Apelin—13对实验性自身免疫性神经炎大鼠淋巴结中炎症因子TNF—α、IL—6和IFN—γ表达的影响

时间:2022-08-06 11:21:33

Apelin—13对实验性自身免疫性神经炎大鼠淋巴结中炎症因子TNF—α、IL—6和IFN—γ表达的影响

[摘要] 目的 观察Apelin-13对实验性自身免疫性神经炎(EAN)大鼠淋巴结中炎症因子肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)和干扰素-γ(IFN-γ)表达的影响。 方法 采用周围神经髓鞘抗原(P257-81)注射入Lewis大鼠后肢足垫诱导EAN模型。Lewis雄性大鼠随机分为对照组、EAN模型组和Apelin处理组。Apelin处理组于免疫当天至第15天每天尾静脉注射Apelin-13(0.1 mg/kg)。观察各组大鼠发病情况和坐骨神经组织病理学变化,采用实时定量PCR和Western blot检测淋巴结中TNF-α、IL-6和IFN-γ表达。 结果 与EAN模型组比较,Apelin处理组大鼠最初发病时间明显延长,高峰期临床评分显著降低,炎症因子TNF-α、IL-6和IFN-γ的表达显著降低(均P < 0.05)。 结论 Apelin-13对实验性自身免疫性神经炎大鼠有治疗作用,其机制可能与下调TNF-α、IL-6和IFN-γ的表达有关。

[关键词] Apelin;实验性自身免疫性神经炎;肿瘤坏死因子-α;白细胞介素-6;干扰素-γ

[中图分类号] R741.05 [文献标识码] A [文章编号] 1673-7210(2014)02(a)-0017-04

Effect of Apelin-13 on the expression of TNF-α, IL-6 and IFN-γ in experimental autoimmune neuritis rats

WU Zhengrong1,2 TAN Liming1 ZHAO Xin1 XIAO Yanjiao1 WANG Zhili1 YANG Li1

1.Department of Neurology, the Second Xiangya Hospital, Central South University, Hu'nan Province, Changsha 410011, China; 2.Department of Neurology, the People's Hospital of Lengshuijiang City, Hu'nan Province, Lengshuijiang 417500, China

[Abstract] Objective To observe the effects of Apelin-13 on the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interferon-γ (IFN-γ) of lymph node in experimental autoimmune neuritis (EAN) rats. Methods The rats models of EAN were established by injection of peripheral nerve myelin sheath antigen (P257-81) in the foot pad of male Lewis rats. The rats were randomly divided into the control group, EAN model group, and Apelin treatment group. The rats in Apelin treatment group were injected with Apelin-13 (0.1 mg/kg) by tail vein once daily from the 1st day to the 15th day. The clinical incidence and pathology in the rats were assessed. The expressions of TNF-α, IL-6 and IFN-γ in lymph node were measured by real-time PCR and Western blot respectively. Results Compared with the EAN model group, the initial time of nervous symptom significantly increased, the maximal neurological score significantly decreased, the expressions of TNF-α, IL-6 and IFN-γ in lymph node significantly decreased in Apelin treatment group (all P < 0.05). Conclusion Apelin-13 can treat the EAN in EAN rats model, the mechanism of which may be related with down-regulation of TNF-α, IL-6 and IFN-γ.

[Key words] Apelin; Experimental autoimmune neuritis; Tumor necrosis factor-α; Interleukin-6; Interferon-γ

吉兰-巴雷综合征(guillain barre syndrome,GBS)是一种常见的周围神经系统自身免疫性疾病,也称格林巴利综合征[1]。实验性自身免疫性神经炎(experimental autoimmune neuritis,EAN)是目前公认的研究GBS发病机制的经典动物模型[2-3]。在EAN发病机制中,活化的T细胞及其释放的促炎症细胞因子起到了至关重要的作用,影响着疾病的发生、发展和转归,如干扰素-γ(interferon-γ,IFN-γ)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-1(interleukin-1,IL-1)和白细胞介素-6(interleukin-6,IL-6)等[4-5]。

