基于无线传感器网络的矿井环境监测系统研究

时间:2022-07-27 02:41:36

基于无线传感器网络的矿井环境监测系统研究

【摘 要】煤矿井下环境恶劣,给煤矿安全生产和矿工的身心健康带来很大威胁,建立矿井环境监测系统对保证矿井安全生产具有重要的意义。本文将无线传感器网络技术引入矿井环境监测系统方案中,设计了基于无线传感器网络矿井环境监测系统模型,并对方案中的关键技术进行可行性分析。分析表明,基于无线传感器网络的矿井环境监测系统具有实用性和可行性。

【关键词】无线传感器网络;矿井环境;监测系统;ZigBee技术

1.引言

我国的煤炭生产主要来源于地下开采,井下生产条件很恶劣,如:噪声大、粉尘浓度和有毒气体浓度较高。长期在这种环境中从事生产工作,会影响矿工的身心健康,同时给煤矿安全生产也带来隐患。由于矿井结构的复杂性,井下的重要环境信息如温度、湿度、压力、风速以及有毒气体浓度等,很难用有线通信手段实时地监控。无线传感器网络(WSN,Wireless Sensor Network)作为一种新型的无线通信技术,应用于矿井环境监测系统的分析和设计之中,不仅为矿井安全生产管理和事故救援提供可靠的技术支持,而且为类似矿井的环境监测系统的分析和设计提供理论基础和应用实例。

2.无线传感器网络分析

无线传感器网络是由部署在监测区域内大量传感器节点通过自组织方式构成的网络系统,各个节点协作地感知、收集和处理被监测区域中感知对象的信息,通过对这些信息的协作式处理,获得感知对象的准确信息。因此,传感器、感知对象和观测者构成了WSN的三要素[1]。

2.1 无线传感器网络体系结构

2.1.1 无线传感器网络的一般结构

典型的传感器网络由传感器节点、汇聚节点、互联网或通信卫星和任务管理节点等部分构成。传感器节点随机部署在被监测区域内,节点以自组织形式构成网络,每个节点都可以收集数据,并通过“多跳”路由方式把数据传送到汇聚节点和其他相邻节点。汇聚节点直接与互联网或通信卫星相连,通过互联网或通信卫星实现任务管理节点与传感器节点之间的通信。用户通过管理节点对传感器网络进行管理和配置,监测任务并收集监测数据。

2.1.2 传感器节点的功能模块结构

无线传感器网络的关键设备是传感器节点。一般来说,传感器节点由传感器模块、数据处理模块、无线通信模块和能量供应模块组成。其中传感器模块由各类传感器及数模转换设备组成,主要用于感知被监测区域的环境信息,并将其感知到的信息数据传送给处理器模块;处理器模块主要负责协调节点各部分工作,如对感知模块获取的信息进行处理、保存,控制数据采集操作和电源的工作模式等;无线通信模块主要负责与其它传感器节点及观测者的通信;能量供应模块提供传感器节点正常工作所必需的能源,它是影响节点寿命的关键因素。无线传感器节点结构如图1所示。

图1 传感器节点结构示意图

2.2 无线传感器网络的特点

2.2.1 传感器节点体积小,成本低,具有自适应性

无线传感器中应用的传感器节点各部分集成度很高,因此具有体积小的优点。传感器网络是由大量的传感器节点组成,制造成本低。此外,传感器网络可在比较恶劣环境下工作,比如矿井、矿山,经常有节点失效或新节点加入网络,使网络的拓扑结构动态变化,因此,传感器网络具有很好的可靠性和自适应性。

2.2.2 电源能量是网络寿命的关键

无线传感器网络通常部署在恶劣环境或人不宜到达的区域,电池能量有限,且一般无补充能源,传感器节点由于电源能量的原因经常失效或废弃,因此如何提高电源效率是设计节点考虑的关键因素。

2.2.3 数据管理与处理是传感器网络的核心

无线传感器网络最鲜明的特点就是以数据为中心,传感器网络的设计必须以对感知数据的管理和处理为核心,把数据库技术和网络技术紧密结合,从逻辑概念和软、硬件技术等几个方面考虑其系统实现。

3.MEMSoWSN系统方案设计

MEMSoWSN是基于无线传感器网络的矿井环境监测系统的简称,系统方案基于无线传感网络技术构建,以实现对矿井环境监控和管理。

3.1 系统结构分析设计

图2为矿井环境及人员监测系统整体结构图。该监测系统可分为两个子系统,采集与传输系统(井下部分)和监测与管理系统(地面部分)。

图2 MEMSoWSN整体结构示意图

3.2 采集与传输系统

采集与传输系统主要包括移动节点、路由节点以及汇聚节点,实现对矿井生存环境等信息的采集与传输。其中,移动节点和路由节点都是传感器节点,主要收集井下环境信息,不参与多跳转发,只将本节点感知的信息发送给邻近路由节点;路由节点参与多跳转发,并感知矿井空气中有害气体的浓度和成分(瓦斯、一氧化碳等)以及矿井中空气的物理状态(如风速、负压、温湿度等),将感知的数据根据路由协议发送出去;汇聚节点的作用是实现传输系统和管理系统之间的数据传输,相当于系统之间的一个网关节点。

