神经网络的应用研究

时间:2022-07-04 12:36:15

神经网络的应用研究

摘要:神经网络的崛起,已对认知和智力的本质的基础研究乃至计算机产业都产生了空前的刺激和极大的推动作用。因此在各个领域都有很大的应用研究。

关键词:神经网络;智能;计算;应用研究

中图分类号:TP393文献标识码:A文章编号:1009-3044(2008)20-30326-02

Application of Neural Network Forefront

LI Bing-fu1,2

(1.Zhanjiang Normal College, Zhanjiang 524048, China; 2.Chongqing University, Master of the Computer College, Chongqing 400030, China)

Abstract: The rise of neural networks, has been on the cognitive and intellectual nature of the computer industry and basic research has produced an unprecedented excitement and great role. Therefore, in all fields has greatly applied research.

Key words: Neural Networks; Intelligent; Computing; Applied Research

1 引言

神经网络是一门模仿人类神经中枢――大脑构造与功能的智能科学,利用物理器件来模拟生物神经网络的某些结构和功能,即由许多功能简单的神经元互联起来,形成一种能够模拟人的学习、决策和识别等功能的网络系统。他具有快速反映能力,便于对事物进行适时控制与处理;善于在复杂的环境下,充分逼近任意非线形系统,快速获得满足多种约束条件问题的最优化答案;具有高度的鲁棒性和容错能力等优越性能。

神经网络的崛起,已对认知和智力的本质的基础研究乃至计算机产业都产生了空前的刺激和极大的推动作用。因此在各个领域都有很大的应用研究。

2 神经网络(ANN)的研究内容

1) 理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法;2) 实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径;3) 应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。

3 神经网络在各领域的应用研究

3.1 智能机器领域的应用研究

智能机器领域的应用研究主要是进一步研究调节多层感知器的算法,使建立的模型和学习算法成为适应性神经网络的有力工具,构建多层感知器与自组织特征图级联想的复合网络,是增强网络解决实际问题能力的一个有效途径。重视联结的可编程性问题和通用性问题的研究,从而促进智能科学的发展。通过不断探索人类智能的本质以及联结机制,并用人工系统复现或部分复现,制造各种智能机器,可使人类有更多的时间和机会从事更为复杂、更富创造性的工作。

智能的产生和变化经过了漫长的进化过程,我们对智能处理的新方法的灵感主要来自神经科学,例如学习、记忆实质上是突触的功能,人类大脑的前额叶高度发育,它几乎占了30%大脑的表面积,在其附近形成了人类才出现的语言运动区,它与智能发育密切相关,使神经系统的发育同环境的关系更加密切,脑的可塑性很大,能主动适应环境还能主动改造环境,人类向制造智能工具方向迈进正是这种主动性的反映。脑的可塑期越长,经验对脑的影响就越大,而人类的认知过程很大程度上不仅受经验主义的影响,而且还接受理性主义的模型和解释。因此,对于智能和机器的关系,应该从进化的角度,把智能活动看成动态发展的过程,并合理的发挥经验的作用。同时还应该从环境与社会约束以及历史文化约束的角度加深对它的理解与分析。

神经网络是由大量处理单元组成的非线性、自适应、自组织系统,它是在现代神经科学研究成果的基础上提出的,试图模拟神经网络加工、记忆信息的方式,设计一种新的机器,使之具有人脑风格的信息处理能力。智能理论所面对的课题来自“环境-问题-目的”,有极大的诱惑力与压力,它的发展方向就将是,把基于联结主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这三大研究领域,在共同追求的总目标下,自发而有机的结合起来。在21世纪初,智能的机器实现问题的研究将有新的进展和突破。

3.2 神经计算和进化计算的应用研究

计算和算法是人类自古以来十分重视的研究领域,本世纪30年代,符号逻辑方面的研究非常活跃。例如Church、Kleene、Godel、Post、Turing等数学家都给出了可计算性算法的精确数学定义,对后来的计算和算法的发展影响很大。50年代数学家Markov发展了Post系统。80年代以后,神经网络理论在计算理论方面取得了引人注目的成果,形成了神经计算和进化计算新概念,激起了许多理论家的强烈兴趣,大规模平行计算是对基于Turing机的离散符号理论的根本性的冲击,但90年代人们更多的是批评的接受它,并将两者结合起来,近年来,神经计算和进化计算领域很活跃,有新的发展动向,在从系统层次向细胞层次转化里,正在建立数学理论基础。随着人们不断探索新的计算和算法,将推动计算理论向计算智能化方向发展,在21世纪人类将全面进入信息社会,对信息的获取、处理和传输问题;对网络路由优化问题;对数据安全和保密问题等等将有新的要求,这些将成为社会运行的首要任务,因此,神经计算和进化计算与高速信息网络理论联系将更加密切,并在计算机网络领域中发挥巨大的作用,建立具有计算复杂性、网络容错性和坚韧性的计算理论。

