地质灾害监测范文

时间:2023-03-08 12:27:36

地质灾害监测

地质灾害监测范文第1篇

所谓的地质灾害指的是由于自然地质的结构以及相应版块的运动或者是由于人类对自然资源的破坏而造成泥石流、滑坡以及地面塌陷或者是土壤盐碱化以及火山地震的发生,这些都属于地质灾害问题。由于地质灾害是由于一定的作用力的作用下而导致其发生的,有人为因素,也有自然因素,自然因素主要是由于板块的运动产生碰撞或者是挤压而产生了一定的压力造成的。而人为因素主要是由于人类对自然资源的不合理使用造成的。其中主要包括:由于生产的需要对于树木进行严重的砍伐在一定的程度上可以造成山体滑坡的现象发生,由于煤矿以及其他资源的过度开采,很可能造成塌方现象的发生,不仅危害人们的生命安全在一定的程度上还造成环境的破坏。

二、地质灾害监测的方法

所谓的地质监测就是在地质灾害发生之前通过技术与设备的应用对于地质灾害的活动以及各种诱发地质灾害发生的因素进行一系列的分析的工作。不但可以防止灾害的发生也可以通过相应的预防手段来减少灾害发生时造成的损失。

1.地质灾害监测的对象

在对地质进行监测的时候主要还是通过直接的观察以及通过仪器的测量还有对以往的数据进行分析,找出灾害发生的特点,从而对其进行防御。在进行地质灾害监测的时候主要是对于灾害形成的原因以及灾害的发展形势进行全方位的调查与研究。我们通过对变形、物理场、化学场以及诱发地质灾害发生的其它的一些动力因素进行相关的监测从而找出其影响地质灾害的主要原因。

2.地质灾害监测的方法

对于变形监测来说主要是通过伸缩计法以及地表倾斜检测法还有地表位移GPS测量法对地表的相对位移以及绝对位移进行相应的测量。以上的测量方法主要是对预防滑坡以及崩塌地质灾害发生而进行的监测。对于泥石流的监测主要是通过地表检测法和流速监测法以及对于降雨量的调查分析来进行相应的监测的。地质之所以会发生变动,不仅受自然自身的影响,人类的活动在很大的程度上导致了地质灾害的发生,所有在具备完善的监测的情况下要让人们了解到保护自然环境的重要性,对于人类所进行的活动也要进行相应的的观察之后可以推断出地质可能会发生的结构的演变,从而能更好地分析其动态,对于可能要发生的灾害进行很好的预防。

三、地质灾害监测预警的基本程序

对于地质灾害的监测预警,首先相关的部门应该成立专门的地质灾害监测预警小组,对于居民进行的宣传以及教育,对在地质灾害发生之前可能出现的一些状况进行详细的讲解,以便于进行及时的撤离以及预防的工作可以顺利的开展。其次,应该对于人们日常生活的电力设施以及具有重大威胁性的桥梁以及水坝的建设还有对大山的居民的居住地以及周边的环境要进行良好的监测,以便在灾害发生的时候可以将居民进行有效的撤离。最后要制定严谨详细的防御措施,在进行区域调查时要把发生重大灾害的地区作为重点的参考对像对其地质环境进行相关的判别,对于特殊区域的地质要建立完善的气象综合检测网,由于监测预警对于预防以及降低损失有着重要的意义,所以在进行监测预警的时候一定要将科学技术研究作为重要的依据。由于不同地区的地质存在不同的问题,所以对于地质进行科学的划分之后才能进行更加深入的监测以及预防的工作。

四、地质灾害预警预报的基本理论以及模型

无论是远古时期还是现在都发生过很多的地质灾害问题,所以对于地质灾害监测以及预警应该进行全方面的研究,在基于一定科学理论的基础上,通过对地质灾害形成的机理以及诱发的因素和动力学的分析,通过对静力以及动力的研究,来判断地质灾害形成的过程,通过对岩土力学的研究从而判断地质灾害的日常稳定性以动态。通过统计学以及数学的应用,对一些变量以及进行科学的分析,可以使用的公式进行相关的计算,便于发现灾害对于人类的影响程度,从而可以采取有效的手段进行预防。还可以通过信息科学以及地理信息科学对地质灾害的发生建立相应的数据库,再结合相应的地理信息系统,对地质灾害进行相应的对比分析,使预警预报在无形之中可以看见,可以对其进行相应的防范。由于科技的迅速发展,我国已经掌握了更加先进的监测预警技术,对于我国来说BOTDR技术虽然引进的比较晚,但是发展的很迅速,对于滑坡工程的监测也起到了很好的效果。在进行监测预警的时候应该建立地质灾害监测预警模型然后其数据进行相关的分析。地质灾害监测的预警模型主要有时间序列模型以及Kalman滤波模型还有人工神经网络模型。在时间序列模型建模之前要对系统的时间序列动态数据进行相应的观测以及记录,然后通过制图以及一系列的计算选择合适的模型与时间序列观察的数据进行相应的曲线拟合,从而发现其走向。

五、总结

对于地质灾害的预防应该从各个方面对地质以及其它的动力因素进行研究,由于我国的地理环境比较复杂,所以在对地质以及大气等进行相关的监测的时候一定要采取科学有效的方法,由于不同地段的地质不同,通过对地质的分析以及相关数据还有模型的应用进行比较合理的分析之后才能进行有效的预防。只有这样才能保证国家以及人们的财产安全不受侵犯。

地质灾害监测范文第2篇

关键词:地质灾害 防治 监测

中图分类号:X43 文献标识码:A 文章编号:1672-3791(2014)02(b)-0035-01

地质灾害种类多,通常所说的地质灾害即滑坡、崩塌、泥石流、地面塌陷、地面沉降、地裂缝等,地质灾害治理应本着防为主,治为辅的原则。笔者以恩施市常见的地质灾害为实例,较为直观的论述地质灾害的防治。

恩施市共有各类地质灾害隐患点467个,其中省级1个、州级2个、市级18个、水布垭库区和老渡口库区74个、乡级372个,受威胁1145户7180人及沐抚集镇、平锦稻池、摩天岭滑坡前缘胜利街居住户,其中须搬迁327户1257人。因地质灾害频发、突发性强、危害程度大,该市为湖北省地质灾害最为严重的县市之一。如何进行地质灾害的防治监测呢?下面以恩施市最常见的滑坡地质灾害形式及地质灾害群测群防方式进行论述。

1 滑坡的成因及治理方法

斜坡上的岩土体由于种种原因在重力作用下沿一定的软弱面(或软弱带)整体地向下滑动的现象叫滑坡。按物质组成可分为土质滑坡、岩质滑坡;按引起滑动的力学性质分为推移式滑坡、牵引式滑坡;按滑动体厚度分为浅层滑坡、深层滑坡;按滑动面通过岩层情况分为顺层滑坡、切层滑坡等。产生滑坡的主要条件:一是地质条件和地貌条件;包括(1)地质条件指岩层、土层、构造的特殊性;(2)地貌条件指倾斜产状。二是内外营力和人为作用的影响。

1.1 地质条件和地貌条件

(1)地质条件指岩层、土层、构造的特殊性。(2)地貌条件指倾斜产状和分布位置。(3)水文地质条件。地下水活动在滑坡形成中起着重要的作用。它能软化岩、土,降低岩、土体强度,尤其是对滑面的软化作用和降低强度的作用是最为突出。

1.1.1 滑坡发生的规律与前兆

江、河、湖(水库)沟的岸坡地带,地形高差大的峡谷地区、山区、铁路、公路、工程建筑物的边坡等;地质构造带之中,如断裂带、地震带等;易滑(坡)岩、土分布区;暴雨多发区及异常的强降雨区。大滑动前,在滑坡前缘坡脚处,有堵塞多年的泉水复活,或者出现泉水、井水突然干枯的现象;在滑坡体中,前部出现横向及纵向放射性裂缝;大滑动之前,在滑坡体前缘坡脚处、土体出现上隆现象;临滑前,有岩石开裂的声响;滑坡体四周岩体(土体)出现小型崩塌和松弛现象;在滑坡之前无论是水平位移和垂直位移不断加大,这是明显的临滑迹象;滑坡体后缘裂急剧扩张,并从裂缝中冒出热气或冷气;动物惊恐异常、植物变态等。

1.1.2 滑坡治理的几种主要方法

根据我国多年防治滑坡的实践,归纳出防治滑坡的“避、排、减、挡、锚”五字经验,“避”即在选择建筑场地、铁路、公路选线,城镇选址时应尽量避开滑坡体。事先要做地质灾害危险性评估,提出书面报告。出现滑坡隐患不宜治理,对于受威胁村民或居民,采取避让搬迁至安全地带,主要工程治理措施归纳起来分为三种:一是“排”水,消除可减轻水的危害;二是改变滑坡体的平衡条件,如削坡“减”重压脚,修筑“挡”土墙、抗滑桩、“锚”固等。三是改变滑坡体岩土体性质。

2 地质灾害群测群防

地质灾害群测群防是指地质灾害易发地区内广大人民群众和政府公务人员直接参与地质灾害点的监测和预防,及时捕捉地质灾害前兆、灾体变形、活动信息,迅速发现险情,及时预警自救,减少人员伤亡和经济损失的一种防灾减灾手段。地质灾害群测群防网络体系是地质灾害监测预警体系的组成部分,由四级监测网点构成,即县(市)级监测网(监测站),乡镇级监测分站、村级监测组、灾害点监测点。