3.3 监测与管理系统

监测与管理系统包括监控中心计算机网络、数据库和监控软件等,无线传感器网络收集的数据通过汇聚节点传给监控中心并存入数据库,监控软件对数据进行分析处理,并根据数据的变化对人员及井下环境进行管理控制。

3.4 数据处理流程设计

MEMSoWSN系统的数据处理流程是:首先由传感器节点进行井下环境信息实时采集,经其内置的处理单元简单处理后发送给邻近路由节点,路由节点通过多跳转发的方式将数据发送给汇聚节点,汇聚节点将接收到的数据转发给地面信息监控中心,信息监控中心将接收到的汇聚节点的数据存入数据库,并对数据进行分析,以得到有用的井下环境信息,最后将分析结果展现给管理员。

3.5 传感器节点设计

根据无线传感器网络的通信原理和单片机知识,可设计如图3所示的传感器普通节点,图4所示的汇聚节点。

图3 普通节点示意图

图4 汇聚节点结构示意图

3.6 信息监控中心设计

信息监控中心主要功能是接收汇聚节点监测的数据,分析井下环境状况。它主要由网关服务器、数据库服务器、信息监控服务器等组成。网关服务器用来与汇聚节点进行通信,实现协议转换;数据库服务器用来分类存储传感器网络发来的井下信息,同时与信息监控服务器进行通信;信息监控服务器运行监控软件,分析并显示井下环境状态。

监控软件是信息监控中心的关键部分。它由实时显示模块、数据查询模块、数据统计模块、告警管理模块和系统维护模块组成,如图5所示。实时显示模块动态显示井下环境信息;数据查询模块实现矿工信息精确查询、路由节点工作状态查询以及所关心节点传感器数据的查询等;数据统计模块统计系统工作情况;告警管理模块对各种传感器数据进行阈值限制,当出现非正常情况时进行告警,以便使管理员及时做出响应;系统维护包括登录人员管理、系统界面维护以及系统密钥管理等。

图5 监控软件功能模块结构示意图

3.7 实用性和可行性分析

底下矿井空间狭窄、密闭、地质状况多样,不易布设有线设备监测点,无线传感器网络中的传感器节点体积小,成本低,可以随意撒放于任何不规则空间,它们感知被测区域信息并相互传递,使有线设备难以获取的数据通过汇聚节点和路由节点最终到达监控中心,实现矿井环境信息的实时监测。

设计无线传感器网络应用或试验时,通常使用ZigBee通信技术。ZigBee技术是一种近距离、低功耗、低成本的双向无线通信技术,可以嵌入各种设备中,同时支持地理定位功能。同时,考虑到井下通信的一些特殊要求,比如:矿井巷道的半封闭空间结构以及煤的电介质特性使得矿井在频率较高的情况下类似于波导,可以在2.4GHz频段工作,使高频无线电信号在矿井中更为有效地直接传输。许多学者已经对无线信号在矿井中的传输进行了试验,结果证明其传播性能较好[2]。2.4GHz频段又是全球通用的工业、科学、医学(ISM,Industrial,Scientific and Medical)频段,免付费、免申请,在此频段上天线尺寸和芯片功耗可以设计的更小,井下通信非常适合用。在实验室,应用OPNET(Optimal Network Engineering Tools)仿真开发工具OPNET Modeler,即可进行仿真实验。

4.总结与展望

本文结合矿井环境的特点,通过分析无线传感网络的技术特征,分析设计了基于无线传感器网络的矿井环境监测系统模型,结合相应的无线通信技术及其路由协议即可进行仿真。

随着无线传感器网络的发展及矿井环境检测手段的不断提高,今后的研究工作还将进一步扩展。可从以下几个方面提升系统的整体功能,如增加传感器节点的功能,引入声音和视频等多媒体传感器,使管理人员对井下情况一目了然。结合WSN数据融合技术,提高数据收集效率,获得更准确的井下信息,节省节点的能量延长其寿命等。

参考文献:

[1]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报,2003,14(10):

1717-1727.

[2]曹育红.矿井无线通信系统的频率选择[J].工矿自动化,2005(4):38-40.

作者简介:高文玲(1973―),女,硕士,西安外事学院工学院高级工程师。

上一篇:大屏幕显示系统双主机冗余控制设计与应用 下一篇:电力系统继电保护技术的现状与发展趋势