无功补偿技术论文范文

时间:2023-03-02 18:03:24

无功补偿技术论文

无功补偿技术论文范文第1篇

论文关键词:无功补偿技术;作用;现状;发展趋势

无功功率补偿装置的主要作用是:提高负载和系统的功率因数,减少设备的功率损耗,稳定电压,提高供电质量。在长距离输电中,提高系统输电稳定性和输电能力,平衡三相负载的有功和无功功率等。

一、无功功率补偿的作用

1、改善功率因数及相应地减少电费

根据国家水电部,物价局颁布的“功率因数调整电费办法”规定三种功率因数标准值,相应减少电费:

(1)高压供电的用电单位,功率因数为0.9以上。

(2)低压供电的用电单位,功率因数为0.85以上。

(3)低压供电的农业用户,功率因数为0.8以上。

2、降低系统的能耗

功率因数的提高,能减少线路损耗及变压器的铜耗。

设R为线路电阻,ΔP1为原线路损耗,ΔP2为功率因数提高后线路损耗,则线损减少

ΔP=ΔP1-ΔP2=3R(I12-I22)(1)

比原来损失减少的百分数为

(ΔP/ΔP1)×100%=1-(I2/I1)2.100%(2)

式中,I1=P/(3U1cosφ1),I2=P/(3U2cosφ2)补偿后,由于功率因数提高,U2>U1,为分析方便,可认为U2≈U1,则

θ=[1-(cosφ1/cosφ2)2].100%(3)

当功率因数从0.8提高至0.9时,通过上式计算,可求得有功损耗降低21%左右。在输送功率P=3UIcosφ不变情况下,cosφ提高,I相对降低,设I1为补偿前变压器的电流,I2为补偿后变压器的电流,铜耗分别为ΔP1,ΔP2;铜耗与电流的平方成正比,即

ΔP1/ΔP2=I22/I12

由于P1=P2,认为U2≈U1时,即

I2/I1=cosφ1/cosφ2

可知,功率因数从0.8提高至0.9时,铜耗相当于原来的80%。

3、减少了线路的压降

由于线路传送电流小了,系统的线路电压损失相应减小,有利于系统电压的稳定(轻载时要防止超前电流使电压上升过高),有利于大电机起动。

二、我国电力系统无功补偿的现状

近年来,随着国民经济的跨越式发展,电力行业也得到快速发展,特别是电网建设,负荷的快速增长对无功的需求也大幅上升,也使电网中无功功率不平衡,导致无功功率大量的存在。目前,我国电力系统无功功率补偿主要采用以下几种方式:

1.同步调相机:同步调相机属于早期无功补偿装置的典型代表,它虽能进行动态补偿,但响应慢,运行维护复杂,多为高压侧集中补偿,目前很少使用。

2.并补装置:并联电容器是无功补偿领域中应用最广泛的无功补偿装置,但电容补偿只能补偿固定的无功,尽管采用电容分组投切相比固定电容器补偿方式能更有效适应负载无功的动态变化,但是电容器补偿方式仍然属于一种有级的无功调节,不能实现无功的平滑无级的调节。

3.并联电抗器:目前所用电抗器的容量是固定的,除吸收系统容性负荷外,用以抑制过电压。

以上几种补偿方式在运行中取得一定的效果,但在实际的无功补偿工作中也存在一些问题:

1.补偿方式问题:目前很多电力部门对无功补偿的出发点就地补偿,不向系统倒送无功,即只注意补偿功率因素,不是立足于降低系统网的损耗。

2.谐波问题:电容器具有一定的抗谐波能力,但谐波含量过大时会对电容器的寿命产生影响,甚至造成电容器的过早损坏;并且由于电容器对谐波有放大作用,因而使系统的谐波干扰更严重。

3.无功倒送问题:无功倒送在电力系统中是不允许的,特别是在负荷低谷时,无功倒送造成电压偏高。

4.电压调节方式的补偿设备带来的问题:有些无功补偿设备是依据电压来确定无功投切量的,线路电压的波动主要由无功量变化引起的,但线路的电压水平是由系统情况决定的,这就可能出现无功过补或欠补。

三、无功功率补偿技术的发展趋势

根据上述我国无功功率补偿的情况及出现的问题,今后我国的无功功率补偿的发展方向是:无功功率动态自动无级调节,谐波抑制。

1.基于智能控制策略的晶闸管投切电容器(TSC)补偿装置

将微处理器用于TSC,可以完成复杂的检测和控制任务,从而使动态补偿无功功率成为可能。基于智能控制策略的TSC补偿装置的核心部件是控制器,由它完成无功功率(功率因数)的测量及分析,进而控制无触点开关的投切,同时还可完成过压、欠压、功率因数等参数的存贮和显示。TSC补偿装置操作无涌流,跟踪响应快,并具有各种保护功能,值得大力推广。

2.静止无功发生器(SVG)

静止无功发生器(SVG)又称静止同步补偿器(STATCOM),是采用GTO构成的自换相变流器,通过电压电源逆变技术提供超前和滞后的无功,进行无功补偿,若控制方法得当,SVG在补偿无功功率的同时还可以对谐波电流进行补偿。其调节速度更快且不需要大容量的电容、电感等储能元件,谐波含量小,同容量占地面积小,在系统欠压条件下无功调节能力强,是新一代无功补偿装置的代表,有很大的发展前途。

3.电力有源滤波器

电力有源滤波器是运用瞬时滤波形成技术,对包含谐波和无功分量的非正弦波进行“矫正”。因此,电力有源滤波器有很快的响应速度,对变化的谐波和无功功率都能实施动态补偿,并且其补偿特性受电网阻抗参数影响较小。

电力有源滤波器的交流电路分为电压型和电流型。目前实用的装置90%以上为电压型。从与补偿对象的连接方式来看,电力有源滤波器可分为并联型和串联型。并联型中有单独使用、LC滤波器混合使用及注入电路方式,目前并联型占实用装置的大多数。

4.综合潮流控制器

综合潮流控制器(unifiedpowerflowcontroller,UPFC)将一个由晶闸管换流器产生的交流电压串入并叠加在输电线相电压上,使其幅值和相角皆可连续变化,从而实现线路有功和无功功率的准确调节,并可提高输送能力以及阻尼系统振荡。UPFC注入系统的无功是其本身装置控制和产生的,并不大量消耗或提供有功功率。UPFC技术是目前电力系统输配电技术的最新发展方向,对电网规划建设和运行将带来重要的影响。

