变频技术论文范文

时间:2023-11-25 04:01:15

变频技术论文

变频技术论文篇1

矿山按产品类型可分为煤矿、金属矿和非金属等;按采掘方式可分为露天开采矿山和地下开采矿山两大类。本文主要介绍变频调速器在金属矿山中的应用的现状和应用前景,对煤矿亦有参考价值,因为露天煤矿和露天金属矿开采方式和生产设备基本相同,地下矿山除需要考虑设备的防爆问题外,大部分生产设备也与金属矿大同小异。露天采矿和地下采矿所用的生产设备有很大不同。

露天矿山是以大型设备为主要特点,要求优良的电气传动系统,以保证这些大型设备的高效率运行。露天矿山的这些大型设备包括用于穿孔的牙轮钻机,用于装载矿、岩石的电铲(挖掘机),用于运输矿、岩石的大型汽车等。它们都要求电气传动系统具有良好的调速性能,目前这些大型设备大多采用直流调速传动系统。

地下矿山的生产较露天矿山复杂。由于井下生产的空间窄小,使生产设备环境潮湿、阴暗,粉尘大、噪音大、振动大、并有塌方的危险,工作条件十分恶劣。因此,井下生产设备的体积受限,这些设备以小型化为主,体积小、重量轻,对电气传动的要求不高。但提升、排水、通风、压气等固定设备是地下矿山的要害部门,也是耗电大户,因此,这些设备的安全运行和节能就显得至关重要。

根据我们多年来从事矿山电气传动的经验及在矿山进行变频调速的应用实践,我认为,在矿山应用变频调速技术对于提高矿山生产设备的效率,节约电能都是至关重要的。但遗憾的是在矿山应用变频调速技术还很不普遍,除了因变频器的投资问题外,与人们对变频器的认识不夠有关,也与不能正确了解矿山设备对变频器的特殊要求、不能正确地应用变频器、因此所带来的负面影响有很大关系。

本文主要介绍目前矿山应用变频器的状况,矿山设备对电气传动的特殊要求,以及如何正确地选用变频器等。

2变频器在露天矿山设备中的应用

2.1电铲

电铲用于装载矿岩,其工作条件非常恶劣,特别是在爆破不好的情况下挖根底作业,经常出现过大的冲击载荷,甚至堵转。因此,电铲对电气传动系统就有较高的要求:要求电气传动系统的机械特性曲线的包络面积大,有足够的有用功率;要求有良好的调速性能,能四象限运行,能快速地进行加、减速和反转,动态响应速度快;要求系统制动性能好,并能回收能量;要求系统运行可靠,维修方便等。由于电铲对电气传动系统的这些特殊要求,所以,我国电铲目前应用的电气传动系统主要还是直流传动系统。例如:WK-4M、WK10、WD-1200和195-B等型号的电铲都是采用直流发电机-直流电动机系统(简称机组系统);从美国Harnischfeger公司引进制造的P&H-2300XP和P&H-2800XP型电铲则是采用晶闸管变流器-直流电动机系统(简称晶闸管直流系统)。虽然后者比前者技术先进,效率也有所提高,但这两种系统都还存在直流电机的固有的缺点,即维修工作量大、效率较低等。

自上世纪90年代后期,我国有个别矿山从美国B-E公司引进了变频器-鼠笼型电动机系统(简称交流变频调速系统),这是全交流化的电铲电气传动系统。例如:385-B、295-BⅡ、290-BⅢ型电铲就是全交流化电铲,变频调速由德国SIEMENS公司开发、提供的电压型变频器。现以395-B电铲为例作一简要说明:高压交流电由电缆经集电环引入电铲,由1600kVA主变压器将6kV变为575V,由1950A的整流器将交流变为直流,经滤波后送入公共直流母线。在直流母线上有4台容量为750kVA的逆变器,其中2台并联供电给1台容量为1066kW的提升电动机;第三台逆变器供电两台容量各为243kW的回转电动机;第四台逆变器供电给容量为294kW推压电动机。当某工作机构处于再生制动工作时,逆变器将再生制动能量反馈到公共直流母线上,可供其它工作机构使用,使能量得到充分利用。使用不完的制动能量,可以通过制动电阻消耗掉。