Apelin是1998年由Tatemoto等从牛胃的分泌物中分离提取出的G蛋白耦联受体血管紧张素受体AT1相关的受体蛋白(putative receptor protein related to the angiotensinreceptor AT1,APJ)的天然配体[6]。Apelin/APJ在神经系统中广泛分布,对神经系统具有保护作用。Apelin能对抗兴奋性毒性、缺血-再灌注和氧化应激等对神经细胞的损伤以及抑制神经细胞的凋亡[7-9]。因此,本研究拟观察Apelin-13对EAN大鼠的保护作用及对淋巴结组织中炎症因子TNF-α、IL-6和IFN-γ表达的影响,以探讨Apelin-13对EAN的保护作用及机制。

1 材料与方法

1.1 材料

周围神经髓鞘抗原(P257-81)为上海吉尔生化有限公司产品。Apelin为美国Sigma公司产品。总RNA提取试剂盒、MMLV第一链cDNA合成试剂盒、DNA Marker和Hot Star Taq Master Mix试剂盒为Invitrogen公司产品。引物由上海生物工程公司合成。BCA蛋白定量试剂为Pierce公司产品。TNF-α、IL-6、IFN-γ和β-actin抗体以及辣根过氧化物酶标记二抗为美国Santa Cruz产品。

1.2 动物分组及模型制备

健康清洁级雄性Lewis大鼠36只,10周龄左右,体质量200~220 g,由中南大学实验动物学部提供,以标准饲料喂养。将大鼠随机分为三组:对照组(12只)、EAN模型组(12只)、Apelin处理组(12只 )。EAN模型组和Apelin处理组大鼠经双后肢足垫下注射200 μL抗原乳剂(含200 μg P257-81的生理盐水100 μL 和完全弗氏佐剂100 μL 混合成的水乳剂)。免疫后当天Apelin处理组大鼠给予Apelin-13(0.1 mg/kg)尾静脉注射,1次/d,连续15 d;对照组和EAN模型组大鼠同期给予同等剂量的生理盐水尾静脉注射。

1.3 大鼠临床评分

免疫后每天对大鼠神经系统体征进行评分,EAN评分标准:0分:无明显异常;1分:鼠尾松弛无力,肌张力降低;2分:尾瘫,翻正反射部分消失;3分:翻正反射部分消失;4分:存在共济失调,姿态异常;5分:后肢轻瘫;6分:中度瘫痪;7分:后肢严重瘫痪;8分;四肢瘫痪;9分:濒临死亡;10分:死亡[10]。

1.4 坐骨神经病理学观察

免疫后第15天,断头处死大鼠,迅速取出取大鼠坐骨神经,10%中性甲醛固定,石蜡包埋,切片行HE染色,光学显微镜下观察坐骨神经病理改变。

1.5 实时定量PCR检测

免疫后第15天,断头处死大鼠,迅速取出大鼠腹股沟淋巴结,进行组织匀浆,Trizol提取淋巴结组织总RNA。以提取的总RNA为模板进行逆转录反应,合成cDNA第一链。取cDNA样品梯度稀释,进行实时定量PCR反应,反应总体系为30 μL,包含1 μL Taq DNA聚合酶(5 U/μL),4 μL cDNA,1 μL双链DNA特异性结合的荧光染料(SYBR Green ONE)(50×),上下游引物各1 μL,8 μL dNTP Mix (2×),其余用蒸馏水补足。TNF-α引物:上游:5′-TGATCGGTCCCAACAACGA-3′,下游: 5′-TGCTTGGTGGTTTGCTACGA-3′。IL-6引物:上游:5′-TGGACTCTGAGCCGCATTGA-3′,下游:5′-GACGCATGGCGGACAATAGA-3′。IFN-γ引物:上游:5′-AAAGACAACCAGGCCTAGA-3′,下游:5′-CTAATCCGCTTCGTTAGGCT-3′。β-actin引物:上游:5′-CGATCATCTTCCAGGAGCG-3′,下游:5′-CTTGCAGTGTGCTATACTCG-3′。反应条件为:95 ℃,10 s;62 ℃,30 s;共进行45个循环。采用2-CT法处理数据,以对照组为100%,对目的基因的mRNA表达进行分析。