无功补偿技术论文范文第2篇

为了满足电力网和负荷端的电压水平,保证电网的顺利运行,无功补偿技术应运而生,被广泛应用于高压电网和低压电网中,对维系电网的稳定性有重要的意义。利用无功补偿技术,会在一定程度上降低电力网中的损耗,从而减少电能运输过程中的损耗,提高电能的使用效率;利用无功补偿技术,能有效提升电网中供电设备的容量,有效控制配电系统的电压损耗。为了保证无功补偿技术的运行效果,在电力网和负荷端应该设置电容器、调相机等相应的无功电源。在电力系统中,无功功率最多的电气设备当属异步电动机和变压器等电感性负荷,它们占80%.在实际操作中,供电企业可以采用静态或动态无功补偿方式,以保证各项设备的正常运行。

2电力无功补偿的关键技术

在电气自动化工程中,电力无功补偿的电力负荷功率因数是重要的技术指标。在电力系统中,功率因数越大越好,功率因素越大,无功功率的传输就会大大减少,从而减少有功功率的损耗。因此,在电气自动化工程中,应该适当提高电力负荷的功率因数,有效改善电压质量。另外,并联电容器补偿无功功率也是电力无功补偿的重要关键技术。用电容器的无功补偿能够有效降低电网线损,为用户提供优质的电压。其中,在电容器投入和切除的过程中,无功补偿电压会发生变化。

3具体应用

3.1设计真空断路器

在电气自动化中,利用无功补偿设计能够有效节约成本,被广泛应用于实际工作中。借助于无功补偿技术,将固定滤波器与合闸管调节电抗器有机结合起来,从而形成新的无功补偿装置。在实际使用过程中,有效保证了滤波器的电流平衡,最大限度地满足电气自动化系统的功率因数需求,在短时间内实现对系统的无功补偿,从而在降低能耗方面发挥重要的作用。

3.2对用电客户进行无功补偿

在对用电客户进行无功补偿的过程中,主要的实现途径有2种:①利用无功补偿使用户的实际电力功率因数与国家预期的电力功率因素相符,逐渐增多电费补偿,增强群众的节能意识,对用户实现无功补偿;②将无功补偿技术应用于用户内部配网中,有效降低无功消耗,减轻能源压力。通过这2种途径可以有效降低能耗,减轻用户的经济压力。

3.3对回路电流进行无功补偿

在对电流回路进行无功补偿的工程中,主要手段是借助固定滤波器来实现。借助固定滤波器调节饱和电感器,改变其内部的磁能饱和程度,从而改变感性电流,最终实现对回路电流进行无功补偿的效果。在这个过程中,回路中的感性电流与固定滤波器中的多余电容性相互抵消,从而保证了电流的平衡性。然后,用串联的方法将滤波器和电抗器连接在一起,实现两者的电压串联,调节降压按钮就可以实现对电压的调控,降低电网中的电压,最终实现无功补偿的效果。

3.4应用实例——以某变电站为例

在实际生活中,该变电站是一个供电中心,承担着整个区域的供电任务。由于区域内用户的需求不同,所以,其供电的电压等级也分为好多不同的类型。在配电过程中,按照“分级补偿、就地平衡”的原则,在配电过程中普遍采用了无功补偿技术,平衡了配电线路和电力用户的无功功率,使变电站无需再单独承担无功电力。在该变电站的配电过程中,容性无功补偿装置得到了广泛的应用,在该区域的电力配网中发挥着重要作用,极大地降低了电力输送过程中的能量损耗,并且对负荷两侧的无功补偿也起到了兼顾的作用。在使用过程中,容性无功补偿装置的相关性质是根据主变压器容量来确定的,一般确定为主变压器容量的10%~30%.在变电站的实际操作过程中,如果主变压器的最大负荷为35~110kV,则必须保证高压侧功率因数要大于0.95.如果主变压器的单台容量大于40MVA,则应该为每台主变压器配置2组以上的容性无功补偿装置,以确保无功补偿技术能够正常运转,保证技术的使用效果,实现降低能耗的目标。在该变电站的实践过程中,应该以自身的无功损耗补偿为主。为了确定最佳的补偿容量,在实践中应该遵循以下3个原则:①保证无功补偿技术的主要应用场所是主变压器的无功损耗,空载状态和负载状态下的无功损耗都包含于其中;②如果主变压器长期处于轻负荷状态,则补偿容量可以直接选取最小值补偿;③对于负荷重的主变压器,应该先提高电压幅度,根据电压幅度的具体状态选择补偿容量。

4结束语

随着我国经济的发展,电气自动化工程控制系统成为了我国经济体系中的重要组成部分,对推动经济的发展有非常重要的作用。尤其是无功补偿技术在电气自动化中的应用,极大地降低了电能线损,提高了电网的稳定性和安全性,为用户提供了优质电压。现阶段,随着科技的发展,无功补偿技术也在不断完善和发展,在电网中发挥着越来越重要的作用,电力企业应该重视对无功补偿技术的研究和创新,从而推动我国电气自动化工程的发展。

无功补偿技术论文范文第3篇

技改项目完成,对其中1个变电站无功自动补偿器投切前后的数据进行现场测试。采用无功功率补偿后,主要技术经济效益如下。

(1)减少了线路电压降,使线路稳态电压升高,提高了供电质量。测试数据见表2,补偿后,终端电压提高,设备效率和功率因数均得到提高,共节约有功功率81.4kW。1年工作时间按8000h、负载率按0.7计算,全年节电455840kW•h,公司采用峰谷电价,平均电价为1元/kW•h,全年节省电费455840元。

(2)降低变压器铜损耗。降低的变压器铜损耗由10kV/0.4kV变压器和110kV/10kV变压器减少的铜损耗组成。由于110kV/10kV变压器受高压测量设备的限制,无法测量,故仅计算10kV/0.4kV变压器节约的铜损耗,相关测试数据见表3。合计降低变压器铜损耗1764W,全年电9878kW•h,全年节省电费9878元。

(3)减少线损。减少线损主要组成:

①从补偿器到10kV/0.4kV变压器供电线路减少的线损;

