护措施由SIEMENS方案与ABB方案。其中,SIEMENS是基于电压积分原理的一种保护措施,起保护启动时间为16~20 s,与ABB方案相比,该种的保护速度相对较慢,但是,抗干扰能力则优于ABB保护方案;ABB行波保护的检测原理是极波与地模波,能够检测到图变量为10 ms之内的反行波突变量,在必要的情况下,也可以使用用电压、微分启动与电流图变量几种方式来识别。

以上两种行波保护能力都较为有限,耐过渡电阻能力不理想,此外,还存在着缺乏整定依据、理论体系不严密等缺陷。为了提升行波保护的效果,学界也提出了形态学梯度技术与数学形态学滤波技术,但是,无论是暂态量保护还是行波保护,都存在一些弊端,还需要进行深入的分析。

3.2 微分欠压保护

微分欠压保护是一种基于电压幅值水平与电压微分数值的保护措施,兼具主保护与后备保护的功能,在现阶段下,SIEMENS方案与ABB方案检测的对象都是输电线路的电压水平与电压微分。其中,后者上升延时为20 ms,在电压变化率上升沿宽度未达到标准的情况下,就能够起到后备保护作用,但是其耐过渡电阻能力并不理想。

微分电压保护动作的可靠性与灵敏度要优于行波保护,但是动作速度则不如行波保护,两者都存在着灵敏度不理想、整定依据不足、耐过渡电阻能力较差的问题。

3.3 低电压保护

低电压保护是高压直流输电线路的常用后备继电保护,主要依靠对电压幅值的检测来实现保护工作,根据保护对象的不同,低电压保护包括极控低电压保护措施与线路低电压保护措施,其中,前者保护定值低于后者,前者在线路发生故障时会闭锁故障极,后者在开展保护动作时会启动线路重启程序。

低电压保护的设计简单,但是缺乏科学、系统的整定依据,难以帮助技术人员判断故障的具体类型,动作速度较慢。

3.4 纵联电流差动保护

纵联电流差动保护模式使用双端电气量,选择性较好,但是该种保护模式在故障发生较长的时间后才能够做出保护措施,因此,只能够用于高阻故障的诊断与切除中。由于各类因素的影响,现阶段使用的差动保护也未联系到电压变化过程与电容电流问题,很容易出现误动,虽然电流差动保护装置有着动作速度快以及灵敏度高的优势,但是这种优势却未在高压直流输电线路中充分的发挥出来,性能还有待提升。

4 结语

综上所述,高压直流输电线路有着线路长、电压高、电容大、输送功率大、波阻抗小的特点,这也对继电保护工作提出了较高的要求,继电保护不仅仅需要满足传统保护的目的,还需要对线路过电压产生限制,提升设备与系统运行的稳定性与安全性,就现阶段来看,虽然我国的高压直流输电线路已经得到了广泛的使用,但是其继电保护技术还存在着各类问题,缺乏科学、系统的整定依据,灵敏度不高,还需要开展进一步的研究,相信在不久的将来,高压直流输电线路继电保护技术定可以得到跨越式的发展。

参考文献

[1] 宋国兵,高淑萍,蔡新雷,等.高压直流输电线路继电保护技术综述[J].电力系统自动化,2012(22):123-129.

上一篇:基于赫姆霍兹机械共振原理的排烟系统设计 下一篇:外语课备课纵横谈