实践证明,交流变频调速电铲和前两种直流调速电铲相比,具有节约电能、调速性能好、可靠性高、维护量小、生产效率高、功率因数高(0.95以上)等优点,是公认的电铲电气传动系统的发展方向。

2.2变频器在牙轮钻机中的应用

牙轮钻机是露天矿山、尤其是大型露天矿山的主要穿孔设备。为使牙轮钻机在不同的岩层中都能保持较佳的钻进状态,要求钻机的回转机构能根据岩层的性质进行无级调速。钻机的提升/行走机构也需要无级调速。目前,牙轮钻机的回转机构和提升/行走机构一般都是直流电动机传动。主要有三种调速装置:(1)采用晶闸管直流调速装置的牙轮钻机有:YZ-55,YZ-35和YZ-12型;(2)采用大功率磁放大器调速装置的有KY-250型牙轮钻机和从美国进口的45R型牙轮钻机;(3)采用直流发电机组调速装置的有从美国进口的60R型牙轮钻机。

牙轮钻机上应用变频调速技术不仅是为了节能,更重要的是为了提高钻机的生产效率,降低维修工作量。回转机构电动机安装在钻杆的顶端,工作条件异常恶劣,以往使用的直流电动机经常损坏,维修工作量大,影响牙轮钻机的正常作业和效率的提高。因此采用坚固耐用的交流鼠笼型电动机代替直流电动机,用变频调速装置代替直流调速装置,就成为人们公认的牙轮钻机电气传动的发展方向。在牙轮钻机上应用变频调速技术的难点在于:钻机的转机构等对调速装的性能要求高,因为由于岩层地质条件的不同,钻机在钻进工作时有可能被卡钻,使回转机构堵转,这就要求调速装置的机械特性曲线具有挖土机特性,并具有立即反转和立即重新起动、钻进功能;牙轮钻机振动大,对调速设备的防振要求高。变频调速在牙轮钻机中的应用首先是由美国B-E公司在55R型牙轮钻机上应用。我国矿山的牙轮钻机的变频调速还在开发试验之中,尚未在推广应用。

2.3电动轮汽车的电气传动

目前,大型露天矿山的运输主要是采用无轨运输,而主要运输设备是大型汽车,特别是电动轮汽车成为了大型露天矿山的主要运输设备。这是因为电气传动比机械传动有更多的优点。如调速性能好,响应速度快,调速平滑无冲击;可实现恒功率调节,能充分利用柴油发动机的功率,耗油少;制动安全,牵引特性好等。目前,世界各国大型露天矿,包括我国的大型露天矿都普遍采用电动轮汽车。我国自1975年以来,引进了不少电动轮汽车,并成功研制开发了SF3102型100t和LN-3100型108t电动轮汽车,与美国UnitRig公司合作制造了MARK-36型154t电动轮汽车。

电动轮汽车的电气传动系统主要有柴油发动机带动的直流发电机-直流电动机系统和柴油发动机带动的交流发电机-交流电动机系统,它通过控制发电机的励磁来控制电动机的转速。随着变频调速技术的发展,人们也在探讨将变频调速技术应用于电动轮汽车电气传动的可能性。但目前尚未见到成功的先例。不过,作为大型露天矿山的主要运输设备的电动轮汽车,人们会继续努力,研究将变频调速技术应用于电动轮汽车,以进一步改善其调速性能,提高其运输能力。

3变频器在地下矿山中的应用

3.1变频调速技术在矿井提升机中的应用

矿井提升机是地下矿山运输的主要设备。它是用一定的装备沿井筒运出矿石、废石、升降人员及材料、设备等运输环节。矿井提升设备按井筒倾角可分为竖井提升设备和斜井提升设备;按提升容器可分为罐笼提升机和箕斗提升机等;按提用途可分为主提升机(专们或主性提升矿石,一般称为主井提升机),副井提升机(提升废石、升降人员、运送材料和设备等,一般称为副井提升机)和辅助提升机(如天井电梯、检修提升等)。