②从10kV/0.4kV变压器到110kV/10kV变压器供电线路减少的线损。为衡量无功功率补偿的经济效益,在无功功率补偿领域引入“无功功率经济当量”概念,其含义是指每补偿1kvar无功功率在整个电力系统中减少的有功功率损耗,用符号k表示,单位kW/kvar。k值与负荷点到电源的“电气距离”、电能成本和负荷运行状况等因素有关。为简化计算,国家标准GB/T12497—2006《三相异步电动机经济运行》规定了不同供电方式的无功功率经济当量估算值。前文已测算了从两台补偿器向下到终端设备及10kV/0.4kV变压器节能情况,对于高压变压器110kV/10kV节约的铜损及输电线路减少的线损,因受高压测量设备制约,故采用无功功率经济当量估算的方法。从补偿器向上节能情况,无功功率经济当量按最保守的0.03kW/kvar计算,两台补偿器无功功率合计减少318.1kvar,则可折算节省有功功率9.54kW,全年节电76320kW•h,全年节省电费76320元。

(4)增加电功率(扩容)。增加的电功率,合计增加视在功率80kV•A。

(5)其他效益。可减轻电器、开关和供电线路负荷,减少维修量,延长使用寿命,提高安全可靠性。

2.结束语

低压变电站采用DGB动态跟踪式无功功率自动补偿装置进行节能改造,效果显著。功率因数平均提高到0.96以上,增加了输配电设备供电能力。设备使用过程中未因投入补偿装置而引起某次谐波的谐振过电压、过电流。在线实时跟踪,随着负载变化,补偿装置实时跟踪系统功率因数并快速等量补偿。DGB快速投入与退出,不会引起过补和欠补,投入运行后,系统稳定,对电网无干扰。通过运行测试,DGB可完全替代同类国外进口无功补偿设备,特别适合功率因数低的场合。

无功补偿技术论文范文第4篇

关键词:节电技术;功率因数;无功补偿

一、影响功率因数的主要因素

功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P…定时,如减少无功功率Q,目0功率因数便能够提高。在极端情况下,当Q=o时,则其力率=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。

(一)异步电动机和电力变压器是耗用无功功率的主要设备异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成分是它的窄绒无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

(二)供电电压超出规定范围也会对功率因数造成很大的影响当供电电压高于额定值的l0%时,由于磁路饱和的影响,无功功率将增长得很快。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

(三)电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响。

二、低压配电网无功补偿的方法

(一 )随机补偿

随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动饥的无功消耗,以补励磁无功为主,此种方

式可较好地限制用电单位无功负荷。

(二)随器补偿

随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的

空载励磁无功,配变空载无功是用电单位无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加。

(三)跟踪补偿

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以 的专用配变用户,可以替

代随机、随器两种补偿方式,补偿效果好。

三、无功功率补偿容量的选择方法

无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。

四、无功补偿的效益

在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70一0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%一9O%,如果把功率因数提高0.95左右,则无功消耗只占有功消耗的30%左右。由于减少了电网无功功率的输入,会给用电企业带来效益。

(一)节省企业电费开支。

提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对不同企业的功率因数规定了要求达到的不同数值,低于

规定的数值,需要多收电费,高于规定数值,可相应地减少电费。可见,提高功率因数对企业有着重要的经济意义。

(二)提高设备的利用率。

对于原有供电设备来讲,在同样有功功率下,因功率因数的提高,负荷电流减少,因此向负荷传送功率所经过的变压器、开关和导线等供配电设备都增加了

功率储备,从而满足了负荷增长的需要;如果原网络已趋于过载,由于功率因数的提高,输送无功电流的减少,使系统不致于过载运行,从而发挥原有设备的潜力;对尚处于设计阶段的新建企业来说则能降低设备容量,减少投资费用,在一定条件下,改善后的功率因数可以使所选变压器容量降低。因此,使用无功补偿不但减少初次投资费用,而且减少了运行后的基本电费。

(三)降低系统的能耗

补偿前后线路传送的有功功率不变,当功率因数从0.70—0.85提高到0.95时,有功损耗将降低20%一45%。

(四)增加容量

三相异步电动机通过就地补偿后,由于电流的下降,功率因数的提高,从而增加了变压器的容量。■

作者简介:

解洪彬 男,机电助理工程师,现任华泰矿业公司机电工区区长,数篇。

无功补偿技术论文范文第5篇

Abstract: In the coal mine there are lots of perceptual load in power system. Reactive power can't meet the demand. This paper use FPGA for rapid real time calculation of reactive power, with the improved nine area chart as a reactive power compensation strategy, avoid frequent for compensation equipment, prolong the service life of equipment. For fast dynamic reactive power compensation, improve system power factor, and improve the level of grid voltage. It also played a certain role in protecting the electrical equipment.

关键词: 无功补偿;FPGA;改进九区图

Key words: reactive power compensation;FPGA;improved nine area chart

中图分类号:TM714.3 文献标识码:A 文章编号:1006-4311(2013)29-0045-02

0 引言

当前,煤炭资源在我国能源结构中仍然占有很大比重,所以煤炭资源的稳定生产关系极其重要。煤炭资源的开发和生产过程中所用到的大型设备如主、副井提升机、采煤机等都是以电能作为其动力能源的设备,因此一定要保证煤炭部门的正常用电。煤炭工业属于一级电力用户,但因地域环境等因素,不少煤矿距离大电网较远,使得用电电压较低,功率因数低于正常水平,无功功率不足,且广泛存在着三相异步电动机等大量的感性负荷,消耗大量无功,使得功率因数进一步降低,致使用电设备无法正常工作或损坏。

1 井下无功补偿设备与补偿方式

井下的无功补偿设备一般有以下几种静止电容器、静止补偿器与静止无功发生器等,常用的补偿方式有就地无功补偿、分散无功补偿和集中无功补偿等,这几种补偿设备和补偿方式各有各的优缺点,使用时根据井下电力系统的实际情况进行选择。并联电容器无功补偿技术是提高功率因数最直接、最经济的方式,且一般采用就地补偿的补偿方式,通过控制系统自动投切电容器,无功补偿的距离最短,减少无功在电力线路上的传输,节约电能。

2 无功补偿的基本原理

电力系统中的感性负荷需要消耗系统无功功率,使得系统无功减少,相应的功率因数降低,电压水平下降,而电容器等可产生无功功率的设备可以并联在感性负荷处,产生容性无功功率,以补偿感性设备消耗的无功,使功率因数增大,电压水平上升,起到补偿目的。