1.6 Western blotting检测

免疫后第15天,断头处死大鼠,迅速取出取大鼠腹股沟淋巴结,提取淋巴结组织总蛋白,BAC法蛋白定量。100 μL样本加入到2×SDS凝胶加样缓冲液中煮沸。凝胶电泳1 h分离蛋白质,分离的蛋白转膜至聚偏氟乙稀膜上。10%脱脂牛奶封闭2 h,加入兔抗鼠TNF-α、IL-6、IFN-γ和β-actin一抗,4℃过夜。加入羊抗兔二抗,孵育6 h。显影后进行半定量分析。

1.7 统计学方法

采用SPSS 17.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,以P < 0.05为差异有统计学意义。

2 结果

2.1 动物发病情况和病情评分

如表1所示:与EAN模型组比较,Apelin处理组大鼠发病时间明显延迟(P < 0.05)。在致敏的第16天,Apelin处理组大鼠的临床评分与EAN模型组比较显著降低(P < 0.05)。

表1 动物发病情况和病情评分(x±s)

注:与EAN模型组比较,*P < 0.05

2.2 坐骨神经病理改变

结果如图1所示:EAN模型组大鼠坐骨神经神经束间和神经束内有大量的炎症细胞浸润,存在局灶性脱髓鞘现象,而对照组大鼠坐骨神经神经束间和神经束内未见明显炎症细胞浸润和脱髓鞘现象。与EAN模型组比较,Apelin处理组大鼠坐骨神经神经束间和神经束内炎症细胞浸润和脱髓鞘现象明显减少。

图1 坐骨神经病理改变(HE染色,×400)

2.3 淋巴结中炎症因子TNF-α、IL-6和IFN-γ的表达

结果如表2和图2所示:与对照组比较,EAN模型组大鼠淋巴结组织中炎症因子TNF-α、IL-6和IFN-γ mRNA和蛋白的表达水平显著升高(均P < 0.05)。与EAN模型组比较,Apelin处理组大鼠淋巴结组织中炎症因子TNF-α、IL-6和IFN-γ mRNA和蛋白表达水平显著降低(均P < 0.05)。

表2 淋巴结中炎症因子TNF-α、IL-6和IFN-γ mRNA的

相对表达水平(%,x±s)

注:与对照组比较,*P < 0.05;与EAN模型组比较,#P < 0.05;TNF-α:肿瘤坏死因子-α;IL-6:白细胞介素-6;IFN-γ:干扰素-γ

与对照组比较,*P < 0.05;与EAN模型组比较,#P < 0.05;TNF-α:肿瘤坏死因子-α;IL-6:白细胞介素-6;IFN-γ:干扰素-γ

图2 淋巴结中炎症因子TNF-α、IL-6和IFN-γ蛋白表达情况

3 讨论

GBS是神经科常见的外周神经脱髓鞘疾病,临床上表现为进行性对称性两腿无力、迟缓性瘫痪、腱反射降低或消失,部分患者轻度肌萎缩、肢体远端感觉异常等[11]。病理学特征主要为外周神经组织炎细胞浸润和脱髓鞘改变。目前GBS的病因和发病机制尚未完全明了。研究表明,GBS主要是一种由CD4+T细胞介导的涉及体液免疫和细胞免疫的自身免疫性疾病[12]。1955年Wakesman和Adams首次提出了EAN的概念。EAN也是由CD4+T细胞介导的以外周神经组织炎细胞浸润和脱髓鞘为主要病理特征的自身免疫性疾病[13]。EAN和GBS在临床表现、病理学特征、神经电生理学改变及免疫学发病机制等多方面都非常相似,因此,被广泛用于对GBS发病机制及治疗的研究,是目前公认的研究GBS理想的动物模型。

