宽电源电压集成电压基准源设计

时间:2022-05-01 08:03:21

宽电源电压集成电压基准源设计

【摘要】在集成电路设计中,经常需要用到稳定的参考电压源。带隙基准电压源是模拟电路中重要的模块,它能够提供近似恒定的参考电压,这个电压不随温度、电源电压、工艺的变化而变化。它在ADC、DAC、Power managerment circuit、Memories、SOC等电路中得到广泛应用,基准源的精度直接控制着这些电路的精度。在本文中,研究并设计实现了一种基于曲率补偿,具有高稳定性的带隙基准电路。该电路采用6μm标准双极型工艺实现,并用Spectre进行了仿真,得到理想的设计结果。

【关键词】带隙基准;曲率补偿;高稳定性

1.引言

基准电路包括基准电压源和基准电流源,在电路中提供电压基准和电流基准,是模拟集成电路和混合集成电路中非常重要的模块[1]。随着集成电路规模的不断增大,特别是芯片系统集成(SOC)技术[2]的提出,使基准电路被广泛使用[3]的同时,也对其性能提出了更高的要求。

基准电压源是指被用作电压参考的高精确、高稳定度的电压源,理想的基准电压是一个与电源、温度、负载变化无关的量[4]。基准电压源是现代模拟电路极为重要的组成部分,它对高新模拟电子技术的应用与发展具有重要作用。在许多模拟电路中,如数模转换器(DAC)、模数转换器(ADC)、线性稳压器和开关稳压器中都需要高精度、高稳定度的电压基准源。特别是在精密测量仪器仪表和现代数字通信系统中,经常把集成电压基准源作为系统测量和校准的基准。鉴于此,国外许多模拟集成电路制造厂商相继推出许多种类的高精度集成电压基准产品。随着电路系统结构的进一步复杂化,对模拟电路基本模块提出了更高的精度和速度要求,这样也就意味着系统对其中的基准电压源模块提出了更高的要求。

本论文在分析研究宽电压源、高精度、低温度系数集成电压基准源的电路结构的基础上,探索设计出一种输出电压为2.5V的最佳的电路结构,以实现电路宽电源电压范围(3V~36V)、低温度漂移系数(≤10ppm/℃, -40℃~+85℃)、高精度的设计指标。

2.宽电源电压集成电压基准源设计

2.1 传统的带隙基准源[5][6]

基准电压源经历了电阻分压式基准电压源、PN结基准电压源、击穿二极管基准电压源、自偏置电路电压源的发展。以上各种基准电压源中,电阻或有源器件直接分压形成的基准不能独立于电源,精度非常低。

1971年,Robert Widlar提出了一种带隙参考电压源技术。该技术可得到一种不依赖电源并几乎与温度无关的独立基准,可在低电源电压下工作,并与标准CMOS工艺兼容这些优点使其获得了广泛的研究和应用,也是本次设计采用的技术。图1是带隙基准电源的基本原理图。

利用热电压VT的正温度系数与双极型晶体管的基极-发射极电压VBE的负温度系数相互补偿,以减小温度漂移。其中VBE的温度系数在室温时大约-2mV/℃;而热电压VT=KT/q,其温度系数在室温下大约为+0.085mV/℃。将电压VT乘以常数K以后与电压VBE相加,便可得到输出电压VREF为:

即理论值K≈23.26,它使得带隙基准电压的温度系数值在理论上为零。由于VT与电源电压无关,而VBE受电源电压变化的影响很小,故VREF受电源电压的影响也很小。

带隙基准电压源经历了从Widlar带隙基准电压源、Brokaw带隙基准电压源、传统典型的带隙基准电压源及基于PTAT(proportional to absolute temperature)的带隙基准电压源、CMOS带隙电压基准源电路的发展,能够输出比较精确的电压,但其电源电压高,其基准输出范围及各项性能有限,故要得到高精度低漂移的宽电源电压集成电压基准源,就必须对以上电路在结构上进行改进和提高。

2.2 宽电源电压集成电压基准源的设计

图2所示为带隙基准电压源电路基本结构框图,它主要由五部分组成[7]:

1)带隙电压内部环路—主要功能是产生带隙电压。

2)运算放大器—使带隙电压内部环路中两个需要具有相同电压的点稳定在相同的电压。

3)输出级—用来产生最终的带隙基准参考电压和电流。

4)启动电路—主要功能是确保电路在上电的时候能够进入正常的工作状态。

5)偏置电路—为运算放大器的工作提供偏置电流。

本文所涉电路采用6μm标准双极型工艺实现,实现了一种基于曲率补偿,具有高稳定性的带隙基准电路。本文在分析比较各种基准电压源性能的前提下,最终选择了以基于PTAT(与绝对温度成正比)改进的带隙基准源电路作为设计的基础,并对其原理进行了详细的分析。为了进一步提高基准电压源的性能,在深入研究温度和电源电压的变化对带隙基准电路稳定性影响的基础上,指出基极一发射极电压与温度的非线性关系是造成基准不稳定的主要原因,针对这种情况,采用了环路补偿方法来进行高阶温度补偿:利用环路补偿电流(INL)的非线性特性去补偿基射结电压(VBE)的非线性。并且将补偿电流(INL)和与绝对温度成正比的电流(IPTAT)直接相加实现了很好的补偿。不仅结构简单还获得了较好的温度系数。另外,对所采用的运算放大器、启动电路和温度保护电路也进行了研究,并设计了优化合理的电路结构。分块对带隙基准核心电路、曲率补偿电路、运算放大器电路、偏置电路、启动电路进行设计并仿真。所设计的整体电路图如图3所示。

其中(a)为带隙基准核心电路,(b)为运算放大器电路,(c)为曲率补偿电路,(d)为偏置电路,(e)为启动电路,(f)为输出级。

3.仿真结果及分析

在Cadence设计平台下的Spectre仿真器中基于6μm标准双极型工艺模型对电路进行了仿真。得到电路的直流电压特性曲线、温度特性曲线、电源电压抑制比曲线、负载调整率曲线、噪声特性曲线、启动时间曲线,如同4所示。

4.结论

本文通过对带隙基准电压源深入的理论研究,完成了全双极性带隙基准电压源的设计,该基准电压源基于双极型工艺,通过Spectre验证,温度系数仅为6ppm/℃,并具有78?V/V的电源电压调整率以及高达78dB的交流PSRR,高精度,低噪声和驱动能力强等特性。其中各项设计指标完全达到预期要求,具有一定的优点和实用价值。

参考文献

[1]孟波,邹雪城,孟超.一种高性能CMOS基准电压源电路设计[J].微电子学与计算机,2003(8):161-162.

[2]孙顺根,吴晓波,王旃等.一种高精度CMOS能隙基准电压源[J].微电子学,2003,33(2):157-159.

[3]彭增发,黄晟,毛友德等.一种新型的高噪声抑制比及高温度稳定性的基准电压产生器[J].微电子技术,2003,33 (3):51-55.

[4]P.E.Allen,D.R.Holberg.CMOS Analog Circuits Design[M].(2nd).NewYork,USA:Oxford University Press:2002.

[5]Philip E.Alen Douglas R.Holberg.CMOS Analog Circuit Design[M].Publishing House of Electronics In dustry,2005.

[6]Paul R.Gray.Analysis and Design of Analog Integrated circuits.Higher Education Press.2005.

[7]何乐年,王忆编著.模拟集成电路设计与仿真[M].北京科学出版社,2008.

上一篇:基于预判插补时间的S形加减速差补算法分析 下一篇:基于FPGA的全彩画图仪