若系统的有功功率为P,我们假设有功功率P一定的情况下,感性负荷需要的无功功率为Q。没有进行补偿时系统无功功率为Q1,功率因数角为θ1,在此处进行无功补偿,补偿容量为Q2,则相应的功率因数角增大为θ2,功率因数值也相应增大,而复功率的有效值却减少了,提高了送电量,减少了无功在电力线路上的传播,节约了电能。另外,当系统无功不足时,产生的直接后果就是线路的电压过低,导致线路的电压损耗增大。

图2中系统的无功需求为QS,由电源提供的无功为QN,无功功率平衡后所决定的电压水平为正常电压水平UN,但当系统电源所提供的无功功率较少(图2中为QM)时,无功功率经过一定的条件也能达到平衡,但此时所决定的电压水平就会低于正常水平为U,使得一些设备因电压过低而被迫停机,所以当系统出现无功不足时需要及时进行合理的补偿,才可以有效避免这类情况的发生。

3 实现方法

在计算无功功率时需要对其进行快速傅里叶变换的复化计算,用以得到近乎瞬时的无功功率值,然后通过FPGA的相应的控制程序实现对并联电容器组地投切,起到补偿或减少无功的目的。系统电网中某次谐波的无功功率的计算式Qk=■(WukNik-NukWik)(1)

上式中的 Wuk、Nik、Nuk、Wik分别对应该次谐波下电压和电流信号的傅立叶变换系数。经FFT运算即可得到无功功率的表达式为

Qk=■{H2(k)+L2(S-k)-L2(k)-H2(S-k)}(2)

其中H、L为复数的实部和虚部两个数组,进行FFT时相应的蝶形运算的因子为D′s=cos?兹-jsin?兹 ?兹=■r

计算得到无功功率值后需要进行相应的控制策略分析,得到并联电容器的动作方式。控制策略一般选取无功功率补偿常用到的九区图控制策略,但因其本身存在着振荡及装置频繁动作的缺陷,所以需对九区图进行一些优化。

即在原有九个区域的基础上,把其中2、4、6、8四个区域又各自分成两个小区域,其中ΔQ为分接头调节一档引起的无功最大变化量,ΔU为为投切一组电容器组引起的电压最大变化量。这样进行改进之后使得无功功率的判断更为准确,不会在边界线上来回振荡,造成并联电容器的频繁投切。在使用FPGA完成对电容器的投切控制操作时需要在软件中设置采集电压电流信号的硬件接口和控制并联电容器投切的硬件接口而且需要对软件系统进行优化,减少延时,以保证准确快速地实现无功功率的补偿。

4 结束语

对煤矿电网无功功率进行补偿,文中用FPGA实现对无功功率的实时动态补偿,且采用改进九区图进行补偿的控制策略设置,避免了设备的误动作与振荡现象的发生。改善了电网电压水平,提高了功率因数,极大地改善了煤矿电力系统的电能质量,具有很好的推广价值。

参考文献:

[1]卢军晓,王富元.煤矿井下电力系统谐波与无功功率综合补偿的研究[J].装备制造技术,2010(8).

[2]李明锋.煤矿无功优化方案与应用[D].山东科技大学硕士论文,2011.

[3]杨益,方潜生.基于FPGA的九区图控制策略优化设计[J].计算机技术与发展,2008(8).

无功补偿技术论文范文第6篇

[论文摘要]低压电网如何有效保持良好的工作状态,降低电能损失,与电网稳定工作、电力设备安全运行、工农业安全生产及人民生活用电都有直接影响。分析无功补偿的作用和主要措施。

无功补偿是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低电能的损耗,改善电网电压质量。

从电网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤其是以低压配电网所占比重最大。为了最大限度的减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配

置,应按照“分级补偿,就地平衡”的原则,合理布局。

一、低压配电网无功补偿的方法

随机补偿:随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。

随器补偿:随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。

跟踪补偿:跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

二、无功功率补偿容量的选择方法

无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。

(一)单负荷就地补偿容量的选择的几种方法

1.美国:Qc=(1/3)Pe

2.日本:Qc=(1/4~1/2)Pe

3.瑞典:Qc≤√3UeIo×10-3(kvar)Io-空载电流=2Ie(1-COSφe)

若电动机带额定负载运行,即负载率β=1,则:Qo根据电机学知识可知,对于Io/Ie较低的电动机(少极、大功率电动机),在较高的负载率β时吸收的无功功率Qβ与激励容量Qo的比值较高,即两者相差较大,在考虑导线较长,无功经济当量较高的大功率电动机以较高的负载率运行方式下,此式来选取是合理的。

4.按电动机额定数据计算:

Q=k(1-cos2φe)3UeIe×10-3(kvar)

K为与电动机极数有关的一个系数

极数:246810

K值:0.70.750.80.850.9

考虑负载率及极对数等因素,按式(4)选取的补偿容量,在任何负载情况下都不会出现过补偿,而且功率因数可以补偿到0.90以上。此法在节能技术上广泛应用,特别适用于Io/Ie比值较高的电动机和负载率较低的电动机。但是对于Io/Ie较低的电动机额定负载运行状态下,其补偿效果较差。

(二)多负荷补偿容量的选择

多负荷补偿容量的选择是根据补偿前后的功率因数来确定。

1.对已生产企业欲提高功率因数,其补偿容量Qc按下式选择:

Qc=KmKj(tgφ1-tgφ2)/Tm

式中:Km为最大负荷月时有功功率消耗量,由有功电能表读得;Kj为补偿容量计算系数,可取0.8~0.9;Tm为企业的月工作小时数;tgφ1、tgφ2是指负载阻抗角的正切,tgφ1=Q1/P,tgφ2=Q2/P;tgφ(UI)可由有功和无功电能表读数求得。

2.对处于设计阶段的企业,无功补偿容量Qc按下式选择:

Qc=KnPn(tgφ1-tgφ2)

式中Kn为年平均有功负荷系数,一般取0.7~0.75;Pn为企业有功功率之和;tgφ1、tgφ2意义同前。tgφ1可根据企业负荷性质查手册近似取值,也可用加权平均功率因数求得cosφ1。