恩施市所有监测点都实行六个一(重点监测点有一名市级领导、一名乡领导、一名国土局领导、一名国土所干部、一名村干部和一名监测员)和四个一(一般监测点有一名乡领导、一名国土所干部、一名村干部和一名监测员)的监测预警网络。并在当地新闻媒体上将我市主要地质灾害点的监测人员联系方式、驻灾害点的市级领导、乡级领导、国土局领导、国土所人员向社会公示。

地质灾害群测工作要求如下。

2.1 选点标准

地质灾害群测群防监测点选择在综合考虑本地区地质灾害特点的基础上,其主要标准为:(1)规模大于500 m3以上,且威胁人民生命财产安全的地质灾害隐患点;(2)危险性大,稳定性差,灾情较严重,危害程度中型以上的地质灾害隐患点;(3)对集镇、村庄、学校或居民点的人民生命财产安全构成威胁的地质灾害隐患点。(4)规模500 m3以下的地质灾害隐患点和房前屋后潜在不稳定斜坡作为汛期目视检查点。

2.2 监测方法

地质灾害的监测方法很多,而简易监测适用于群测点监测,主要有变形位移监测、裂缝相对位移监测和目视检查监测。(1)变形监测法:通过监测点的相对位移量,了解掌握地质灾害的演变过程。(2)裂缝相对位移监测法:通过监测灾体中拉裂两侧相对张开、闭合变化、了解地质灾害体的动态变化和发展趋势。(3)目视检查法:通过定期目视监测地质灾害隐患点有无异常变化,了解地质灾害的演变特征,及时发现斜坡地面开裂、地面鼓胀、泉水突然浑浊、流量增减变化,树木歪斜,墙体开裂等微观变化,及时捕捉地质灾害的前兆信息。

地质灾害群防工作要求:

建立群防体系责任制。(1)建立市县――乡镇――村――点(监测责任人)行政责任制;(2)建立地质灾害主管部门的组织、协调、指导和监督的责任制;(3)建立地质灾害监测数据采集――传输――分析――结论责任制;

建立单位灾害点防治方案。防灾方案应包括以下内容:(1)地质环境;(2)灾害特点;(3)威胁对象、范围、设立警示标志;(4)监测责任人,防治责任人;(5)简易防治方法;(6)避让讯号、路线、地点。

普及地质灾害防治知识。(1)加强地质灾害防治知识的宣传、培训、提高全民防灾意识;(2)发放防灾明白卡;(3)落实汛期值班制。

采取预防措施。地质灾害的发生是不可避免的,通过群测工作及时捕捉发生地质灾害的前兆信息,采取预防措施,达到避免人员伤亡和财产损失的目的。(1)当灾害体处于累积形成阶段,应划定危险区,予以公告,并在危险区边界设置警示标志,采取一些简易治理措施。修筑地面排水沟,排除危险性、填实裂缝等。(2)当灾害体处于滑移阶段,应将危险区内的人员和财产立即撤离到安全地带,并禁止其他人员进驻危险区。

3 结语

地质灾害防治与监测任重道远,只有充分认识地质灾害的危害和强化群测群防体系,才能科学有效的防止地质灾害及次生灾害的发生,减少人民群众的生命财产损失,随着新的地质灾害防治与监测科学技术快速发展,地质灾害防治与监测必将在保护人民群众生命财产安全和保障地方经济社会发展上发挥重大作用。

参考文献

[1] 刘传正,刘艳辉.论地质灾害防治与地质环境利用[J].吉林大学学报:地球科学版,2012(9):1469-1476.

[2] 王帅杰,刘勇.探讨新时期地质灾害的防治和地质环境的保护[J].河南科技,2013(11):180.

[3] 李永利.浅谈现阶段我国多发的地质灾害的防治[J].科技资讯,2011(1):230.

地质灾害监测范文第3篇

[关键词] 煤矿地质灾害; 监测预防; 研究

近年来,随着我国国民经济的不断发展,对煤炭资源的需要越来越大,煤炭资源的开采规模和开采量也在不断的扩大,而因此所引发的煤矿地质灾害问题也越来越严重,因地质灾害而造成的人员伤亡、经济损失也为社会带来了诸多负面影响,因此加强对煤矿地质灾害的研究与有效的监测预防是极其重要的。本文从我国煤矿地质灾害的基本类型和发生的主要原因出发,研究分析了现今煤矿地质灾害的监测方法和技术发展的现状,从而提出了具体的监测预防措施,从而使其有效的预防煤矿地质灾害的发生、以保证煤矿生产的安全性和稳定性。

一 我国煤矿地质灾害的分类及特点

(一) 煤矿地质灾害的分类

煤矿地质灾害是指,在进行煤炭开采过程中,受自然因素或是人为因素影响地质环境的平衡被破坏,引发地质环境变化所产生的地质灾害及因此而衍生出的次生灾害,是地质环境对开采行为的一种反馈。而根据地质灾害持续的实践及动力作用方式我们将它们划分为以下几类。

首先根据地质灾害持续时间分类:第一,突发性地质灾害。此类地质灾害具有的特点是突发、高能且危害性较大、持续时间短。如井下突水、突泥持续的时间大概是数分钟~数天,瓦斯和煤尘爆炸、煤与瓦斯突出等只有数秒钟;第二,渐发性地质灾害。这类地质灾害主要特点是发生相对缓慢、持续时间较长但危害不是很剧烈。如沙漠化,其年平均增长率保持在

其次根据动力作用方式可将煤矿地质灾害划分为两大类:第一自然动力类型地质灾害,它包括内动力地质灾害、内动力地质灾害所诱发的灾害及自然外动力地质灾害三个小类,如地裂缝、岩溶塌陷、井下突水突砂、泥石流、水污染和大气污染等;第二是指人为外动力与自然动力复合类型地质灾害,主要包括人为外动力与自然外动力复合地质灾害及人为外动力与内动力复合地质灾害两个小类,如水污染、大气污染、水土流失及盐渍化、地裂缝、煤层及煤矸石自燃等。

(二) 煤矿地质灾害的主要特点

煤矿地质灾害的主要特点大致包括以下几个方面,分别是群发性、衍生性、区域性、持续时间的多样性、不可避免性和可防御性、影响的多面性。

首先群发性是指在煤炭开采过程中,地质环境的平衡性被破坏,所引起反馈行为所造成的灾害并不是鼓励的,会在同一地区或是某一时段集中发生形成灾害群,如煤层自燃、井下突水、塌陷灾害等;其次衍生性是指由于煤矿开采造成的环境影响是连锁性的,如煤矸石山自然会引起矿区的大气污染,而大气污染会引发矿区居民的空气质量,造成呼吸道疾病甚至是肺癌。或有害矿井水排放没有经过科学处理造成水体污染并影响到了土壤质量,使得有害元素进入到农作物,人体长期食用,引发地方病;第三地质灾害的区域性是指,灾害发生是受一定的区域条件影响控制的,像煤矿区岩溶塌陷和矿井突水灾害,就主要发生在岩溶发育区域和石灰岩广布地区;第四灾难持续时间的多样性是指煤矿地质灾害其发灾所持续的时间是不同的,如煤与瓦斯突出、煤尘爆炸等发灾时间较短,而采煤塌陷、地方病等持续时间较长;第五,煤矿地质灾害的不可避免和可防御性是指,煤矿地质灾害在现今的经济技术条件下,都是不可完全避免的,但可以依靠科技技术去积极预防的,从而减少灾难的发生并减轻灾害的损失;最后说其影响的多面性是指,煤矿地质灾害不仅关系着煤矿企业的经济利益、社会形象,更关乎众多矿工的生命安全和矿工家庭的幸福,还影响到该地区的经济效益与环境效益。

二 造成煤矿地质灾害发生的原因分析

(一) 客观因素

首先在进行煤矿开采活动之前地球表面与岩石圈是平衡的,那在采矿的过程中,实际上我们是从地壳内部通过各种技术如钻采、坑采或是露天开采、液采等把矿石和岩石开采出来的,我们这个开采过程实际上就类似一个把地壳肢解的过程,使原本平衡、自然的地壳,出现了空洞变得不自然协调和平衡,从而造成了地壳物质环境的不稳定,从而诱发了煤矿地质灾害发生,这也是其本质原因。

其次,在煤矿开采中尤其是地下采矿需要排净矿坑下的积水且对地层漏水做处理,而这一行为会影响到地下水的平衡,造成地层的不稳定和不协调性。而如果在煤矿开采过程中还不按照科学的方式进行,乱挖滥采还会造成矿坑突水、瓦斯爆炸、冒顶等煤矿地质灾害的发生。

第三,我们说矿业活动并不是单一的煤矿开采,它还包括选矿和冶炼加工等,但是这些工序需要用到火与水进行相应的技术处理,并产生废气、废水、废渣等,这三废的排放、堆积、处理问题也是较为严重的,农田、森林、地下水等等,可以说对周围的环境会有严重的危害,使居住环境质量下降,影响到人类的健康,