在GBS以及其动物模型EAN的发病中细胞因子具有十分重要的作用,在GBS和EAN中促炎症细胞因子的水平增加,而促炎症细胞因子和抑炎症细胞因子之间的平衡直接影响着GBS和EAN的发生发展和转归。参与GBS和EAN的促炎症细胞因子有很多,包括TNF-α、IFN-γ、IL-1、IL-6、IL-1、IL-17等[14]。研究表明,GBS患者血清TNF-α水平明显高于正常人,TNF-α水平与GBS病情严重程度呈正相关,血清TNF-α水平的降低有利于疾病的恢复[15]。IFN-γ是由CD4+Th1细胞和神经组织内NK细胞分泌的促炎症细胞因子,参与了多种自身免疫性疾病的发生发展。IFN-γ可激活巨噬细胞释放氧自由基,促进巨噬细胞和T淋巴细胞向神经系统的迁移,促进巨噬细胞上MHCⅡ类分子的表达,从而促进EAN的炎性反应[16]。

Apelin是由Tatemoto等在1998年通过反向药理学方法从牛的胃分泌物中分离纯化的一种小分子内源性神经肽,是APJ的天然配体[17]。Apelin/APJ在神经系统中有广泛的分布,研究表明,Apelin/APJ具有神经保护作用,能对抗兴奋性毒性损伤、氧化应激损伤,抑制神经细胞的凋亡等,是一种内源性神经保护因子。研究发现,海马细胞中有APJ和Apelin的表达,Apelin能诱导Akt和Raf/ERK1/2的磷酸化,对抗N-甲基-D-门冬氨酸(N-methyl-D-aspartic acid,NMDA)对海马神经元的兴奋性毒性损伤[18]。Apelin能抑制大脑皮质细胞中活性氧的产生、细胞色素C的释放以及caspase-3的激活,促进Akt和ERK1/2的磷酸化,抑制大脑皮质细胞凋亡[19]。Apelin可通过活化三磷酸肌醇IP3、PKC、MEK1/2和ERK1/2调节NMDA受体的NR2B亚单位的1480丝氨酸磷酸化,减少Ca2+积聚,降低钙蛋白酶calpain的活化,保护大脑皮质神经元抵抗谷氨酸的兴奋性毒性损伤[20]。

本研究结果显示,Apelin-13改善了EAN的临床症状,延迟了发病的时间,缩短了病程,明显减少了坐骨神经炎症细胞浸润,也明显减轻了坐骨神经髓鞘脱失程度。Apelin-13降低了促炎症细胞因子TNF-α、IFN-γ和IL-6的水平,对EAN的预后起着积极的作用。这些结果表明,Apelin-13对EAN大鼠有治疗作用,其机制可能与下调促炎症细胞因子TNF-α、IL-6和IFN-γ的表达有关。本研究阐明了Apelin是一种具有应用于GBS治疗潜能的有效药,为GBS的临床治疗提供一些新的思路和策略。

[参考文献]

[1] D'Amore A,Viglianesi A,Cavallaro T,et al. Guillain-barré syndrome associated with acute onset bilateral facial nerve palsies. A case report and literature review [J]. Neuroradiol J,2012,25(6):665-670.

[2] Zhang HL,Zheng XY,Zhu J. Th1/Th2/Th17/Treg cytokines in Guillain-Barré syndrome and experimental autoimmune neuritis [J]. Cytokine Growth Factor Rev,2013,24(5):443-453.

[3] 高莉,刘健,祝延,等.干扰素-β对实验性自身免疫性神经炎治疗作用的组织病理学和免疫学研究[J].中国临床神经科学,2006,14(5):458-463.