矿井提升是地下矿山生产的咽喉,所以,无论哪种提升机,对电气传动的要求都很高,因为电气传动系统性能的优劣,可靠性的高低,都直接关系到矿山生产的效率和矿山生产的正常进行。对矿井提升机电气传动系统的要求是:有良好的调速性能,调速精度高,四象限运行,能快速进行正、反转运行,动态响应速度快,有准确的制动和定位功能,可靠性要求高等。

目前,我国地下矿山矿井提升机的电气传动系统主要有:对于大型矿井提升机,主要采用直流传动系统,有采用直流电动机-直流发电机系统和晶闸管变流器-直流电动机系统;这两种系统都存在着直流电动机固有的缺点,如效率不高,维修工作量较大等。对于中、小型提升机,则多采用交流电气传动系统,如采用交流绕线式电动机,使用电机转子切换电阻调速,这种电气传动系统虽然设备简单,但它是有级调速,调速性能差,效率低,大量的电能消耗在电动机转子电阻上,而且可靠性也差。

将变频调速技术应用于矿井提升机是矿井提升机电气传动系统的发展方向。我国已有几台大型矿井提升机采用交-交变频调速系统,取得了很好的效果,但其缺点是功率因数不高,谐波大,需加谐波和功率因数补偿装置。随着变频调速技术的发展,交-直-交电压型变频调速技术已开始在矿井提升机中应用。例如国外已有矿山将有源前端三电平变频器应用于矿井提升机上,据介绍,采用这种变频调速的交流提升机可以克服直流调速系统和交-交变频调速系统的缺点,是提升机电气传动的发展方向。对于小型交流提升机已有成功应用变频器的实例,如山东风光电子有限公司和东营市东萃科技有限公司合作开发的变频器,成功地应用于山东宁阳县华宁煤矿的380V,180kw的交流提升机上。

3.2变频调速技术在空压机中的应用

空气压缩机是地下矿山生产的重要设备之一,它生产压缩空气,用以带动风动凿岩机、风动装岩机等设备以及其它风动工具,其耗电量在矿山总耗电量中占有相当大的比重。深入分析空气压缩机的电能消耗情况,找出节能潜力,实现空气压缩机的节能运行,将会降低矿山生产成本,提高其经济效益。现以凡口铅锌矿为例说明:

凡口铅锌矿坑口空压机站共有6台空气压缩机,其中4台为日本日立空气压缩机。4台日立压缩机型号:BTD2,排气压力7kg/cm2,排气量103m3/min属两级压缩活塞式压缩机,其拖动电机型号EFOU,额定功率450kW,额定电压380V,额定电流892A,采用Y/Δ降压起动方式;2台国产空气压缩机(活塞式空气压缩机),其拖动电机为高压(6kV)同步电动机。6台空气压缩机采用并联运行方式。一般情况下,只运行2~3台(其中一台国产空气压缩机)其余的空气压缩机作为备用。空气压缩机站的容量是按最大排气量并考虑备用来确定的,然而在实际的使用过程中,用气设备的耗气量是经常变化的,当耗气量小于压缩空气站的排气量时,便需对空气压缩机进行控制,以减少排气量使之适应耗气量的变化,否则空气压缩机排气系统的压力会升至不能允许的数值,使空气压缩机和用气设备的零部件负载过大,并有发生爆炸的危险。凡口铅锌矿4台日本日立空压机采用的是多级压力节流进气控制方式:即当压力低于6.2Mpa时,打开全部进气阀,压缩机组以100%负荷率状态运行;当压力达到6.2~6.5Mpa时关闭隙阀,压缩机组以75%负荷率运行;当压力达到6.8~7Mpa时,关闭一个进气阀,压缩机组以50%负荷率运行,当压力达到7Mpa时关闭所有进气阀,压缩机组进入空载运行状态.由于活塞式空气压缩机的起、停有着严格而复杂的规程,不允许频繁起停。为了满足井下用气量的变化,一般由调度人员根据井下用气量的时间变化特点,把一天分为几个时段,每一个时段需要开的空压机台数由该时段内最大用气量决定。在该时段内,空压机不允许增开或停开(特殊情况除外)。地下矿金属矿山的空压机站多采用这种方式,但这种控制方式很显然存在一些比较大的缺点:

(1)据统计,压缩机组75%负荷运行率为41%,50%负荷运行率为14%。无论空气压缩机是处于75%、50%还是空载运转状态,管网压力较正常供气压力要高,井下用气量很显然要小于供气量,而这时各台空气压缩机仍然全速生产压缩空气,带来了不必要的电能浪费。

(2)节精度低,在某一进风量工作状态下压力波动大,特别在生产用风量变化频繁时期内(用风量大且变化频繁),不能稳定风压;

(3)阀门动作值在一次整定后经常会变,有时会使整个压风系统工作压力偏高,增大了单位压风量的功耗;

(4)当空压机运行在75%、50%进气量的工作状态下,进气流速增大,造成进气过程压风量的损失,降低了压风机的效率。

因此有必要对现有的调节方式进行改进,以节约电能,提高空压机的运行效率。我院和凡口铅锌矿合作,用变频调速对其空压机站进行技术改造。

空压机恒压自动控制变频调速系统结构如图1所示:

图1空气压缩机恒压控制变频调速系统框图

空压机恒压自动控制变频调速系统可实现对5#空压机和6#空压机的轮换控制。5#空压机和6#空压机均可由新老两套系统拖动,这样做有两个目的:伒5#空压机出现故障需要检修时,新系统可迅速切换到6#机,以提高恒压控制变频调速系统的利用率;当新系统出现故障需要停车检修时,能够很快地投入老系统运行,不致于影响正常生产;当管网压力超出恒压调节范围时,系统发出增开或者减开一台空压机。

系统于1999年4月2日在凡口铅锌矿通过了验收,正式移交生产使用,系统运行十分正常,满足了生产的需要,达到了预期的目的。本系统的目的是为了节能,根据广州金粤节能服务站对本系统做的节能测试:采用本空气压缩机恒压控制变频调速系统平均每天节电量2226kWh。按照年工作日330天计,则采用恒压控制变频调速系统每年可节电734629kWh,按照凡口铅锌矿现行电价0.7元/kWh计,每年可节约电费51.42万元。本系统总共投资98万元,两年内即可收回全部投资。本系统应用的成功为活塞式空气压缩机的节能运行提供了重要的新手段,对于企业节能降耗,提高企业经济效益有重要意义,有广阔的推广应用前景。

3.3变频调速技术在矿井通风机中的应用

矿井通风机是地下矿山生产的主要用电设备之一,其节能运行在矿山节电中占有重要的地位。矿井通风机一般采用异步电机或同步电机拖动,恒速运转,一般容量大,电机供电电压高(6kV或10kV)。

矿山建设的特点是:巷道逐年加深,产量逐年增加,所需的通风量逐年上升。但矿井通风机在设计选型时,往往是按最大开采量时所需的风量为依据的,一般都留有余量,因此矿井在投产后几年甚至十几年内,矿井通风机都是处在低负载下运行。此外,通常矿山井下作业不均衡,一般夜班工作人员少,所需风量也小,在节假日时,可能只有泵房等固定的井下场所的值班人员工作。尽管井下人员少,但也得照常向井下送风,矿井通风机一般不调节风量,若要调节风量时,传统的方法是调节档板。这种办法虽然简单,但从节能的观点看,是很不经济的。图2所示为几种调节风量的方法节电比较。

图2不同风量调节方法功率消耗曲线

图2中:1—挡板法;2—前导器法;3—液力耦合器;4—绕线电动机切换转子电阻调速法;5—变频调速法。

由图2可见,变频调速法在各种风量调节方法中是最理想、最有效、最节能的调节方法。有关变频调速技术在矿井通风机中的应用,仍以凡口铅锌矿为例说明。

该矿的矿井通风机都采用高压电机传动,有高压同步电机和高压异步电机两大类。由于矿井通风机是矿山的耗电大户,节电潜力很大,但它又是高压电机传动,实现变频调速有一定困难。于是,长沙矿山研究院与凡口铅锌矿、冶金自动化研究院等单位合作,以老南风井的6kV,800kW同步电机传动的矿井通风机为对象,研制开发了同步电机直接高压变频器。1997年8月投入运行,并于1998年4月28日通过了中国有色金属工业总公司的技术鉴定,获得了部级科技进步二等奖。这是国内第一台同步电机直接高压变频器,节电效果十分显著。新南风井的矿井通风机采用6kV,880KW高压异步电机传动,高压变频器采用SIEMENS公司的SIMOVERTMV型三电平高压变频器。于2002年9月投入运行,节电效果也是十分显著的。下面分别简要介绍这两种高压变频器。