(二) 主观因素

首先,由于对于煤矿经营企业的把关不严格,一些地方和民营的小煤矿发展迅速,他们的煤矿开采不讲科学,开采方式过于粗暴,与国营煤矿企业争夺矿产资源,甚至一些民营小煤矿寄生在国营矿山上,直接在国营大矿山上挖洞,造成瓦斯泄露、透水等事故的发生。

其次,矿山腐败现象严重,一些国营矿山被转为私人承包,一些煤矿老板只注重煤矿开采量和不断增产,对安全生产忽视,对矿工的生命安全于不顾,用钱收买上边领导,对下面群众禁止发声,这种罔顾矿工生命安全、罔顾造成的环境问题和地质灾难,只满足自己私欲的经营方式,造成煤矿地质灾难频繁。

第三,国家的煤矿安全生产检查让一些煤矿主有漏洞可钻,光有法律法规和各种生产规则,执行力度不强硬,一些检查人员易受利益驱使,降低检查标准。还有则是黑煤矿的存在现象依旧很严重,他们为了一己私利擅自开设煤矿,管理混乱,技术水平低,只注重经济所得,不顾灾难的预防和环境的综合治理。

三 地质灾害的监测技术方法概述

地质灾害监测的目的是及时掌握灾害体的变形动态,并分析其稳定性,从而超前做出预测预报,以防止灾难发生,并为灾难治理工程提供科学的依据和相关资料支持,为社会提供对地质灾害的监测信息服务,开展对地质灾害的监测能最大程度的获得连续的空间变形数据,将其应用防治工程效果评估中。地质灾害监测是集地质灾害形成机理、时空技术、监测仪器和预测预报技术于一身的综合技术,其方法大致可分为以下四大类。

(一) 变形监测

变形监测是指通过测量位移形变信息为主的监测方法,比如说地表相对位移监测、深部位移监测和地表绝对位移监测,此类监测技术已发展较成熟,有着较高的精准度,是一种常规监测技术,能获得直观的灾害移形变信息,因此通常是预测预报的主要依据。

(二) 物理与化学场监测

比如说应力监测、放射元素监测、地声监测、地球化学方法及地脉动测量等,都属于监测灾害体物理与化学场等变化信息的监测技术方法,因为地质灾害的物理和化学场发生变化,常常与同灾害体的变形破坏有着重要联系,因此此类监测方法较变形监测具有一定的超前性。

(三) 地下水监测

很多地质灾害的形成或是发展都与灾害体内部或是周围的地下水活动有着密切的关系,因此对于地下水的监测是很重要的。地下水监测如其名,以监测水质特征为主要内容,包括地下水水位监测、孔隙水压力监测以及地下水质监测等。

(四) 诱发因素监测

此类监测技术方法主要是对造成地质灾害的诱发因素进行监测,比如说气象监测、地震监测、地下水动态监测、人类工程活动监测等等。降水和地下水活动是造成地质灾害的主要诱发因素,因此对于降水的时空分布特征和降水量的大小是对区域性地质灾害评价的主要判断指标,而人类工程活动作为现今地质灾害的主要诱发因素,其监测也是地质灾害监测的重点内容。

可以说地质灾害的监测技术日趋成熟,监测水平和监测的精准度也在不断提高,监测方法变得多样化,立体化的监测性网络也建设的颇具规模,有效加强了地质灾害的综合判断能力,从而促进了对地质灾害发生的预防工作的有效性。

四 预防煤矿地质灾害发生的具体措施

(一) 开采沉陷地质灾害预防

随着煤矿开采范围的不断扩大,被破坏的土地和塌陷的土地越来越多,为矿区造成了严重的灾害影响,要及时采取措施使开采沉陷地质灾害降到最低程度。首先利用能减轻地表下沉、降低地表破坏的煤矿开采技术如大条带协调式全采法、充填条带法或是冒落条带法、水砂充填法等,于此同时在地表有建筑物的地区要对地面建筑物进行一定的维修加固处理。矿区还应积极开展开采沉陷地质灾害的预测预报,定期、重复观察监测路线的空间位置变化,并有效整合分析资料,寻找规律,预测被破坏程度。从而上报开采区域的地面塌陷状况,从而让负责部门提供相应的技术支持,降低破坏程度减轻灾害压力。

(二) 瓦斯与煤尘爆炸的预防

煤矿瓦斯爆炸的新闻总是很多,因此我们一定要做好瓦斯爆炸的预防工作,减少安全事故的发生。首先我们要加强采区的通风管理,降低瓦斯浓度,因此要保证各采区都有独立的进回风系统,从而将瓦斯浓度控制在安全范围内;其次要建立完善的瓦斯检查制度,严禁矿工在瓦斯超限的情况下作业;第三要加强对矿工安全意识的教育宣传工作,严禁将易燃易爆物带入井下,尤其是井下吸烟,一定要严格控制,井下使用的机械、电气设备要符合安全要求。而煤尘引发的爆炸,我们需要注意的是减少生产过程中的煤尘量并消除火源。

(三) 矿井水害预防

矿井水害具体指的是矿井突水和老井透水,这也是煤矿地质灾害的重点防治内容之一,绝不可以忽视。因此在开展矿井水害的预防工作时,我们要做好充足的考虑,进行详细的调查和细心的考证,并及时有效坚决的处理。首先对于矿井周围的老窖和采空区要有详细的调查,数据越详尽越好;其次在发现煤层发暗发潮、工作面温度降低等这些出水的征兆时,要及时与外界联系,并转移工作人员;第三对井筒的位置选择要避开易受洪水影响这一因素,使其能防止河流或是洪水灌入井下,另外要做好挡水墙、防洪沟等防水设施的建设。

(四) 煤矸石山自燃预防

煤矸山的根本出路在于能被综合利用,但现今其利用量远远低于排放量,煤矸石的积存量可以说是有增无减,因此对于煤矸山的治理工作重点仍是对煤矸石山自燃现象预防的有效性。其主要预防措施有以下三种:首先,煤矸石的正确堆放。为了防止煤矸石的自燃我们在选择堆放地质时最好应选择缓峡谷,使其回填山谷,从而复土造田,堆放时要使裸

露面积降至最低,具有较稳的对方地基,防止滑坡或

开裂;其次,挑选黄铁矿,消除可燃物。挑选黄铁矿能降低自燃的几率,还有一定的经济效益。第三加大对煤矸石综合利用的提倡力度,消除煤矿工业固体废物是煤矸石的根本出路。

综上所述,煤矿地质灾害的负面影响是巨大的,发生煤矿地质灾害不仅会使企业造成直接和间接的经济损失,对于造成伤亡的矿工和矿工家庭而言更是一场灾难,且对于煤矿生产地区的经济效益、环境效益和社会效益也有着严重影响,因此我们一定要充分认识到煤矿地质灾害的重大危害性,要重视对于煤矿地质灾害的检测预防,并提高地质灾害的防治能力,从而采取有效的促使对煤矿地质变化进行科学有效的监测和防治,以保证煤矿生产的安全,以维护多方的利益,营造较好的社会形象,并保证国家经济发展的可持续性。

[参考文献]

[1]陈秀峰. 论矿山地质灾害及其防治[J]. 煤. 2009(09):51-52+60

[2]赵亚臣. 浅析地球物理方法在勘察煤矿地质灾害中的应用[J]. 科技创新与应用. 2012(06):69

[3]李少金. 对地质灾害监测中环境地球物理方法的探讨[J]. 黑龙江科技信息. 2012(02):79

地质灾害监测范文第4篇

遥感即为遥远的感知。遥感技术是根据电磁辐射(发射、吸收、反射)理论,应用各种光学、电子学和电子光学探测仪器对远距离目标所辐射的电磁波信息进行接收记录,再经过加工处理,并最终成像,从而对环境地物进行探测和识别的一种综合技术。物质不同,其分子、原子数量及组合方式也不同,所特有的反射电磁波性质也不同,对外来电磁波反射性质也就不同。因此不同的物体发射不同波段的电磁波,不同的物体对太阳和人工辐射有不同的吸收、反射和透射能力,这些差别经过遥感形成了不同的成像,然后把这些不同的遥感成像解译就可区分不同物体,从而收集目标物的各种信息数据,以掌握人们所需的各种信息资料。近年来我国地质灾害研究在采用遥感技术后取得了重大进展,包括近年来开展的全国特大滑坡灾害调查及危险性评价、典型地质灾害监测预警与示范治理、重点地区地裂缝与地面沉降调查、国家重大工程区域地壳稳定性调查与评价等项目都是建立在遥感图像的分析判断基础上的。由气象卫星、海洋卫星、陆地资源卫星和环境与灾害卫星等组成的空间对地观测体系,能够覆盖全国陆地、海域以及我国周边国家和地区1500万km2的地球表面。可见光、红外到微波遥感器都实现了星载飞行,遥感器包括可见光相机(胶片式和传输式)、可见光红外多光谱扫描仪、多种分辨率成像光谱仪、多波段微波辐射计、微波散射计、微波高度计、合成孔径雷达等。具备了自行研制卫星地面接收站及其相应数据处理系统的能力。研发了具有自主知识产权的遥感数据处理平台,开发了多套通用遥感图像处理系统和专题遥感信息提取系统。我国风云气象卫星系列不仅显著提高了我国卫星气象监测能力,还为国家应急管理、减灾救灾体系建设、应对气候变化提供了有力的技术支撑,被世界气象组织纳入地球观测业务卫星序列,成为全球地球综合观测系统的重要组成部分。