基于人类的思维方式的转变:线性思维转到非线性思维。神经元、神经网络都具有非线性、非局域性、非定常性、非凸性和混沌等特性,故此在计算智能的层次上进行非线性动力系统、 混沌神经网络以及对神经网络的数理研究。从而进一步研究自适应性子波、非线性神经场的兴奋模式、神经集团的宏观力学等。因为,非线性问题的研究是神经网络理论发展的一个最大动力,也是它面临的最大挑战。此外,神经网络与各种控制方法有机结合具有很大发展前景,建模算法和控制系统的稳定性等研究仍为热点问题,而容忍控制、可塑性研究可能成为新的热点问题。开展进化并行算法的稳定性分析及误差估计方面的研究将会促进进化计算的发展。把学习性并行算法与计算复杂性联系起来,分析这些网络模型的计算复杂性以及正确性,从而确定计算是否经济合理。因而关注神经信息处理和脑能量两个方面以及它们的综合分析研究的最新动态,吸收当代脑构象等各种新技术和新方法是十分重要的。

离散符号计算、神经计算和进化计算相互促进或者最终导致这3种计算统一起来,这算得上是我们回避不了的一个重大难题。预计在21世纪初,关于这个领域的研究会产生新的概念和方法。尤其是视觉计算方面会得到充分地发展。我们应当抓住这个机会,力求取得重大意义的理论和应用成果。

3.3 神经网络结构和神经元芯片的应用研究

神经网络结构的研究是神经网络的实现以及成功地实现应用的前提,又是优越的物理前提。它体现了算法和结构的统一,是硬件和软件的混合体,这种硬软混合结构模型可以为意识的作用和基本机制提供解释。未来的研究主要是针对信息处理功能体,将系统、结构、电路、 器件和材料等方面的知识有机结合起来,建构有关的新概念和新技术,如结晶功能体、最子效应功能体、高分子功能体等。在硬件实现上,研究材料的结构和组织,使它具有自然地进行信息处理的能力,如神经元系统、自组织系统等。神经计算机的主要特征是具有并行分布式处理、学习功能,这是一种提高计算性能的有效途径,使计算机的功能向智能化发展,与人的大脑的功能相似,并具有专家的特点,比普通人的反应更敏捷,思考更周密。光学神经计算机具有神经元之间的连接不仅数量巨大而且结合强度可以动态控制,因为光波的传播无交叉失真,传播容量大,并可能实现超高速运算,这是一个重要的发展领域,其基础科学涉及到激光物理学、非线性光学、光紊乱现象分析等,这些与神经网络之间在数学构造上存在着类似性。近年来,人们采用交叉光互连技术,保证了它们之间没有串扰,它有着广阔的发展前景。在技术上主要有超高速、大规模的光连接问题和学习的收敛以及稳定性问题,可望使之得到突破性进展;另一种是采用LSI技术制作硅神经芯片,以及二维VLSI技术用于处理具有局部和规则连接问题。在未来一、二十年里半导体神经网络 芯片仍将是智能计算机硬件的主要载体,而大量的神经元器件,如何实现互不干扰的高密度、高交叉互连,这个问题可望尽早得到解决。此外,生物器件的研究正处于探索之中,研究这种模型的理论根据是当硅集成块和元件间的距离如果接近0.01微米时,电子从邻近元件逸入的概率将很有限,便产生“隧道效应”的现象,它是高集成电路块工作不可靠的原因之一。而生物芯片由于元件是分子大小的,其包装密度可成数量级增加,它的信号传播方式是孤电子,将不会有损耗,并且几乎不产生热。因此,它有更诱人的前景。随着大量神经计算机和神经元芯片应用于高科技领域,给神经网络理论和方法赋予新的内容,同时也会提出一些新的理论课题,这是神经网络迅速发展的一个动力。

4 结束语

近年来,我国“863”计划、攻关计划、“攀登”计划和国家自然科学基金等,都对神经网络的研究给予了资助,吸引了大量的优秀青年人才从事神经网络领域的研究工作,并促进我国能在这个领域取得世界上的领先地位。在21世纪科学技术发展征程中,神经网络理论的发展将与日俱增。

参考文献:

[1] 阎平凡.人工神经网络的容量、学习与计算复杂性[J]. 电子学报,1995,23.

[2] 钟义信,杨义先.中国神经网络首届学术大会论文集[D]. 北京,1990.

[3] 蔚承建,姚更生,何振亚.改进的进化计算及其应用[J]. 自动化学报,1998,24(2).

上一篇:基于OPNET的跳频无线通信网络仿真模型研究 下一篇:基于uC/OS-II和SPCE061A的应用系统的设计