(1)同步电机直接高压变频器

同步电机高压变频器主要有两类,即他控式变频调速系统和自控式变频调速系统。他控式变频调速系统所用的变频装置是独立的,其输出频率直接由速度给定信号决定,属速度开环控制。自控式变频调速系统可以使同步电机不存在失步和振荡等问题,所以一般都采用自控式运行。

我们与有关单位合作研制开发的这种同步电机直接高压变频调速装置是采用交-直-交电流型变频调速系统,属自控式变频调速系统,它由变频器、同步电机、转子位置检测器以及控制系统组成。变频器主电路采用晶闸管串联组成的高压阀串作为功率元件,它是利用同步电机的反电势来关断逆变器的晶闸管,它没有强迫换流电路,因而主电路结构简单。变频器的框图如图3所示。

图3同步电机变频调速系统原理框图

图3中,硬件全套设备由高压开关切换柜(图中未表示出)、整流柜、逆变柜、励磁柜、控制柜、操作台及交流进线电抗器、直流平波电抗器、转子位置检测器、光电编码器等到部分组成。

根据凡口矿生产的情况需要,本高压变频器按周期性的固定频率运行,早班(7:00~16:00)变频装置运行在40Hz,中班(16:00~19:00)运行在35Hz,在19:00~20:00期间为放炮时间,变频器运行于40Hz,20:00~23:00运行在35Hz,23:00~24:00期间为放炮时间,变频器运行于40Hz,0:00~3:00井下作业人员很少运行于28Hz,3:00~4:00期间为放炮时间,变频器运行于40Hz,4:00~7:00运行于28Hz。

经广州金粤节能服务站的节能测试及能量平衡测试,以及凡口矿老南风井的实际记录,在正常生产期间,节电率达42%;节假日时变频器运行于28Hz,节电率达73%。年节电为192.3万kWh,在不到一年的时间内,就由节电费用收回到了高压变频器的全部投资,经济效益十分显著。

(2)异步电机三电平高压变频器

在成功研制开发了老南风井同步电机直接高压变频器的基础上,根据深部开采的需要,对新南风井的矿井通风机进行改造,我院和有关单位合作,经过论证,最终决定采用引进WOODS轴流式风机和Siemens公司的SIMOVERTMV三电平高压变频器。该变频器的原理图如图4所示。

图4三电平变频器主电路原理图

但SIEMENS公司实际提供的这种三电平高压变频器的系统如图5的框图所示。

由图5可见,6kV高压电源经三绕组降压变压器降压,2组二次侧绕组(接法、Y),电压各为1.2kV,经各自的6脉冲整流桥整流成直流,直流电压为3240V(正负电压各为1620V)经三电平逆变器变频变压,可输出频率可变的0~2300V的三相交流电压;经滤波器滤波后,再经升压变压器升压至6kV,供给6kV高压电动机调速。

图5新南风井高压变频器系统框图

新南风井高压变频器原订为直接高压变频器,但由图5可见,这实质上是一台高低高式高压变频器,因为它不仅有降压变压器,而且也有升压变压器。不过经我们对其进行了计算机仿真,其结果表明,尽管它是高-低-高式高压变频器,但并不影响它在生产中的应用。

根据凡口矿目前的生产情况,高压变频器的运行情况是:白班和中班,高压变频器运行于40Hz,在晚班,由于井作业人员很少,高压变频器则运行于30Hz,在节假日,则运行于更低的频率。据此,计算出节电效果,年平均节电为56%,年节电357.9万kWh,节电效果显著达到了原计划的节电目标。