[4] Zhu W,Zhang K,Mix E,et al. Differential susceptibility to experimental autoimmune neuritis in Lewis rat strains is associated with T-cell immunity to myelin antigens [J]. J Neurosci Res,2011,89(3):448-456.

[5] 吴云,王化冰,王维治.Th1/Th2型细胞因子在实验性自身免疫性神经炎发病机制中的作用[J].中华神经科杂志,2007,40(9):626-629.

[6] Lv D,Li H,Chen L. Apelin and APJ,a novel critical factor and therapeutic target for atherosclerosis[J]. Acta Biochim Biophys Sin(Shanghai),2013,45(7):527-533.

[7] Foussal C,Lairez O,Calise D,et al. Activation of catalase by Apelin prevents oxidative stress-linked cardiac hypertrophy [J]. FEBS Lett,2010,584(11):2363-2370.

[8] Tao J,Zhu W,Li Y,et al. Apelin protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion [J]. Am J Physiol Heart Circ Physiol,2011,301(4):1471-1486.

[9] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin:implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.

[10] 贲莹,高长玉,张风华,等.丙戊酸对实验性自身免疫性神经炎大鼠保护作用的机制[J].脑与神经疾病杂志,2013, 21(2):141-144.

[11] Nakajima N,Ueda M,Nomura K,et al. Acute oropharyngeal palsy with localized sensory impairment resembling symptom distribution of acute pharyngeal-cervical-brachial variant in a patient with Guillain-Barré syndrome [J]. Rinsho Shinkeigaku,2013,53(8): 630-633.

[12] Huang S,Li L,Liang S,et al. Conversion of peripheral CD4(+)CD25(-) T cells to CD4(+)CD25(+) regulatory T cells by IFN-gamma in patients with Guillain-Barré syndrome [J]. J Neuroimmunol,2009,217(1-2):80-84.

[13] Brunn A,Uterm■hlen O,Carstov M,et al. CD4 T cells mediate axonal damage and spinal cord motor neuron apoptosis in murine p0106-125-induced experimental autoimmune neuritis [J]. Am J Pathol,2008,173(1):93-105.

[14] Matsuda R,Kezuka T,Nishiyama C,et al. Interleukin-10 gene-transfected mature dendritic cells suppress murine experimental autoimmune optic neuritis [J]. Invest Ophthalmol Vis Sci,2012,53(11): 7235-7245.

[15] Alvarez LB,Prieto TR,Colazo BM,et al. Severe Guillain-Barré syndrome in a patient receiving anti-TNF therapy. Consequence or coincidence. A case-based review [J]. Clin Rheumatol,2013,32(9):1407-1412.

[16] Lu MO,Zhu J. The role of cytokines in Guillain-Barré syndrome [J]. J Neurol,2011,258(4): 533-548.

[17] O'Carroll AM,Lolait SJ,Harris LE,et al. The Apelin receptor APJ:journey from an orphan to a multifaceted regulator of homeostasis [J]. J Endocrinol,2013,219(1):13-35.

[18] O'Donnell LA,Agrawal A,Sabnekar P,et al. Apelin,an endogenous neuronal peptide,protects hippocampal neurons against excitotoxic injury [J]. J Neurochem,2007,102(6):1905-1917.

[19] Zeng XJ,Yu SP,Zhang L,et al. Neuroprotective effect of the endogenous neural peptide Apelin in cultured mouse cortical neurons [J]. Exp Cell Res,2010,316(11):1773-1783.

[20] Cook DR,Gleichman AJ,Cross SA,et al. NMDA receptor modulation by the neuropeptide Apelin: implications for excitotoxic injury [J]. J Neurochem,2011,118(6):1113-1123.

(收稿日期:2013-11-01 本文编辑:程 铭)

上一篇:血管生成素—2及血管内皮细胞因子在星形细胞瘤... 下一篇:前臂皮瓣Ⅰ期修复口腔癌术后软组织缺损的临床...