多负荷的集中补偿电容器安装简单,运行可靠、利用率较高。三、无功补偿的效益

在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70~0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%~90%,如果把功率因数提高到0.95左右,则无功消耗只占有功消耗的30%左右。减少了电网无功功率的输入,会给用电企业带来效益。

(一)节省企业电费开支。提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对不同企业的功率因数规定了要求达到的不同数值,低于规定的数值,需要多收电费,高于规定数值,可相应地减少电费。使用无功补偿不但减少初次投资费用,而且减少了运行后的基本电费。

(二)降低系统的能耗。补偿前后线路传送的有功功率不变,P=IUCOSφ,由于COSφ提高,补偿后的电压U2稍大于补偿前电压U1,为分析问题方便,可认为U2≈U1从而导出I1COSφ1=I2COSφ2。即I1/I2=COSφ2/COSφ1,这样线损P减少的百分数为:

ΔP%=(1-I2/I1)×100%=(1-COSφ1/COSφ2)×100%

当功率因数从0.70~0.85提高到0.95时,由上式可求得有功损耗将降低20%~45%。

(三)改善电压质量。以线路末端只有一个集中负荷为例,假设线路电阻和电抗为R、X,有功和无功为P、Q,则电压损失ΔU为:

U=(PR+QX)/Ue×10-3(KV)两部分损失:PR/Ue输送有功负荷P产生的;QX/Ue输送无功负荷Q产生的;

配电线路:X=(2~4)R,U大部分为输送无功负荷Q产生的

变压器:X=(5~10)RQX/Ue=(5~10)PR/Ue变压器U几乎全为输送无功负荷Q产生的。

可以看出,若减少无功功率Q,则有利于线路末端电压的稳定,有利于大电动机的起动。

(四)三相异步电动机通过就地补偿后,由于电流的下降,功率因数的提高,从而增加了变压器的容量,计算公式如下:

S=P/COSφ1×[(COSφ2/COSφ1)-1]

如一台额定功率为155KW水泵的电机,补前功率因数为0.857,补偿后功率因数为0.967,根据上面公式计算其增容量为:(155÷0.857)×[(0.967÷0.857)-1]=24KVA

四、结束语

在配电网中进行无功补偿、提高功率因数和做好无功优化,是一项建设性的节能措施。本文简要分析了三种无功补偿的方法和两种无功功率补偿容量的选择方法以及无功补偿后的良性影响。在实际设计中,要具体问题具体分析,使无功补偿应用获得最大的效益。

参考文献:

[1]戴晓亮,无功补偿技术在配电网中的应用.电网技术.1999.23(6).

无功补偿技术论文范文第7篇

[论文摘要]低压电网如何有效保持良好的工作状态,降低电能损失,与电网稳定工作、电力设备安全运行、工农业安全生产及人民生活用电都有直接影响。分析无功补偿的作用和主要措施。

无功补偿是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低电能的损耗,改善电网电压质量。

从电网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤其是以低压配电网所占比重最大。为了最大限度的减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配

置,应按照“分级补偿,就地平衡”的原则,合理布局。

一、低压配电网无功补偿的方法

随机补偿:随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。

随器补偿:随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。

跟踪补偿:跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

二、无功功率补偿容量的选择方法

无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。

(一)单负荷就地补偿容量的选择的几种方法

1.美国:Qc=(1/3)Pe

2.日本:Qc=(1/4~1/2)Pe

3.瑞典:Qc≤√3UeIo×10-3(kvar)Io-空载电流=2Ie(1-COSφe)

若电动机带额定负载运行,即负载率β=1,则:Qo根据电机学知识可知,对于Io/Ie较低的电动机(少极、大功率电动机),在较高的负载率β时吸收的无功功率Qβ与激励容量Qo的比值较高,即两者相差较大,在考虑导线较长,无功经济当量较高的大功率电动机以较高的负载率运行方式下,此式来选取是合理的。

4.按电动机额定数据计算:

Q=k(1-cos2φe)3UeIe×10-3(kvar)

K为与电动机极数有关的一个系数

极数:246810

K值:0.70.750.80.850.9

考虑负载率及极对数等因素,按式(4)选取的补偿容量,在任何负载情况下都不会出现过补偿,而且功率因数可以补偿到0.90以上。此法在节能技术上广泛应用,特别适用于Io/Ie比值较高的电动机和负载率较低的电动机。但是对于Io/Ie较低的电动机额定负载运行状态下,其补偿效果较差。

(二)多负荷补偿容量的选择

多负荷补偿容量的选择是根据补偿前后的功率因数来确定。

1.对已生产企业欲提高功率因数,其补偿容量Qc按下式选择:

Qc=KmKj(tgφ1-tgφ2)/Tm

式中:Km为最大负荷月时有功功率消耗量,由有功电能表读得;Kj为补偿容量计算系数,可取0.8~0.9;Tm为企业的月工作小时数;tgφ1、tgφ2是指负载阻抗角的正切,tgφ1=Q1/P,tgφ2=Q2/P;tgφ(UI)可由有功和无功电能表读数求得。

2.对处于设计阶段的企业,无功补偿容量Qc按下式选择:

Qc=KnPn(tgφ1-tgφ2)

式中Kn为年平均有功负荷系数,一般取0.7~0.75;Pn为企业有功功率之和;tgφ1、tgφ2意义同前。tgφ1可根据企业负荷性质查手册近似取值,也可用加权平均功率因数求得cosφ1。

多负荷的集中补偿电容器安装简单,运行可靠、利用率较高。

三、无功补偿的效益

在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70~0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%~90%,如果把功率因数提高到0.95左右,则无功消耗只占有功消耗的30%左右。减少了电网无功功率的输入,会给用电企业带来效益。

(一)节省企业电费开支。提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对不同企业的功率因数规定了要求达到的不同数值,低于规定的数值,需要多收电费,高于规定数值,可相应地减少电费。使用无功补偿不但减少初次投资费用,而且减少了运行后的基本电费。

(二)降低系统的能耗。补偿前后线路传送的有功功率不变,P=IUCOSφ,由于COSφ提高,补偿后的电压U2稍大于补偿前电压U1,为分析问题方便,可认为U2≈U1从而导出I1COSφ1=I2COSφ2。即I1/I2=COSφ2/COSφ1,这样线损P减少的百分数为:

ΔP%=(1-I2/I1)×100%=(1-COSφ1/COSφ2)×100%

当功率因数从0.70~0.85提高到0.95时,由上式可求得有功损耗将降低20%~45%。

(三)改善电压质量。以线路末端只有一个集中负荷为例,假设线路电阻和电抗为R、X,有功和无功为P、Q,则电压损失ΔU为:

U=(PR+QX)/Ue×10-3(KV)两部分损失:PR/Ue输送有功负荷P产生的;QX/Ue输送无功负荷Q产生的;

配电线路:X=(2~4)R,U大部分为输送无功负荷Q产生的

变压器:X=(5~10)RQX/Ue=(5~10)PR/Ue变压器U几乎全为输送无功负荷Q产生的。

可以看出,若减少无功功率Q,则有利于线路末端电压的稳定,有利于大电动机的起动。

(四)三相异步电动机通过就地补偿后,由于电流的下降,功率因数的提高,从而增加了变压器的容量,计算公式如下:

S=P/COSφ1×[(COSφ2/COSφ1)-1]

如一台额定功率为155KW水泵的电机,补前功率因数为0.857,补偿后功率因数为0.967,根据上面公式计算其增容量为:(155÷0.857)×[(0.967÷0.857)-1]=24KVA

四、结束语

在配电网中进行无功补偿、提高功率因数和做好无功优化,是一项建设性的节能措施。本文简要分析了三种无功补偿的方法和两种无功功率补偿容量的选择方法以及无功补偿后的良性影响。在实际设计中,要具体问题具体分析,使无功补偿应用获得最大的效益。

参考文献:

[1]戴晓亮,无功补偿技术在配电网中的应用.电网技术.1999.23(6).

无功补偿技术论文范文第8篇

论文摘要:无功补偿在低压电网中的配比及作用是维持电流顺畅的重要条件因素,也是提高电网工作效能的核心因子。供电过程中注意无功补偿的合理运用,可以获得最好的技术和 经济 效益。文章论述了低压电网中无功补偿的必要性和低压电网的无功补偿要求,以及低压集中补偿方法,降低能效值;中间同步或静止补偿,保持补偿的顺畅性;用户终端分散补偿,提高电压利用率等低压电网中无功补偿的方法。

根据 现代 电力工作运行 规律 ,我们可得出:在供电的过程中,利用无功补偿的方式进行配送电流,能够稳定电压和降低损耗的作用。由此可见,探讨无功补偿在低压电网中的合理运用,一方面,能够提高电网工作的效率;另一方面,能够降低电能损失,为电力的健康 发展 获得双赢。

一、低压电网中无功补偿的必要性

(一)无功补偿是稳定低压的必然选择

电压的稳定是电网输送过程中的重要条件,也是电力输送质量不可缺少的重要方面。利用无功补偿的方式进行传输电流,则可达到上述的要求,降低损耗。

(二)无功补偿是 企业 开支节流的有效途径

根据国家电价制度,对不同企业的功率因数规定了要求达到的不同数值,按照一定的数值进行收取电费。对此,很多企业特别注重对机器设备的节能保养,以便减少开支。无功补偿的运用则可达到上述要求,能够帮助企业减少在正常开机后的损耗,节约成本。

(三)无功补偿有利于降低系统的能耗

我们可根据p= iucosφ的 计算 公式来测算无功补偿降低电力系统能耗的作用情况。根据i1/i2= cosφ2/cosφ1来计算,线损 p减少的百分数为:δp%=(1-i2/i1)×100%=(1-cosφ1/ cosφ2)×100% ,也就是说当功率因数从0.75提高到0.90时,由上式可求得有功损耗将降低25%~40%。这是意想不到的效果。

(四)无功补偿能够稳定电压

根据电压损耗的计算公式可知,变压器的电压几乎全为输送无功负荷q产生的,功率q在电压稳定中具有不可替代的作用。对此,若在输电过程中,尽量地减少无功功率q,则不仅能够保持电压的稳定,还能够保证大型电动机的顺利起动。

二、低压电网的无功补偿要求

(一)同机补偿,减少损耗

在输电之前将低压电容器组与电动机进行连接,在此基础上进行同时工作。这样既可降低电流流通过程中损耗,又可提高电流的工作效能,达到无损耗值要求。

(二)用器补偿,弥补损耗

我们可将低压电容器通过低压保险接在配电变压器二侧,一方面,能够补偿配电变压器空载无功;另一方面,可弥补变压器因运行而带来的一定损耗。

(三)随时补偿,稳压供给

在补偿的过程中以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.5kv左右的母线上。这样,不仅可以上满足述两种补偿要求,还能够发挥稳压的作用,减少电器受损。

三、低压电网中无功补偿的方法

(一)低压集中补偿方法,降低能效值

低压集中补偿方法主要是在配电变压器380v侧进行集中补偿,通常采用微机控制的低压并联电容器柜。这样的补偿方法具有如下作用:(1)补偿的容量较大,可用于上千容器;(2)跟踪性能较好,即可根据用户负荷水平的波动情况进行相应数量的补偿,做到供给平衡;(3)补偿的经济效率好,这种补偿方式对配电过程的损耗有一定的帮助,且投资和维护费用均由专用变用户承担,减少供电企业的成本投入。

笔者根据现有的资料进行整理发现:目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切的。一旦运用集中补偿的方法,不仅能够达到上述的目标要求,还能够使 企业 能够及时地发现和解决问题。这种集中补偿方法,一方面能够引起电力供应部门的关注,便于检查电压的运行情况;另一方面能够使电压的数值始终在一定的范围之内。

(二)中间同步或静止补偿,保持补偿的顺畅性

笔者在近几年的工作实践中发现,在远距离输电线路中间装设同步调相机或静止补偿装置,能够产生如下的效果:(1)有助于电压的稳定,能够减少在输电过程中的不断充电现象;(2)提高输电的容量水平,即在多条线路的输电过程中,及时补充其损耗,起到稳压增容的作用;(3)调节性能强,因这种补偿在线路的中点,能够起到配给和补偿的功效,从而最大限度地发挥其调节功能。

在实际的操作过程中,应该注意以下几方面:(1)选择合理的调节点,即输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点设计无功补偿装置;(2)确定合理的补偿调节范围,减少其手外力的影响;(3)不断地进行跟踪维护,尽管这种补偿的自动化程度较高,但也会出现一些诸如受恶劣天气影响等问题,应该注意随时观察,发现异常情况进行及时校正。