3.4关于球磨机、井下排水泵等是否可用变频调速的问题

球磨机、井下排水泵等设备容量大,都是矿山的高耗能设备。对于这些设备是否可以采用变频调速来实现节能运行呢?我认为,在这些设备上采用变频调速是达不到节能目的的。

我们应某金矿的委托,采用变频器对球磨机进行调速节能试验。当变频器的输出频率调整到48Hz和45Hz时,球磨机的电能消耗虽有所降低,但磨矿质量有很大降低,此时球磨机的出矿粒度由原来不调速时的300目粒度占99%,分别下降到90%和58%。可见这种工艺、设备条件下,不宜采用变频调速节能运行。

另外,我看到有的文章说,变频器用于井下排水泵站的节能[3]。我认为,这是不现实的。因为任何矿山为排出井下的涌水,都在井底设有水仓。值班工人根据水仓水位确定开仃水泵及开仃几台水泵,因此它不需进行流量的调节。所以,它不需要采用变频器。对于地面生活供水或工业供水的泵站,由于需要根据用水量的多少来调节供水量,在这种情况下,采用变频调速以调节流量,可达到节能的目的。

在矿山中,还有一些小型设备可以采用变频调速节能,如螺旋给料机、沙泵等,在此就不一一介绍了。

4选择变频器应注意的事项

变频器,特别是高压变频器价格昂贵,如选择不当,达不到节电和提高生产效率的目的,以致造成浪费和不必要的麻烦和损失。在这里,提供一些选择变频器的意见,供参考。

4.1根据工艺要求选择变频器

(1)电机调速虽是风机、水泵节能的有效途径,但并非凡是风机、水泵都能采用调速节电。对于工艺参数基本稳定,不需要调速的风机、水泵可以采用高效节能电机和高效节能风机,以提高系统效率。对于已建成而配置不合理的风机可以通过采用更换电机,调节叶片角度等方法达到节电的目的。选择调速节能时应注意:风机、水泵的转速变化范围不宜太大,通常最低转速不少于额定转速的50%,一般调速范围在100%~70%之间为宜,因为当转速低于额定转速的40%~50%时,风机、水泵本身的效率明显下降,是不经济的;调速范围确定时,应注意避开机组的机械临界共振转速,否则调速至该谐振频率时,将可能损坏机组。

(2)进行可行性分析

在选择要进行的变频调速的设备对象以后,应从提高效率或提高产品质量的需要情况,从节约电能的情况进行分析、计算,并与变频器的投资进行比较,计算出变频器的投资回收期。一般来说,如能从节约的电费或从提高产品质量、提高效率等方面所得的收益中,在两年内偿还变频器的投资,都应认为是可行的。同时还应分析外部条件是否满足变频器的使用要求。

(3)变频器的可靠性

变频器的可靠性如何,直接决定了变频器能否成功地应用于生产。这是选择哪种变频器的首要条件。有的矿山所购买的变频器可靠性不高,加之自身的维修技术力量不强,变频器出了故障,只好仃下,甚至弃用。造成损失,同时也为变频器的继续推广应用带来负面影响。

(4)根据生产厂家提供的技术规格和技术参数来选择变频器在按工艺要求、电源条件、场地及容量等选择了变频器方案后,再具体到选择哪个厂家的哪种高压变频器。在选择变频器时可以根据厂家提供的产品样本等技术资料及报价表来选择。

变频器的制造厂家和经销商都会向准备购买变频器的用户提供样本及报价。在样本中,厂家公开说明其产品种类、特性、技术指标和特点,用户在订货前通过对产品样本资料可以对其产品有大概了解。因此对产品样本的阅读和了解是比较各厂家变频器性能的重要依据。

4.2主要应考虑的技术规格和技术参数

(1)型号

各厂家生产的变频器的型号多是系列号和容量的组合,通过对型号和规格得了解,

可以确认该厂家生产的品种,对用户来说,不一定会使用到全系列的变频器,但可以从型号、规格、所采用的功率元件、控制技术等方面判断厂家的实力和生产态势,甚至可以从一个方面判断其产品质量。产品品种齐全,容量覆盖范围大,功率元件及控制技术先进的厂家,一般来说其实力强,生产态势好,产品质量一般来说也会有较好的保障。