2遥感技术在地质灾害监测中的作用

各种自然灾害发生前一般都会出现各种先兆,而且很多灾害的发生和发展都有一定的时空规律,彼此之间常有一定的关系,这就为自然灾害的预报提供了可能。在自然灾害的预报和研究中运用遥感技术可以发挥以下几个方面的作用:

2.1推动国家自然灾害数据库建设

地质灾害是一种常见的自然灾害,发生地质灾害后的地形地貌在遥感图像中通常与周围正常的情况有所区别,特别是在形态、色调和影纹结构等方面。为了在地质灾害发生后快速及时地了解地质灾害的规模和具体情况,可以通过我国的资源卫星、气象卫星和其他专业卫星等进行遥感信号的采集,然后运用地质灾害遥感信息的合理解释,对已经发生地质灾害的地点或是隐患点进行详细的调查分析,并对数据进行整理后得出灾害规模、灾害分布、形成因素、孕育过程、变化趋势等。通过以上工作可以有效推动对灾害数据的收集和整理工作,并且按照地质灾害的类别,建立灾害要素数据库,构建灾害预测评估和灾后灾害快速评估运行系统。

2.2为抗灾救灾应急决策提供快速信息支持

一些突发性自然灾害,难以实现迅速、准确、动态的监测与预报,但遥感技术可以不受地面条件限制,快速获取灾害发生后灾区的全面景观,根据灾害分类分级及影像模型,判读图像,快速确定灾情,为应急救援工作提供第一手资料,从而在最短的时间内实现对自然灾害的应急响应。在2008年四川汶川大地震及2010年青海玉树大地震中,有关部门使用多种航天、航空遥感技术为抗震救灾指挥部及时提供了多种类型、不同分辨率的卫星和航空遥感数据分析信息,为抗震救灾指挥系统及时全面地了解灾情、快速部署救援行动提供了可靠的信息支持。在澳大利亚维多利亚州发生特大火灾时,我国立刻调整了环境减灾卫星A、B星拍摄角度和运行频率,每天两次飞过澳大利亚上空,迅速准确地拍摄了澳大利亚火场的光学、红外和雷达图像,为澳大利亚空间信息合作研究中心提供了大量的卫星监测图像,极大地帮助了澳大利亚有关部门的灭火行动。

2.3提高次生灾害的预测预报能力

做好次生灾害的排查与监测预警工作,是减少和降低灾害损失的重要措施。利用卫星遥感技术实时监测地震次生灾害,让人们能够有效规避灾害或减小灾害损失。在2008年汶川大地震中,中国国土资源航空物探遥感中心通过航空遥感应急调查,及时掌握了北川等14个重灾县市道路、房屋损坏等灾情和崩塌、滑坡、泥石流及堰塞湖等次生灾害情况,共解译出地震引发的崩塌、滑坡、泥石流7226个,堰塞湖147个,灾害毁路1423处;圈定有危险的村镇264个,潜在危险道路1732处,从而为有效防范次生灾害的发生、最大限度地降低灾害损失提供了有力的信息支持。

2.4为灾后重建规划提供决策依据

地震等重大自然灾害发生后,灾区的重建规划是抗灾救灾的一项重要工作。如地震灾后恢复重建规划应当根据地质条件和地震活动断层分布以及资源环境承载能力,重点对城镇和乡村的布局、基础设施和公共服务设施的建设、防灾减灾和生态环境以及自然资源和历史文化遗产保护等作出安排。城镇和工程选址时要充分考虑灾害综合区划,既防止类似的灾害重复发生,也要防御其他自然灾害的侵袭。在2008年四川汶川大地震发生后,我国利用航天和航空遥感,及时开展汶川地震灾情评估工作,完成不同烈度人口影响评估,以及房屋倒损、道路损毁、人员伤亡等灾情及次生灾害评估、灾情综合评估、地震灾害范围评估、地震灾害经济损失评估等工作,为灾区规划重建提供了科学依据和决策咨询。

2.5帮助提高地震预测预报水平

地震的预测预报是一个世界性难题。我国破坏性地震频繁发生,损失极为惨重。为了有效地预测地震发生,必须对地震前的各种兆信信息进行收集和数据挖掘,找到地震演变规律,尽可能地有效预测预报地震。卫星遥感技术通过多种手段观测、广阔的信息覆盖、短周期的观测手段等,为提高地震灾害的预测预报水平提供了可能。遥感技术用于监测和评估地震灾害已成为研究的一大热门。目前,遥感方法中合成孔径雷达干涉测量(InSAR)技术在监测地震形变方面的潜力已得到广泛认同。在地震研究方面,我国运用各种遥感图像,进行断层活动性、强震构造环境、地震地表破裂等方面的遥感地质解译以及干涉形迹测量研究,取得了重要研究成果。同时还开展了遥感技术在地震监测预报中的可应用性研究、红外遥感地震前兆的异常特征、预报方法和机理研究以及地震前兆热红外异常卫星遥感监测与快速处理系统研究等,为卫星遥感应用于地震监测预报开辟了新的方向。我国地震局已将卫星遥感的部分热红外实测数据,通过全国地震系统共享给所有地震研究工作者,为地震监测和预报提供数据支持。

3遥感技术在地质灾害监测中的具体应用

我国的地质灾害遥感调查技术为大型工程的可行性研究提供地质灾害分布、潜在危害及环境基础资料。实践证明,遥感技术在识别滑坡、泥石流,制作区域滑坡、泥石流分布图等方面体现出巨大的应用价值。

3.1孕灾背景调查与研究从地质灾害预测预报相关理论分析可知,灾害孕育过程中要对一些因素进行长期观测,发现其变化规律。这些因素包括时日降水量、地面坡度、多年平均降水量、植被发育状况、构造发育程度等。这些因素的成功观测是地震预测预报的重要保障。通过气象卫星可以实时检测降雨情况,而资源卫星可以对地表地物进行详细的调查,通过红外波段和微波波段分析地下物质的体貌体征等。结合气象卫星和资源卫星强大的遥感技术,可以对以上孕灾因素进行实时监控和分析,因此利用遥感技术有效调查研究地质灾害孕灾背景是遥感技术的重要应用之一,也是地质灾害最重要的基础准备工作。

3.2地质灾害现状调查与区域划分

在地质灾害发生后,必须及时有效地对地质灾害现状进行总体分析,了解其发生规模和特征,才能制订相应的救灾和避灾措施。地质灾害过程中,不良地质所迸发出的滑坡、崩塌、泥石流等灾害个体或灾害群体,在遥感图像中会呈现出与众不同的地质特征。很多关于地质发生规模和形态特征等信息都可以通过遥感影像进行提取。这些信息提取后,就可以有效分析目标区域内地质灾害发生点和隐患点的全面信息,找到灾害发生的分布、规模、特点、趋势等信息。另外,在上述工作基础上还可以对地质灾害发生地进行区域划分,对地址灾害进行分级管理,对隐患区进行严密监控,为建立地质灾害监测网络提供基础资料。

3.3地质灾害动态监测与预警

当地质体从量变到质变后,地质灾害很容易发生,但是这种从量变到质变的过程是很难被观测察觉的,因为其蠕动速率非常小且比较稳定,地质灾害动态检测就是期望实时得到发生突变的信息,来预测和预报灾害发生。在全球卫星定位系统(GPS)的精确定位下,这种缓慢的变动速率是可以被察觉并记录的。利用卫星定位系统进行地质灾害动态检测,可以有效地对地质灾害进行预测、预报和警报。

3.4灾情实时调查与损失评估

当地质灾害的发生不可避免时,就要尽可能地减小灾害损失,这就要求在地质灾害发生后对灾情进行实时检测和调查,并评估和区分灾情较重和较轻的区域,进行有效的人员救援和物资运送。利用遥感技术可以对地质灾害进行详细的调查,除了可以对人员和牲畜伤亡进行统计外,还可以对地面建筑、水域资源、桥梁道路、自然资源等各项情况进行实时的调查和评估,为救灾提供有效的信息支持。

4结语

遥感技术的发展和应用是一项长期而艰巨的工作,特别是在地质灾害调查中遥感技术的作用并没有完全显现出来,地质研究工作者还需要开拓遥感技术的更多作用,除地质灾害预测预报之外,遥感技术还为地质工作者在矿产勘查、区调工作、生态环境观察等方面提供便利。

地质灾害监测范文第5篇

近几十年来,GPS高速发展,其地位精度大幅提高,用户设备重量大大减轻,尺寸大幅度缩小。无疑,GPS技术的发展和广泛应用为露天矿高陡边坡的实时动态监测和安全预警技术开辟了一条有效路径。根据GPS测量数据,系统自动生成边坡变形参数统计报表,统计出两次观察数据,各个观察点的变形参数以及相对第一天的变化值,形成边坡变形参数曲线图,然后根据参数统计报表,边坡变形参数曲线图和经验值,确定出各个观测点的变形参数变化临界值。作为考核观测点变形稳定与否的一个参考指标,对超过警戒范围的观测点进行统计报告,从而形成边坡检测报告,为采矿、测量人员提出了安全警报,对其工作具有非常实用的意义。露天矿山开采时必须按相关规定和要求开采,合理利用水土资源。然后根据目前矿山水土流失情况,分别采取工程措施、水保工程措施和植被绿化措施。工程措施对矿山公路采用土石方开挖和填筑、路面硬化等措施,水保工程措施采用浆砌石排水沟、护坡格结构、干砌石栏渣坝等方法;植被绿化措施对荒芜土地进行复耕复垦、植树造林,对采场边坡、斜坡、排土场采用植树种草等绿化措施改善生态环境。

