机电一体化智能控制分析

时间:2022-07-02 05:30:06

机电一体化智能控制分析

【摘要】在计算机技术广泛应用和迅猛发展的条件下,机电一体化技术作为机械和微电子技术紧密集合的一门技术,广泛应用于现代化的自动生产设备中,而且更具人性化,智能化。21世纪机电一体化的系统研究中智能控制已成为发展的必然趋势,目前,智能控制技术广泛应用各个领域在国内外已有了较大的发展。我国机电一体化技术已实现了智能化的控制,它将随着专家系统、模糊控制、神经网络等控制技术的发展而不断发展。本文在阐述智能控制的基本内涵的基础上,主要研究了当前机电一体化系统中智能控制在机械制造、数控、机器人领域中的有效应用。

【关键词】智能控制;数控;机械制造;机器人

机电一体化又称机械电子学,它是多只技术,有机地结合的应用到实际中去的综合技术。在计算机技术广泛应用和迅猛发展的条件下,机电一体化技术作为机械和微电子技术紧密集合的一门技术,广泛应用于现代化的自动生产设备中,而且更具人性化,智能化。在微电子技术及超大规模的集成电路不断发展的条件下,我国的机电一体化技术越来越成熟,机电一体化的长远发展具有了良好的外部环境,呈现出更加强大的生命力和发展前景,所以,智能控制在机电一体化方面的研究是当前人们热衷的一大课题。

一、智能控制的基本内涵

所谓智能控制就是指在无人干预的情况下就能独立由智能机器实现其目标的自动控制。它是一种将计算机模拟人类智能与现代控制理论相结合的一种控制。智能控制具有高度的非线性、变结构特点、不确定性的模型、智能控制的核心在高层控制、复杂的任务要求等几个方面的特征。智能控制的主要方法主要有:专家控制、模糊控制、神经网络控制、遗传算法。智能控制作为自动控制发展的高级阶段,它是由多个学科相互交叉所形成的学科。智能控制技术涉及自适应、自组织理论、Petri网理论、人机系统理论等许多智能理论。

智能控制系统具有极强的学习功能、组织功能及适应,即使在复杂的环境和任务中,智能控制加入人的知识经验,注重没开发学习、自组织和自适应能力,并以训练等方式来提高系统控制能力。因此,智能控制是当今国内、外自动化学科领域中获得应用,代表着当今科学和技术发展的最新方向之一,建筑与机器人的智能化就是其典型应用。 一些较发达国家在20世纪90年代后期开始机电一体化技术进入了智能控制的阶段。例如:机电一体化中通信技术、微细加工技术不断应用;微机电一体化及光电一体化成为自动化领域中发展迅速的一个分支学科;神经网络技术、人工智能控制和光纤技术等多领域都有了较大进步,这为机电一体化的技术发展提供了广阔空间,也为产业化奠定了基础。

二、智能控制在机电一体化系统中的主要应用

首先,机械制造领域中的智能控制应用

机电一体化系统的重要组成部分之一就是机械制造,目前,智能控制随之也被广泛地应用于机械制造行业。把智能控制技术应用于工程机械领域能够提高工程机械各种故障的自我诊断能力,提高了工作效率和工程质量,解决了传统控制力一直无法很好适应多变复杂对象的难题。特别是在一些特殊的情况工况中可以实现无施工人员的智能化、高质量的施工。向智能机械制造技术的方向发展是当前最先进的机械制造技术,其发展的基本原理是模拟人类制造机械的活动,利用先进的计算机技术及其它信息技术工具取代一部分人的脑力劳动。它可对制造过程进行动态环境建模,利用模糊数学、神经网络的方法通过传感器融合技术将进行预处理采集的信息,并采用“Then - If”逆向推理修改控制机构或者选择较好的控制模式和参数。 而对于一些残缺不全的信息而言,它利用模糊集合和模糊关系的特性,可以将一些模糊的信息集合到闭环控制中的外环决策机构来选取相应的控制动作,并利用神经网络的学习功能具有行处理信息的能力,对于残缺不全的信息进行在线的模式识别。在高新科技和信息时代的引领下的背景下,人力操作为主的机电相关机械制造已经不能够适应时代的节奏,未来其主要发展方向就是将智能控制及其相关科学技术与传统的机械理论进行有效的融合。目前,工程机械的智能化主要体现:工程机械单机集成化操作与智能控制技术;工程机械的智能监控、检测、预报、远程故障诊断与维护技术;基于网络的机群集成控制与智能化管理技术,特别是智能型救灾工程机械已成为当前研制热点。

其次,机器人领域中的智能控制应用

机器人系统是一种复杂、非线性且具有研制不确定性的系统,这些特征适合智能控制技术的应用。机器人智能控制机器人学一直是智能控制的一个重要应用领域,每一种新的控制理论方法都会在机器人控制系统中得到过应用,使得新型智能控制技术渗透到机器人学研究的各个方面,因此,对机器人的控制也成为检验各种控制方法优劣的试金石。当前智能控制技术在机器人领域中的应用主要表现在以下几个方面:通过模糊系统及专家控制系统对机器人轨迹规划的模糊控制策略;机器人在多传感器信息融合与视觉处理方面的智能控制;机器人轨迹规划中的模糊神经网络控制策略;机器人手臂姿态及动作的智能控制;机器人轨迹规划中的遗传算法控制策略。目前,采用模糊控制、人工神经网络、专家系统技术对机器人进行定位、环境建模、检测、控制和规划的研究已经在多个实际应用系统中得到验证。机器人控制系统的主要目的就是通过给定各个关节的驱动力矩,使得机器人的位置、速度等状态变量跟踪给定的理想轨迹。

第三,数控领域中的智能控制应用

随着科学技术与信息技术的发展,智能控制和数控相关领域逐渐融合。由于研究的对象和系统越来越复杂,我国的机电一体化技术的发展对数控技术提出了更高的要求,大量学者、工程技术人员开始尝试应用智能控制理论,在机械加工、模具制造等领域运用数控技术。运用智能控制新兴技术可以让数控技术实现智能编程、监控、建立智能数据库等重要目标。当今数控技术的发展方向主要是开放式数控系统的构建。建立统一的可重构的系统平台,增强数控系统的柔性,借助于数学模型描述和分析的传统控制理论难以解决复杂系统的控制问题,调解变化频繁的需求与封闭控制系统之间的矛盾都是构建开放式数控系统的一些主要目的。

三、结语

21世纪机电一体化的系统研究中智能控制已成为发展的必然趋势,智能控制技术是利用先进的计算机技术与网络通讯技术发展起来的一项技术,其解决了大量的传统控制无法解决的实际控制应用问题。智能控制通过对人类智能的模拟,通过模糊系统、遗传算法、专家系统及神经网络等技术的应用,使其具有思维逻辑、判断推理能力以及决策能力,以获得更准确的控制目标。目前,智能控制技术广泛应用各个领域(农业、军事等)在国内外已有了较大的发展。我国机电一体化技术已实现了智能化的控制,它将随着专家系统、模糊控制、神经网络等控制技术的发展而不断发展。

参考文献

[1]朱传敏,周润青,陈明,李营垒.故障树与案例推理在数控机床故障诊断专家系统中的应用研究[J].制造业自动化,2011年10期.

[2]陈雪梅.机电一体化系统对智能控制的有效应用的几点思考[J].河南科技,2010年14期.

[3]王成勤,李威,孟宝星.智能控制及其在机电一体化系统中的应用[J].机床与液压,2008年08期.

上一篇:西门子PLC S7—400与SINAMICS S120通讯的实现 下一篇:浅谈ADSS光缆在电力通信中的应用