关于电子技术课程体系融合的研究

时间:2022-07-28 05:15:37

关于电子技术课程体系融合的研究

摘 要: 电子技术课程体系包括:模拟电子、数字电子、电子系统仿真、CAD、硬件描述语言,以及实验和课程设计等教学环节,在以上课程的教学过程中,往往是各自独立,致使教学内容相互脱节与不连贯。作者在多年教学实践的基础上,提出在电子课程教学过程中,把整个电子技术课程作为一个体系进行教学,让各部分灵活穿插利用,充分融合,起到了较好的教学效果,对推动电子技术教学改革有一定的借鉴意义。

关键词: 电子技术 课程体系 融合

电子技术课程体系中包括了模拟电子、数字电子、电子系统仿真、CAD、硬件描述语言、课程设计、实验等课程,其中模拟电子技术和数字电子技术为专业基础课,侧重知识的系统性和理论分析,而电子系统仿真、CAD、硬件描述语言等课程为专业应用工具课程,是将理论转化为实践的桥梁,侧重于实际操作和应用,其中的EDA技术已经成为数字系统设计的必备技术,也是当今技术领域的前沿技术[1]。所以整个电子技术课程体系是相互融合和促进的,课程和课程之间有着非常密切的联系,但在教学实践中,还不能有效地将其很好地融合在一起,传统的模拟电子和数字电子教学实践只注重理论教学,课堂内容单调,学生学完之后并没有掌握解决实际问题所需的方法和能力。而在学习电子系统仿真、CAD、硬件描述语言等课程时,需要用到先前学过的数字电子和模拟电子的知识时,学生往往又倍感生疏,致使教学效果不好。这种割裂式的教学模式极大地浪费了教学资源,致使学生在学习过程中思维连贯性差,不能建立电子技术知识体系,思路狭窄。

我在多年的教学实践的基础上,结合教学实际,提出一种全新的教学模式,即把电子技术的理论教学、实验、课程设计、仿真、CAD、EDA、硬件描述语言等充分融合,课程的学习互相穿插和渗透,从而把孤立的课程形成一个教学体系,在教学实践中充分实现。同时在电子技术的基础上结合当今技术领域先进的知识和发展趋势,对学生进行新技术的引导,使学生在掌握好基础的同时,以最快的方式跟踪时展。

一、学科融合的基本思路

1.在模拟电子技术的教学过程中融合CAD和系统仿真技术。

在模拟电子的教学中,充分利用仿真软件能直观得到结果的优势,把理论教学与仿真有效结合,利用波形分析讲解电路功能是经常使用的一种方法。但是,传统的讲解只是在黑板上或者在投影屏幕上进行理论分析,学生看不到更直观的图像和结论,如果在课堂上结合Protel或EWB中的仿真功能,在课堂上讲解波形分析的同时,又给学生介绍仿真的概念和仿真工具的应用。这样一方面可以使学生掌握理论知识,另一方面可以使学生掌握一种仿真工具,在以后的课程设计或者是课外电子制作中加以应用,能大大地提高学生的学习兴趣和分析问题的能力。

2.在数字电子技术中融合EDA技术。

数字电子相对于模拟电子发展的空间较大,速度也很快,在教学中应大胆抛弃过时的技术和知识,采用“案例法”进行教学。在此基础上,应最大限度地在课堂上结合相关课程的新知识和新技术。特别是在有关数字电路的设计章节,我们可以在课堂讲解中结合利用最新的EDA技术、硬件描述语言,以MAX+PlusⅡ或Quartus[1]软件为载体进行数字电路的设计、仿真。

3.以上提到的在教学课堂中的应用的各种技术,并不需要我们占用大量的课时对其进行讲解,它们是为模拟电子和数字电子课程服务的。我们利用它们来获得我们需要的波形或者结论,在这个过程中潜移默化地使学生了解这些技术,拓宽视野。

4.鼓励学生自学相关软件,也可以通过作业由在作业本上做题逐渐向完成一个整体实物设计倾斜,工程可以是很简单的命题,但要求其有一套完整的材料:VHDL程序[2]、图纸、仿真结果等来加强引导这方面能力的培养。

5.经过前期模拟电子和数字电子课程中对CAD、EDA、系统仿真的应用和介绍,学生已经具备了一定的基础知识,则在具体讲解这些课程时,就可以提高难度,加快进度,尽快地与社会工程实践接轨。

6.以课程设计和实验为载体检验课程体系融合教学效果。课程设计和设计性实验是综合性很强的教学环节,能直接地体现电子技术课程体系融合的教学效果。

二、电子技术课程中多课程融合实例

我以用74161设计9进制计数器为例介绍在数字电路教学中的一个过程。

第一步,进行理论分析和设计,设计出9进制原理图,如图1。

图1 9进制计数器原理图

第二步,为了更直观地表现9进制计时器的计数效果,在课堂上我们用MAX+PlusⅡ软件进行仿真,教师对软件MAX+PlusⅡ简单介绍和演示,在仿真软件中画出相应的9进制原理图,如图2;

图2 74161组成的9进制计数器

第三步,进行波形仿真[4],如图3。

图3 9进制计数器波形图

第四步,布置课外作业,采用反馈置位法[3]完成9进制计数器功能,给出电路原理图和仿真结果。

通过该实例,使学生初步接触到数字仿真软件MAX+PlusⅡ,并通过波形图直观地看出9进制的结果,加深了学生对计数器的理解,并为以后设计仿真同类电路提供了有效的方法。

我们按照这一思路,在自动化专业班级进行了对比实验,结果表明在课程设计,实验等教学环节上,采用课程体系融合的班级动手能力,分析和解决问题能力明显好于采用传统教学培养的学生。大多数学生能独立地完成理论设计,模拟仿真,实物制作等环节。

三、结语

实践证明,将软件应用等技术类的课程融合到模拟电子和数字电子等理论类课程中去,既使理论课程变得生动直观,帮助学生更好地理解所学的理论知识,又给学生介绍了电路分析和设计的工具,使电子技术教学系统性更强,理论与实践之间的结合更紧密、更自然,也使后续的技术类的课程结合了应用,有的放矢。教学实验结果表明体系融合式教学方法在学生基础理论和实践环节的教学中均有较好的效果。

参考文献:

[1]潘松,黄继业.EDA技术与VHDL[M].清华大学出版社,2007.1.

[2]曾繁泰,陈美金.VHDL程序设计[M].清华大学出版社,2001.1.

[3]康华光.电子技术基础(数字部分)[M].高等教育出版社,2004.4.

[4]卢毅.VHDL与数字电路设计[M].科学出版社,2001.4.

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

上一篇:巧妙运用计算机技术激发学生学习兴趣 下一篇:如何利用Blog(博客)建设学习网站