(三)用户终端分散补偿,提高电压利用率

用户是输电过程中的终结环节,如果能够在用户终端进行分散补偿,不仅能够提高电压利用率,还能够使得用户的电器设备始终保持在一定的稳压值之内,减少破坏现象的发生。笔者以为,用户终端分散补偿的必要性主要体现在:(1)城镇电力用户的用电量日益增多,需要节省资源成本;(2)使用电器的频率较以往有所提高,实行这样的补偿方式,能够有一定的 发展 空间;(3)符合国家的用电规范要求《供电系统设计规范》(gb50052-1995)指出,容量较大,负荷平稳且经常使用的用电设备无功负荷宜单独就地补偿。可以这么说,用户终端分散补偿方式是较为合理的方法之一。

对此,笔者以为应该建立用户终端分散补偿来提高电压的利用率。我们可针对小区用户终端,应该开发一种新型低压终端无功补偿装置。这样的无功补偿方式,一方面,能够使得电压释放系统能量,提高线路供电能力;另一方面,使得电压始终保持在一定的稳定数值范围之内,有助于保护电气设备。除此之外,运用这样的补偿方法,可使线损率减少20%。

总之,在低压电网的无功补偿中,不仅要分析低压线路的具体特征,还应该从无功补偿的运用方法出发,精心设计符合电压运行的节能模式,一定能够提高低压电网的运行效率。

参考 文献

[1]戴晓亮.无功补偿技术在配电网中的应用[j].电网技术,1999,23(6).

[2]曹光祖.应系统地重视分散和终端无功补偿[j].低压电器,1999,(5).

无功补偿技术论文范文第9篇

论文摘要:电压是衡量电能质量的一个重要指标。电力系统中各种用电设备只有在电压为额定值时才有最好的技术和经济指标。但是在电力系统的正常运行中,用电负荷和系统运行方式是经常变化的,由此引起电压发生变化,不可避免地出现电压偏移。而电力系统的运行电压水平取决于无功功率的平衡,系统中各种无功电源的无功功率输出应能满足系统负荷和网络损耗在额定电压下对无功功率的需求,否则就会偏离额定值。

1、前言

总体来说,电力系统有效和可靠的运行,电压和无功功率的控制应满足以下目标:

1.1系统中有所有装置的在端电压应在可接受的限制内。

1.2为保证最大限度利用输电系统,应加强系统稳定性。

1.3应使无功功率传输最小,以使得ri2和xi2损耗减小到最小。

当负荷变化时,输电系统的无功功率的要求也要变化。由于无功功率不能长距离传输,电压只能通过遍布整个系统的具体装置来进行有效控制。

2、无功功率的产生和吸收

同步发电机可以产生或吸收无功功率,这取决于其励磁情况。当过励时产生无功功率,当欠励时吸收无功功率。

架空线路产生或吸收无功功率取决于负荷电流。当负荷低于自然负荷(波阻抗),线路产生纯无功功率;当高于自然负荷时,线路吸收无功功率。

地下电缆,由于它们对地电容较大,因此具有较高的自然负荷。它们通常工作在低于自然负荷情形下,因此在所有运行条件下总发生无功功率。

变压器不管其负载如何,总是吸收无功功率。空载时,起主要作用的是并联激励电抗;满载时,起主要作用的是串联漏抗。

负荷通常吸收无功功率。由电力系统的供电的典型负荷节点由许多装置所组成。这种组成随日期、随季节和气候的变化而不同。通常负荷节点的负荷特性是吸收无功功率的,复合负荷的有功功率和无功功率都是电压幅值的函数。具有低的滞后功率因数的负荷使传输网络有大的电压降落,因而供电也不经济,对于工业用户,无功功率通常和有功功率一样要计费,这就鼓励企业通过使用并联电容器来提高负荷功率因数。

3、无功功率的补偿

3.1无功功率不足的危害:交流电力系统需要电源供给两部分能量:一部分将用于做功而被消耗掉,这部分称为“有功功率”;另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有做功,称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立磁场,电动机,变压器等设备就不能运转。其物理意义是:电路中电感元件与电容元件正常工作所需要的功率交换。无功功率不足,无功电源和无功负荷将处于低电压的平衡状态,将给电力系统带来诸如出力不足,电力系统损耗增加,设备损坏等一系列的损害,甚至可能引起电压崩溃事故,造成电网大面积停电。

3.2无功补偿原理:在交流电路中,纯电阻元件中负载电流与电压同相位,纯电感负载中电流之后电压九十度,纯电容负载中电流超前电压九十度,也就是说纯电容中电流和纯电感中的电流相位差为180度,可以互相抵消,即当电源向外供电时,感性负荷向外释放的能量由荣幸负荷储存起来;当感性负载需要能量时,再由荣幸负荷向外释放的能量来提供。能量在两种负荷间相互交换,感性负荷所需要的无功功率就可由容性负荷输出的无功功率中得到补偿,实现了无功功率就地解决,达到补偿的目的。

3.3无功补偿的三种形式:

3.3.1集中补偿

集中补偿就是把电容器组集中安装在变电所的二次侧的母线上或配电变压器低压母线上,这种补偿方式,安装简便,运行可靠,利用率高,但当电气设备不连续运转或轻负荷时,又无自动控制装置时,会造成过补偿,使运行电压升高,电压质量变坏。季节性用电较强,空载运行较长又无人值守的配电变压器不宜采用。

3.3.2分散补偿

分散补偿是将电容器组分组安装在车间配电室或变电所个分路的出线上,形成抵押电网内部的多组分散补偿方式,它能与工厂部分负荷的变动同时投切,适合负荷比较分散的补偿场合,这种补偿方式效果较好,且补偿方式灵活,易于控制。

3.3.3个别补偿

个别补偿是对单台用电设备所需无功就近补偿的方法,把电容器直接接到单台用电设备的同一电气回路,用同一台开关控制,同时投运或断开,俗称随机补偿。这种补偿方法的效果最好,它能实现就地平衡无功电流,又能避免无负荷时的过补偿,是农网中队异步电动机进行补偿的常用方法。