矿山地质灾害的防治措施

一般分为重点防治区、次重点防治区和一般防治区。(l)合理设计边坡参数,加强边坡监测,建议作挡墙稳固边坡,开挖后如果出现开裂变形,建议做专门的工程地质勘察。(2)对于原有的灾害点,做好边坡加固和预防工作,尽量消除因矿山开采而诱发灾害复发的隐患。(3)渣场弃渣严格作好方量及边坡度的设计,作好挡墙设计,设置拦渣坝,防止泥石流的产生。并充分、合理利用渣场,严禁随意弃渣(特别在公路沿线)。(4)对于坑道开采,在坑道内一定要作好支护,做到边开采边支护,防止因矿顶坍塌、冒顶等而产生的危害,尤其上方有住户处要预防引起上部地面开裂。(5)作好坑道的排水设计,以防因矿坑涌水造成危害。(6)设置监测点,作好监测记录与分析工作,确保在易于发生灾害地段防患于未然。(7)开采结束后,对矿区进行统一规划,计划进行矿山复垦工作,恢复矿山生态功能。措施在进场公路、矿山生活区建设中,会形成大量的边坡和一定数量的弃渣,可能形成边坡失稳,造成滑坡和塌方;沿途不合理的弃渣可能造成水土流失,可能形成坡面泥石流,可能有滚石和飞石危害。(l)科学合理设计边坡参数,并进行合理支护和加固,边坡上方应设置排水沟,做好地表挡排水措施。(2)加强工地管理,合理堆放弃渣,严禁随意弃渣;在险要地段建设拦挡滚石和飞石的设施。(3)开采结束后,将弃渣场扒平覆土,植树还林,恢复植被。矿区内无主要建筑物和工程项目建设,主要可能因地表岩体的破碎而造成水土流失。应严禁越界开采,减少人为扰动,做好植被保护和水土保持。为防止水土流失和恢复植被和景观,矿山须规划进行矿山复垦工作,以恢复矿山生态功能。开采弃渣切勿胡乱堆放,必须统一堆放到开采境界线以外的矿山弃渣场内,在开采过程中,有计划地将弃渣回填到采空区。弃渣场经处理后再敷表土、植草种树。通过上述地质环境恢复工作,减少水土流失,恢复矿山的生态功能,达到生态恢复与维护人类与环境和谐的目的。

矿山开采给人类带来的地质灾害极大,他虽然给人类带来了巨大的财富,但是也极大地破坏了人类的环境。因此,对矿山地质灾害的防范和预防是矿山开采的重中之重,首先要分析矿山开采引发地质灾害的原因,采用正确科学合理的采矿方法,及时认识环境对人类生存的重要性,懂得如何正确解决资源需求与保护人类生存环境的矛盾,避免矿山开采引发的不良地质灾害发生。在矿山开采问题上必须坚持“谁开发谁保护,谁闭坑谁复垦,谁破坏谁治理”的原则,加强对矿山环境的管理。只有解决好矿山开采与环境保护之间的矛盾,才能在一定程度上促进我国的采矿技术的发展。

地质灾害监测范文第6篇

关键词: 地质灾害;测量技术;3S; 技术监测

地质灾害作为自然灾害之一,对人类的生存与生活有着极严重的影响,其产生的原因除了自然的地质活动外,人类的活动对其也有一定的影响作用。地质灾害可以分为多种类型,包括突发性灾害和缓变性灾害,前者常见的有泥石流、地震、崩塌、滑坡、地表塌陷、地裂缝等,后者有地面沉降、土地荒漠化、水土流失及海水入侵等。为了预防地质灾害的发生,更好的获取灾害信息,相关技术人员利用测量技术对灾害进行监测、防治工作。特别是通过现代测量技术,我们所获取的信息更加丰富准确,操作也更为简便,例如应用遥感技术我们不需要进行实地采样,也不用安排人员留守观测,通过计算机的控制就可以完成工作。如今,采用这些技术进行地质灾害的监测,在实现突发与缓变等各种类型地质灾害的灾前预警、灾情实时监控以及灾后评估方面都有着良好的效果。同时,在很大程度上减少了灾害带来的经济损失,对我国的社会经济建设也有一定的贡献。本文结合测量技术在常见地质灾害里的作用,对测量技术地质灾害监测中的应用进行分析。

1 传统测量技术的应用

这里所说的传统测量技术地质灾害监测,就是通过各种专业仪器测量灾害的产生及发展过程,记录数据并传输到预报中心,进行分析研究后找出灾害的发展规律,并判断是否需要发出灾难预警。地质灾害的主要监测对象是地质形变,对形变的监测又可细分为内部形变监测与外部形变监测。其监测对象是将测量技术作为主要监测手段的外部形变。这类监测通常采取的测量方法是在平面上用经纬仪和三角测量法监测,高程测量采用全站仪测量或三角高程法和水准测量法。然后,建立误差单位为毫米级的小型平面控制网及高程控制网,以此测量出监测样本上各控制点在垂直与水平方向上的微小位移量及其形变形式,从而获得有用的形变数据,并最终达到有效防治地质灾害的作用。传统的测量技术缺陷在于,监测时需要安排人员进行实地观测,并且要记录大量的测量数据、进行大量的计算,加上工作周期长、经费偏高等各种问题,造成其工作效率不高。此外,在环境恶劣的荒野、深山、原始森林等地区,实时、实地测量是无法实现的。

2 现代测量技术的应用

2. 1 GPS 在地质灾害监测中的应用

GPS 即全球定位系统,通过接收定位卫星的信号进行测时定位、导航,采用静态差分定位技术,缩短观测时间,减小误差提高精确度。利用GPS 技术监测地质灾害,监测站之间无须要求通视,大幅度削减了工作量。并且通过卫星通信技术能够将监测到的数据传送至数据处理中心,以此来实现远距离的监测工作。目前,GPS 技术已在地震、地表塌陷、滑坡等突发性地质灾害的监测中被广泛应用。其优点在于它非常高效,且精准度已经达到百万分之一甚至可能更高,同时它还有全天候、自动化、多功能而且操作简便等特点。这些诸多优点让它在工程测量中得到广泛应用。GPS 技术在地表外部形变监测中的应用有很多,大致的操作过程以岩体的外部形变监测为例,先在距离岩体较远的地方选取一个稳定点放置GPS 信号接收机,然后选取目标点并放置接收机,经过计算分析可以得出各目标点的位移。利用GPS 系统进行连续监测,就能实现对目标的实时自动监测。GPS 技术取代传统水准测量法,可以降低劳动强度,缩短周期,准确及时地捕获有效信息,在获得高效率、高精度的数据同时,降低监测成本。

2. 2 GIS 在地质灾害监测中的应用

GIS 技术全称地理信息系统技术,它融合了地理学、地图学以及计算机技术和测绘技术,是一项在计算机软、硬件支持下,采集、记录并储存相关的地理信息实现数据库的系统化,并将地理要素进行转化,对计算得出的相关数据进行分析处理的空间信息系统。测量人员按照测量需求,可以使用GIS 技术很快的获取数据,再将结果用数字或图形的方式显示出来。它的主要作用是对空间数据进行分析,对决策和预报有辅助作用。其地理信息拥有空间性、区域性、动态性的特征,其地理数据是用符号来表示地理特征与现象之间的关系,即用文字、数字图像等来表示地理要素的质量、数量及其分布特征与规律。时域特征数据、空间位置数据及属性数据三部分是地理数据的主要组成部分。GIS 技术的应用有效地解决了记录和计算量过大的问题,通过标准的矢量化扫描、数字化摄影测量的方式来测量地球表面物体,可以给我们提供及时且准确的标准化数字信息。还可以应用系统中的有关功能做到空间定点分析,按不同比例尺编制专题图像。

2. 3 RS 在地质灾害监测中的应用

RS 技术全称遥感系统技术,它可以实现同步观测和实时数据信息的提供,并具有很高的综合性,同时在地形观测与资源勘查中RS 技术也是最有力、高效的手段。它可以全天候的获取信息,且周期短、视域宽广、信息量丰富,还能够真实的展现地表物体的大小、形状甚至颜色,立体直观的影像有更好的观察效果。目前RS 技术已广泛的应用于地质、农林业、气象、水文、军事等领域。在地质灾害的监测中,RS 技术可以对灾害做出快速的应急反应,几小时内系统便能获取灾情数据,并迅速对灾情做出评估,其详实评估不超过一周即可完成。

3 结束语

近些年来,由于地质灾害变得日益严重,尤其是突发性的灾害,给人们带来了不可估量的损失。同时,与地质学密切相关的测绘学经过这些年的不断发展,开发出许多现代化的测量技术,为了对地质灾害做出预测并及时开展抢险救灾工作,利用测量新技术对地质灾害进行调查是非常必要的。例如: 被我们统称“3S”技术的遥感技术、全球定位系统、地理信息系统,在灾害的检测及预防中发挥着卓越的作用,并取得了显著的效益。现代测量技术获取数据的速度快、范围广,若正确的对其加以应用,在地质灾害的防治和救灾等方面都有着至关重要的意义。

参考文献

[1]韩世静,安钧鉴. 3S 技术在土地资源管理中的应用[J]. 沿海企业与

科技,2011(04) .

[2]谢慧芬. 遥感技术在地质灾害监测和治理中的应用[J]. 测绘与空

间地理信息, 2011(03) .

[3]金贤锋,袁超,陈甲全. 3S 技术与地理信息在规划现状分析中的应

地质灾害监测范文第7篇

【关键词】地质灾害 监测方法 现状 发展趋势

一、概述

地质灾害监测主要任务为监测地质灾害时空域演变信息、诱发因素等最大程度获取连续空间变形数据应用于地质灾害稳定性评价、预测预报和防治工程效果评估地质灾害监测是集地质灾害形成机理、监测仪器、时空技术和预测预报技术为一体综合技术当前地质灾害监测技术方法研究与应用多是围绕崩塌、滑坡、泥石流等突发性地质灾害进行。

二、地质灾害监测方法技术现状

(一)常规监测方法技术趋于成熟设备精度、设备性能都具有很高水平目前地质灾害位移监测方法均可以进行毫米级监测高精度位移监测方法可以实现0.1mm精度

(二)监测方法多样化、三维立体化。

由于采用了多种有效方法结合对比校核以及从空中、地面到灾害体深部立体化监测网络使得综合判别能力促进了地质灾害评价、预测能力提高。

三、新技术新方法

随着现代科学技术发展和学科间相互渗透合成孔径干涉雷达(InSAR)、激光扫描、光纤应变分析等技术相继不同程度应用于地质灾害调查与监测中而光纤应变分析技术之布里渊散射光时域反射技术(BOTDR)应用于地质灾害监测处于刚刚起步阶段BOTDR是目前国际上近几年才发展成熟起来一项尖端技术起初应用于航天领域发达国家相继应用于电力、通讯、工程等领域应变检测和监控工程领域主要应用于桥梁、大坝、隧道等大型基础工程安全监测和健康诊断并取得了很多成功应用经验;在日本开始将BOTDR技术应用于边坡工程变形监测中;我国工程领域引入BOTDR技术相对较晚目前主要应用于桥梁、隧道等构筑工程变形监测中并取得了一定成果;在三峡水库区巫山开始将BOTDR应用于滑坡监测与常规地质灾害监测技术相比BOTDR技术具有多路复用分布式、长距离、实时性、精度高和长期耐久等特点通过合理布设可以方便对目标体各个部位进行监测;由于其具有技术应用前景已经一些发达国家如日本、美国、加拿大、瑞士等国家竞相研发课题。

四、地质灾害监测技术方法发展趋势

(一)高精度、自动化、实时化发展趋势。

光学、电学、信息学、计算机技术和通信技术发展同时给地质灾害监测仪器研究开发带来勃勃生机;能够监测信息种类和监测手段将越来越丰富同时某些监测方法监测精度、采集信息直观性和操作简便性有所提高;充分利用现代通讯技术提高远距离监测数据信息传输速度、准确性、安全性和自动化程度;同时提高科技含量降低成本为地质灾害经济型监测打下基础监测预测预报信息公众化和政府化随着互联网技术发展普及以及国家政府地质灾害管理职能灾害信息将通过互联网进行实时公众可通过互联网了解地质灾害信息学习地质灾害防灾减灾知识;各级政府职能部门可通过所信息了解灾情发展及时做出决策。

(二)新技术方法开发与应用。

调查与监测技术方法融合:随着计算机高速发展地球物理勘探方法数据采集、信号处理和资料处理能力大幅度提高可以实现高分辨率、高采样技术应用;地球物理技术将向二维、三维采集系统发展;通过加大测试频次实现序列地质灾害监测智能传感器发展:集多种功能于一体、低造价地质灾害监测智能传感技术研究与开发将逐渐改变传统点线式空间布设模式;由于可以采用网式布设模式且每个单元均可以采集多种信息最终可以实现近似连续三维地质灾害信息采集。

五、地质灾害监测技术优化

(一)问题提出。

监测方法适应性:对于各种监测方法所使用监测仪器设施均有各自应用方向和使用技术要求;针对不同地质灾害灾种、类型其使用技术要求(包括测点布设模式、安装使用技术要求等)不同地质灾害发展阶段:对于崩塌、滑坡等突发性地质灾害不同发展阶段所适用监测方法和仪器设施各异监测数据采集周期频度不同监测参数与监测部位:实践证明一、不同监测参数(地表位移、深部位移、应力、地下水动态、地声等)在不同类型灾害体监测中具有不同程度表现优势;另一、同一灾害体不同部位监测参数随变化趋势特点并不相同即存在反映灾害体关键部位特征监测点又存在仅反映局部单元(不具有明显代表性甚至是孤立)特征监测点因此监测参数和监测部位优化选择是整个监测设计工作基础自动化程度:决定于设备集成度、控制模式、数据标准化程度和信息方式经济效益:决定于地质灾害规模、危害程度、监测技术组合、设备选型等因素。

(二)优化原则。

监测技术优化原则:针对某一类型地质灾害确定优势监测参数和监测部位进行监测内容、监测方法优化组合使监测工作高效、实用经济优化原则:首先不过于追求高、精、尖监测技术而应选择发展最为成熟、应用程度较高监测技术;其次对于危害程度较大大型地质灾害体可选择专业化程度较高监测技术方法由专业人员进行操作、维护对于危害程度低规模小灾害体可选择操作简单、结果直观宏观监测技术由群测群防级人员进行操作

六、结束语

地质灾害监测是集多种学科为一体综合技术体系只有充分把握地质灾害形成发展规律才能正确把握技术开发方向只有充分掌握地质灾害物质组成、动力成因类型、变形破坏特征、外形特征、发育阶段等因素依据不同监测技术方法应用特点做好监测技术优化工作才能保证监测效果同时应以科学发展观实施地质灾害监测和技术开发

参考文献:

[1]施斌,徐洪钟,张丹.BOTDR应变监测技术应用在大型基础工程健康诊断中可行性研究[J].岩石力学与工程学报,2004.

[2]靳晓光王兰生李晓红.位移监测在滑坡时空运动研究中应用[J].山地学报,2002 .

地质灾害监测范文第8篇

1.1地质灾害。地质灾害就是人们在进行活动或者工作时,对当地的地质环境造成破环作用或者对自然地质的破坏,例如工程建造以及工业发电等活动,这些因素造成的地质灾害会直接或者间接的对人类的安全造成危害。例如火山的爆发、土地沙化、煤层自燃、崩塌和泥石流等地质灾害,对社会和人类的生命安全都会造成危害。

1.2地质灾害的防治。随着我国社会经济的飞速发展,造成的地质灾害时常发生,所以为了减少地质灾害的发生,防治工作就越来越重要。地质灾害的防治工作要实行防和治相结合的模式,事前预防为主,结合后期治理,从而实现保护自然生态以及人类生命安全的目的。

二、地质灾害监测中测量技术的应用

2.1GIS在地质灾害监测中的应用。GIS技术就是常说的地理信息系统,是由地理科学、空间技术以及测绘科学与计算机技术相结合的综合学科,是用来采集和存储以及后期的管理分析和描述地球的表面或者某个部位空间和地理的有关数据的空间系统。它的特点就是具有空间性,时间性和专题性的特征。其主要的功能就是对空间数据的分析,预测预报以及做出辅助决策等。地理数据库包括专题数据库、声音库、文件库、图像库以及地图数据库,该技术的重点就是支持空间的数据分析和辅助决策,以及地理数据库模拟库和知识库。在地质灾害中应用GIS成功的解决对大量数据的记录和计算等难题,同时实现了空间和属性数据的输入矢量化,编辑和建库,利用数据库成功的实现了对大量数据的管理,对数据多层次的大范围检索、地质符号绘制、图幅间的衔接处理以及符号大小和位置选择等方面技术难题。利用系统中的功能实现编绘比例尺不同的专题图件,比例尺更小的基础地质信息库,和空间的分析定点。

2.2GPS在地质灾害监测中的应用。GPS定位技术就是利用接受来自卫星的信号测距进行定位的技术,这种定位技术的特点是观测的时间短,并可连续的进行动态的观测,采用的是静态相对的定位技术,不需要观测站之间的通视,定位的精度高,可高达毫米级别。由于检测站点之间不需要通视,极大的减少了工作难度和工作量。在实际的使用过程中,利用现代化的无线通讯技术就能把观测到的数据传到数据处理中心,从而轻松的实现远程的检测。目前GPS定位技术已经在滑坡,地裂缝和地震等地质灾害的监测工作中广泛的被应用。同时GPS定位技术还能在同一时间测定点的三维立体坐标数据,具有不需通视、自动化、全天候同时不需要进行高程转换等优点。GPS定位技术在工程测量中已经得到了肯定以及在广泛的被使用,其精确度也已经到达了0.1~1ppm甚至更高的级别。