3.4无功补偿设备

根据补偿的效果而言,电容器可以补偿负荷侧的无功功率,提高系统的功率因数,降低能耗,改善电网电压质量。电抗器可以吸收电网多余的线路充电功率,改善电网低谷负荷时的运行电压,减少发电机的进相运行深度,提高电网运行性能。

3.4.1无源补偿设备装置

并联电抗器,并联电容器和串联电容器。这些装置可以是固定连接式的或开闭式的,无源补偿设备仅用于特性阻抗补偿和线路的阻抗补偿,如并联电抗器用于输电线路分布电容的补偿以防空载长线路末端电压升高,并联电容器用来产生无功以减小线路无功输送,减小电压损失;串联电容器可用于长线路补偿等。电力系统变电站内广泛安装了无功补偿电容器,用来就地无功平衡,减少线损,提高电压水平。

3.4.2有源补偿装置

通常为并联连接式的,用于维持末端电压恒定,能对连接处的微小电压偏移做出反应,准确地发出或吸收无功功率的修正量。如用饱和电抗器作为内在固有控制,用同步补偿器和可控硅控制的补偿器作为外部控制的方式。

4、结束语

无功补偿对提高功率因数,改善电压质量,降损节能、提高供电设备的出力都有很好的作用。只要依靠科技进步,加大资金投入,优化无功补偿配置,实现无功的动态平衡是完全可能的。

参考文献:

[1] prabha kundur 著.电力系统的稳定与控制[m].中国电力出版社.

[2]刘娅.变电站无功补偿分析 [m].行业透视.

无功补偿技术论文范文第10篇

Sun Hui

(Guangdong Technical College of Water Conservancy and Electric Engineering,Guangzhou 510635,China)

摘要:本文叙述了供电系统的传统无功补偿装置及其控制,介绍了用半导体开关器件控制、响应速度快的特点。随着电力电子器件与计算机控制技术的发展,动态无功补偿器SVC正朝着高电压和大容量方向发展。

Abstract: This paper describes the traditional reactive power compensation device of in power supply system and its control, introduces characteristics of fast response when controlled by semiconductor switching device. With the development of power electronic devices and computer control technology, dynamic reactive power compensator SVC is developing to the direction of the high voltage and high-capacity.

关健词:传统的无功补偿的特点 动态无功补偿分析

Key words: the characteristics of traditional reactive power compensation;analysis of dynamic reactive power compensation

中图分类号:TM7 文献标识码:A文章编号:1006-4311(2011)15-0054-01

0引言

在供电系统中,系统的构成有发电机、变压器、输电线及用户的负荷。工业用户负荷中、除电阻炉是电阻负荷外,其他常用的负截如电动机、感应加热设备、整流装置等是感性负截,从电路的角度看,均可等效为电阻与电感的串联或并联。而输电线路除个别高压系统由于输电线的分布电容较大,使线路可等效为容性外,其他供电线路,特别是低压系统,都可将供电线路等效为集中参数的线路电阻与电感中联。

1传统的无功功率补偿的方法

根据调节同步电机可以调节其无功电流和功率因数的特点,它是专门制造用来改善电网功率因数、不带任何机械负载的同步电机,即同步补偿机,它实属是空载的同步电动机,它的励磁电流It与电枢电流lm的V形曲线如图1所示。

将同步补偿机工作在过励状态,Im的为超前电网电压的容性电流,用它可以补偿负载的感性无功电流。为保持在各种情况时,负载端电压比较稳定和电网的功率因数在某一范围内,将同步补偿机与负载并联接入电网。同步补偿机的励磁置用U2大小cosφ2大小进行自动控制,以自己改变励磁电流大小,从而使电网具有较好的质量。同步补偿机调节范围宽,但结构复杂,起动和控制也麻烦,运行费用较高,所以一般在大容量系统中用。在过励运行的同步电动机也能向电网供给超前的无功,所以对不调速的大容量机械,应尽量采用同步电动机拖动,以得到改善电网功率因数的效益。

并联电容器

一般厂用电多用并联电容器的方法进行功率因数的改善。若将电容直接接在感性负载如感应电动机端,则补偿效果就可直接改善厂内的功率因数。为集中管理,多数还是将补偿电器设置在变电所内,可以在高压侧补偿,、也可在低压侧补偿。

并联电容补偿无功提高功率因数是分组投切的,所以不能很好地保证cosφ和U2的调节,且其响应速度慢,所以对于要求响应较快的无功补偿系统来说,就应采用静止无功补偿装置(SVC),由于SVC动态性能好,所以又叫它们为动态无功功率补偿装置。

2静止无功功率补偿装置(Svc)

对无功功率变化急剧的情况,如电弧炉,大容量变流器等设备的无功功率补偿,常用静止无功功率补偿装置(SVC)。它的响应速度快,动态性能好,可以克服电容切换的分段控制,可以进行cosφ的动态补偿,它是现在电力电子装置在供电系中容量非常大的设备。常用的有用晶闸管或积极可关断晶闸管(GTO)控制的固定电容调电感式无功补偿装置(TCR),也可用固定电感调电容式的无功补偿装置。

3采用PWM控制方式的整流器是提高有整流器功率因数的最好方法

对大容量的整流器,由于晶闸管的导通角要根据负载要求进行调节,在导通角改变的一般情况下,其功率因数只有0.4-0.6,导通角小时cosφ更低。所以若将晶闸管相控制整流,改为PWM脉宽调制式整流,就可提高电网的功率因数,用GTO的PWM式整流器电路如图2(a)所示,图2(b)画出整流输出的问题波形。

由于PWM频率比工频高得多,所以滤波器流参数和尺寸就比工频带的小得多。改变脉冲的占空比即可方便调整输出的直流电压动态的无功功率补偿装置由于用半导体开关器件控制,有很好的动态特性,虽现在它们的造价比起并联电容器的传统方法贵得多,但对无功负荷变化迅速的重要负载来说,采用静止无功补偿装置的技术和经济效益还是十分显著的,随着电力电子器件与计算机控制技术的发展,动态无功补偿器SVC正朝着高电压和大容量方向发展。所以它应是今后的发展和推广应用的方向。

参考文献:

[1]晶闸管串联调压电容无功的方法(论文期刊,李民族,吴晓楠).

[2]电网无功补偿实用技术.中国水利电力出版业1997年6月(靳龙章 丁毓山).

上一篇:自动化节能技术论文范文 下一篇:数字档案论文范文