三、灾害防治中的测绘技术的绘测内容

3.1详勘阶段的测绘详勘阶段的绘测主要就是对致灾体进行测算,其中包括对水源的测量和物源的测量。水源的测量内容主要是对该地区的流域和泥石流域的堰塘、水库、天然堆石坝等地表的水位和流量以及坝体的稳定性、堤坝渗漏水量和病害情况进行测算;物源的测算主要是包括观察裂缝的宽度测算和对形成区的松散土层的堆积分布和体积的测算。

3.2施工图设计阶段的测绘监控方法的选择和监控要素的实施都要针对不同的地质灾害的类型和具体的灾害情况进行设定,根据监测技术的要求设计最优化的实施方案,建立监测网点的空间布置模式。

3.3施工阶段的测绘对施工阶段的绘测工作要充分的把施工的特点,当地的灾害情况以及施工方案考虑进去,针对具体情况建立合适的施工控制网,并作为定线放样的基础。然后根据实际的施工需求选则合适的放样方法,将图纸中德设计方案直接的转入实地。在地质灾害的防治工作中,一般来说都有土方工程,需要对土方进行计算,高程放样,在施工的最后还要进行工程验收的绘测工作。

四、应用实例

4.1某矿山变形监测概况。对某矿山在河北省邯郸市峰峰,其交通极其便利,原始的地形地貌属于丘陵地,但是目前该地区的地貌已经被破坏,现场地平整。

4.2矿区周边环境。此矿区周边条件复杂,被众多丘陵环绕,一公里外有一村庄,约有200户人家。

4.3监测目的。通过对此矿区和周围环境的变形监测,分析反馈的信息数据,有效的发现矿区周边以及村庄的安全隐患,把现场监测到的数据和预警值进行对比,通过对比分析针对实际的情况及时的采取相应的措施,实现对矿区周边以及村庄的安全隐患的消除以及保护。对道路和地下管道的检测,防治施工过程中的损害,为矿区的正常继续开采提供数据依据。

4.4监测内容及项目。

4.4.1监测内容。监测的内容包括:地下水状况,矿区底部及周边,土体周边重要的道路,支护结构,周边村庄,周边管线及设施,以及其他应监测的对象。

4.4.2监测项目。需要监测的项目包括:土体的深层水平位移监测,锚杆内力监测,土钉拉力监测,周边建筑物的倾斜监测,地下水位监测,周边地表的沉降监测,矿井支护结构,邻近建筑物的水平位移,邻近建筑物的沉降等监测。

4.5监测点的保护。在检测点的附近树立较为明显,容易观察到的标志,注明“监测点,注意保护”,用来告知矿区开采方对监测点的保护,对容易在开采的过程中遭到破坏的监测点进行有必要的强调。要成立巡查小组,对监测点周边进行巡查工作,提醒周边路人对监测点的保护,及时的发现被破坏的监测点并立即对其进行修复。

4.6监测方法。监测的方法有很多,如煤矿井底的支护结构垂直与水平位移监测,地下水位的监测,地表裂缝的观测,周边地表垂直位移监测,土体的深层水平位移监测,周边建筑倾斜监测等。

4.7监测数据处理与信息反馈。对监测资料的处理要迅速及时,如果数据出现异常要立即通知相关的部门,并通过分析采取对应的措施。在对原始的数据进行严格的审查后进行计算分析,在监测工作完成后及时的编写监测报告。

五、结论

随着我国社会经济的发展,地质灾害不断的发生,近些年来工程建筑,地下水资源开发以及矿山开采等人类活动更是加剧了这些地质灾害的发生,并对真个社会和人类的安全产生了很大的影响。面对地质带来的挑战,需要人们紧密的配合,建立统一的防灾机制。各部门各司其职,相关的部门要加强对灾害的防治工作,及时的发现问题最大限度的将灾害降到最小。随着科学技术的发展,新的监测技术被应用到地质灾害的监测中,其中变形监测技术在对灾害的检测中发挥着重要的作用,并具有极大的发展前景。

地质灾害监测范文第9篇

关键词:遥感技术;地质灾害;监测

0引言

地质灾害是影响人类生存活动的最严重的自然灾害之一,在自然的地质作用与人类活动的共同影响下产生了地质灾害,地质灾害有突发性的灾害,如崩塌、滑坡、泥石流、岩溶塌陷等,也包括渐进性的,如水土流失、地面沉降和土地荒漠化等。为了更好地获得地质灾害信息,预防灾害的发生,技术人员采取遥感技术进行灾害监测、预防等工作,通过遥感技术,我们能获得更丰富、更准确的信息,遥感技术不需要实地采样,也不需要人工留守观测,只需要计算机控制技术变能完成工作,而今,这已经成为监测地质灾害,对滑坡、崩塌、泥石流、地面沉降和土地荒漠化等地质灾害防治方面实现灾前预警、灾情监控、灾后评估的重要手段,它还为我国的经济建设提供了参考依据,减少因地质灾害而造成的损失。

1遥感测绘技术在地质灾害监测中的应用

遥感技术在地质灾害总的运用要最早追溯到上世纪70年代,最开始使用这一技术的国家有日本、美国、欧共体等。日本利用遥感图编制了1∶500000的地质灾害分布图;欧共体国家则在大量滑坡、泥石流遥感应用基础上对遥感技术进行了总结分析,指出了识别不同规模、不同亮度或对比度的滑坡和泥石流所需的遥感图像的空间分辨率,遥感技术结合地面调查的分类方法,可以用GPS测量及雷达数据,监测到地质灾害可以达到的程度。

遥感技术在滑坡灾害的监测中已经得到广泛应用,对滑坡区域的调查和监测都起到了很明显的作用。遥感技术应用于滑坡调查研究,多使用航拍照片和陆地监测数据,以目视解译为主,如日本利用黑白航片编制了1∶50000全国滑坡分布图,我国的研究人员利用ETM影像对青藏公路和铁路沿线1∶100000的滑坡以及其滑坡情况进行了调查。

地质灾害是一种自然现象,一旦发生将给会人民的生命、财产带来极大的损失,对环境、资源也有很大的破坏性。我国是受自然灾害影响最严重的国家之一,自然灾害的类型多、发生频率高、分布地域广、灾害损失大,而如何预防和治理自然灾害问题就成为我国地质工作者要面临的重要工作,实践证明,最有效的方法就是开展地质灾害预测预报和风险区划,为国土规划、减灾救灾、灾害管理与决策提供可靠依据,对危害性严重的地域要加强调查监督,以便避免重大地质灾害事件的发生,遥感技术将在这一领域中发挥重要作用。

泥石流是一种广泛分布于世界各国一些具有特殊地形、地貌状况地区的自然灾害。导致泥石流发生的原因很复杂,且各有特点。但导致泥石流发生的原因有两类,即物源因素和动力因素。直接利用卫星遥感(TM)图像解译可获取植被盖度、坡面松散物量、岩石类别、构造发育程度、人为活动、汇水区大小、流域平面形态、山体坡度、沟道形态等9种影响泥石流发育的基本因素。降水强度、过程和形式则不能由遥感图像解译,沟床坡降可采用地形图与遥感图像解译相结合的方式获取。利用卫星遥感图像(TM)判断泥石流隐患区,是以隐患区与已发生区存在的共通性特征为基础,结合地理分析法,运用形象思维,建立起泥石流隐患区遥感图像特征,然后综合考虑这些特征,对一个小流域是否是泥石流隐患区作出判断。

2地质灾害的治理

地质灾害是一种不良的自然现象,常伴有滑坡、崩塌、泥石流等灾害个体,有时这些灾害个体是组合发生,在遥感图像上呈现的形态、色调、影纹结构等均与周围背景存在一定的区别。对于崩塌、泥石流、滑坡等都能在遥感图像上现象出来,技术人员也能直接从遥感影像上直接判读圈定。我们通过对遥感图像的解释,可以对目标区域内已经发生的地质灾害以及存在的地质灾害隐患进行分析,查明其分布、规模、形成原因、发育特点、发展趋势以及危害性和影响因素。然后划分出地质灾害容易发生的曲艺,评价易发程度,为防治地质灾害,建立监测指南提供依据。

2.1灾害的营救

虽然地质灾害不是突发灾害,但一旦有地质灾害发生,营救工作则成为必须及时开展的重要工作,加上营救工作需要详细充足的资料作为依据,遥感监测数据对灾害营救来说也非常重要。由于营救人员很难进入灾害现场再勘查,同时要抓紧时间进行救援,此时,我们就可以通过遥感技术对受灾地区进行勘测,及时有效的了解灾害的情况,为救援工作的展开提供参考依据。发生灾害后,时间就是生命,失去一秒钟可能就会失去一个生命,遥感技术周期短、精确度高的特点,能为营救工作提供快速有效帮助。遥感技术通常会为我们提供,灾害区域、灾害范围、建筑的破坏情况、道路的毁坏情况、气候变化情况等。目前,主要是利用灾害发生前的高精度的遥感影像信息与灾害发生后的高精度影像信息进行比较,通过影像特征提供参考依据。

2.2灾后重建

一些受灾严重的地区,很大一部分是因为布局规划不合理造成的,地质灾害发生后,最重要的就是科学的治理规划。如果没有详细的了解清楚地质灾害发生的具体情况,就无法开展下一步工作。地质灾害发生后,灾区的很多原始情况都会改变,若是采用传统的人工勘测方式,就会花费更长的时间去对这些地质的变化情况进行彻底摸底调查,将会给抢险救灾工作带来很大的阻力,加强利用遥感技术,工作人员能迅速有效的掌握灾区的情况,或者纠正以前的规划中存在的失误。根据遥感数据的监测评估结果,同时结合国家政策的总体规划与地方的具体实施方案,为灾后治理提供更科学的依据,提高治理质量。

3展望

利用遥感技术进行地质灾害预测、监测和调查研究是一项规模宏大、内容丰富的系统工程,它包括监测、预报、防灾、抗灾、救灾和援建等方面。遥感技术在减轻自然灾害损害,提高治理效率方面有着十分积极的作用,遥感技术进行信息获取、信息处理与分析、决策与应用等环节是一项宏伟而专业的工程,需要更多的技术予以支持,今后,利用遥感技术研究地质灾害将更趋向于使用陆地卫星、测地卫星、定位卫星、气象和通信卫星等多种卫星系统,并辅以航空、地面等多层次的监测,采用可见光、红外、微波、激光等多遥感波段,进行全天候、多时相的连续观测。只有这样,才能让遥感技术在未来的应用中发挥出更大的优势,取得更明显的经济与社会效益。

4结束语

遥感技术是一门新兴技术,在地质灾害方面的预测和治理方面是有效的,而且是可行的。遥感技术可以贯穿于地质灾害调查、监测、预警、评估的全过程。而今,随着遥感技术理论的逐步完善,以及遥感图像空间分辨率、时间分辨率与波谱分辨率的不断提高,遥感技术必将成为地质灾害及其孕灾环境宏观调查以及灾体动态监测和灾情损失评估中不可缺少的手段之一。但是要全面推广遥感技术在地质灾害中的应用,目前尚存在一定的困难和技术缺陷,有待于广大遥感工作者和地质灾害工作者不断完善。

参考文献:

[1]刘珺,贾明.浅谈遥感技术在地质灾害调查中的应用[J].科技情报开发与经济,2005,(05).

[2]黄小雪,罗麟,程香菊.遥感技术在灾害监测中的应用[J].四川环境,2004,(06).

[4]李志勇,陈虹,卢汉民.遥感技术在地质灾害调查中的应用[J].测绘技术装备, 2010, 12(1).

[5]殷德健.灾害管理领域中的卫星遥感技术和实践[J].全球科技经济瞭望, 2009, 24(8).

地质灾害监测范文第10篇

【关键词】地质灾害;监测技术;发展

0.引言

中国是地质灾害最为严重的国家之一。地质灾害种类多、分布广、危害大,严重制约着灾害多发地区的国民经济发展,威胁着人民生命财产安全。地质灾害监测是集地质灾害形成机理、监测仪器、时空技术和预测预报技术为一体的综合技术。它是指专业技术人员在专业调查的基础上借助于专业仪器设备和专业技术,对地质灾害变形动态进行监测、分析和预测预报等一系列专业技术的综合应用。本文着重探讨一下地质灾害监测技术的发展。

1.常用的地质灾害监测技术

1.1地面沉降监测技术

地面沉降主要诱发原因是地下水过量超采。地面沉降具有区域性,不行逆转性,危害是长期的、永久的。我国已经有50 多座大中城市出现了地面沉降,约占全国城市的30%,此中80%分布在沿海,较严重的是上海、天津、苏州、宁波,内陆盆地型如内蒙呼和浩特、山西大同,冲积洪积平原如河南郑州、安徽阜阳。对地面沉降的监测技术方式主需要有地下水水位动态监测、土体应力应变研究系统、大地测量法、GPS 全球定位系统、遥感图片解译、标记物的绝对测量等,确定沉降速率,经过监测,采取防治对策,减少灾害的继续发生。

1.2地裂缝监测技术

地裂缝的主要监测技术方式有:大地测量法、GPS全球定位系统法、简易人工观测、应力计等技术方式,用于监测裂缝变化状况和地质条件允许的变化。依照监测数据,研究地裂缝的发育程度和发展变化趋势,进行推断预报,采取处理对策,避免地裂缝开裂速率增大和开裂面积扩大。

1.3地面塌陷监测技术

地面塌陷依照成因不一样分两大类,即岩溶塌陷和非岩溶塌陷(包括矿区塌陷,黄土湿陷及人防工程塌陷等)。岩溶塌陷主要在广西桂林、贵州六盘水等岩溶地区,产生塌陷的主要理由是过量汲取岩溶水。主要监测技术方式以地下水动态监测网监测为主,以人工定期测量和水位自动记录测量为主要方式,并观测开采井的水的混浊度。非岩溶塌陷主要发生在老矿区和黄土地区,老矿区因为疏干开采长期地表负荷增大等理由使得突然塌陷,在老矿区和废弃矿区上进行建设前,进行勘察,确定采空区范围,应用经纬仪等进行地表变形监测;在黄土地区因为黄土的湿陷性在灌区易形成塌陷,主要靠监测黄土的含水量和饱水性来控制其塌陷。

1.4海水入侵监测技术

海水入侵主要发生在沿海城市地区,形成的主要理由是地下淡水过量开采,其次是沉积环境和人类工程建设及风暴潮等。主要监测方式为人工定期测量和取样化验水样,或自动水位水质记录仪自动监测,人工定期采集数据。主要以监测地下水水位和矿化度为主。依照水质中氯离子含量的变化,判别咸淡水的过渡带及海水入侵的特征。氯离子浓度变化快阐明海水入侵强烈,氯离子浓度变化慢阐明海水入侵相对缓慢。

1.5土地沙漠化监测技术

土地沙漠化在西北干旱地区经常面临,监测方式主要采纳应用地下水水位动态监测和地面GPS 监测和遥感卫星图片监测等。因为不好的自然条件允许、干旱少雨和人类不是很合理的开发应用土地、乱砍等使得生态环境破坏,水土流失,土地沙漠化更加严重。水系的变迁和灌溉水源的减少是土地沙漠化的主要理由,因此,地下水水位监测尤为主要。

2.地质灾害监测技术的发展趋势

2.1研发智能平台

开展滑坡泥石流预警的模型研究和监测预警管理的平台开发。在深入研究滑坡泥石流机理的基础上,研究预测、预警模型;改造现有监测预警管理平台,以适应传感网信息采集体系和政府管理需求;开发支持多路无线宽带多媒体的应急处置平台,并接入目前国家地质灾害应急指挥通信体系。开展滑坡泥石流监测预警系统技术验证与示范应用。在四川雅安区域滑坡泥石流、绵竹汉旺-清平滑坡泥石流、都江堰龙池镇泥石流三个不同地质环境特征的滑坡泥石流示范基地,开展基于传感器网络技术的滑坡泥石流灾害长期监测、灾前预警;验证地质灾害传感器网络系统的可靠性;编制滑坡泥石流监测预警技术规范。研究适应滑坡、泥石流专业需求的网络体系、协议和网络管理方法。对滑坡泥石流监测预警和应急处置进行总体需求分析;研究监测传感网和应急通信网的体系结构;设计专业传感信息和多媒体信息的汇聚融合和应用层优化传输协议;开发智能网络管理平台。

2.2更新监测设备

研制基于自主核心芯片组的传感网及宽带多媒体关键设备:包括基于自主低功耗芯片的专业传感网设备、网关设备,基于AVS视频编解码芯片的视频传感监测设备,基于TD-LTE模块(芯片)的宽带通信设备,用于国家地质灾害应急通信保障的远距离微波通信设备。

2.3采用新型监测方法

进行滑坡泥石流监测的新型网络传感器的研制和监测方法研究。研制矩阵式滑坡泥石流监测的网络传感器;对现有雨量计、含水率仪、地下水压力计、深部和表层位移计、GPS、光栅仪等传感器进行智能化改造,并接入传感网;研究传感信息前端聚合方法和轻量级智能信息处理技术;研发基于矩阵式滑坡泥石流传感器的新型监测方法。

2.4进行批量化试生产

完成滑坡泥石流传感器工艺流程研究和批量化试生产。研究滑坡泥石流监测新型网络化传感器组件的生产工艺和生产流程;建设网络化传感器组件的中试线和测试线。

3.结束语

综上所述,随着计算机的高速发展,地球物理勘探方法的数据采集、信号处理和资料处理能力大幅度提高,可以实现高分辨率、高采样技术的应用;地球物理技术将向二维、三维采集系统发展;通过加大测试频次,实现时间序列的地质灾害监测,集多种功能于一体的、低造价的地质灾害监测智能传感技术的研究与开发,将逐渐改变传统的点线式空间布设模式;由于可以采用网式布设模式,且每个单元均可以采集多种信息,最终可以实现近似连续的三维地质灾害信息采集。灾害信息将通过互联网进行实时,公众可通过互联网了解地质灾害信息,学习地质灾害的防灾减灾知识;各级政府职能部门可通过所信息,了解灾情的发展,及时做出决策。

【参考文献】

上一篇:耕地质量评价范文 下一篇:地质灾害监测预警范文

友情链接