(2)效率

变频器效率的高低,直接关系到变频器调速节能的多少,因为在变频器运行时,变频

器本体也要消耗一部分电能。一般来说直接高压变频器的效率都可达到0.97~0.98,而高-低-高式高压变频器由于多一个变压器的损耗,使其系统效率有所降低。

(3)功率因数

在整个调速范围内,功率因数的变化是一项重要指标。最好是在整个调速范围内功率因数都保持在0.95以上,以使其符合国家标准GB3485-83的标准,这只有电压型变频器和IGBT单相变频器串联的高压变频器能够满足此项规定。而电流型变频器较难满足这项要求。

(4)谐波

国家对电网谐波有严格要求。限制用户非线性谐波设备注入电网的谐波电流,是限制电网电压正弦波畸变的关键。所用的高压变频器的谐波(即装置对电网产生的谐波)必须符合国标GB/T14549-93“电能质量、公用电网谐波”的规定,在国际上要符合IEEE-519标准的规定。对于电流型变频器如采用六脉冲整流,则5次、7次谐波都超过了这个标准,应采用12脉冲整流或附加谐波补偿措施。

(5)输出容量和额定输出电流

变频器输出容量以kVA或kW表示,它代表可以供给电动机的输出功率。用kW表示时,一般以四极标准电机为基础考虑;用kVA表示,需进行核算。额定输出电流是在额定电压下变频器能够连续输出的电流值。在以输出容量为标准选择了变频器以后,还应对额定输出电流进行核算,以使电动机的额定电流不要超过变频器的额定输出电流。

(6)率范围

由最低使用频率和最高频率定义调速范围。最低使用频率的意思与起动频率不同。起动频率很小时,并不一定能使电机从该频率起动。变频器要对最高频率设定,对风机、水泵的最高频率应设定(即箝位)在50Hz,所有的变频器都可满足这个要求,在选择变频器时可不作考虑,但使用中需注意此点。

(7)电源容量和允许电压变化范围

供给变频器的电源容量应足够大,电源电压变化范围应在变频器允许的范围。用户在选择变频器时应根据自己电网容量及电网电压的变化情况,对变频器进行选择。曾有一个矿山因电压波动范围超过了变频器的允许范围,而使变频器不能正常应用。

(8)保护功能

变频器样本中一般表明其保护功能,这是为了检测出变频器的异常情况和防止外部原因及内部异常对变频器造成损害,保护变频器正常运行和变频器安全可靠。因此保护种类是否齐全、完善,从一个方面反映变频器质量和运行的安全可靠性。

(9)价格

变频器价格是用户最关心的问题之一,用户应了解厂家或经销商所报出的价格的具体含义和具体内容,及服务内容,以及任选件价格等。还应与其它厂家的变频器进行综合比较。

5结束语

《中华人民共和国节约能源法》第39条,已将变频调速技术列为通用节能技术加以推广。在矿山推广应用变频器节能是重要目的之一,如风机、水泵;同时也有提高生产效率、降低维修工作量、提高产品质量等目的,如电铲、牙轮钻机、矿井提升机等。在矿山应用变频器和其它工业部门有相同之处,也有不同之处,如电铲、牙轮钻机、矿井提升机等设备应用变频器有一豺特殊要求,所用的变频器还有一些技术开发工作要做。建议有关科研院所、变频器生产厂家和矿山用户共同合作,开发我国矿山设备使用的变频器。

本文的目的在于抛砖引玉。由于作者的水平有限,资料不够,经验不足,所述内容错误之处在所难免,所论观点也属一孔之见,欢迎读者和朋友们批评指正。

参考文献

[1]采矿手册[M].冶金工业出版社,1991,(6).

[2]张永惠.高压变频器的选择[J].变频器世界,1999,(6).

变频技术论文篇2

论文关键词:变频器调速技术,节能

 

在生产企业中,风机、泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板相关设备的节流损失以及维护、维修费用占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一.而八十年代初发展起来的变频调速技术,正是顺应了工业生产自动化发展的要求,开创了一个全新的智能电机时代。一改普通电动机只能以定速方式运行的陈旧模式,使得电动机及其拖动负载在无须任何改动的情况下即可以按照生产工艺要求调整转速输出期刊网,从而降低电机功耗达到系统高效运行的目的。八十年代末,该技术引入我国并得到推广。现已在电力、冶金、石油、化工、造纸、食品、纺织等多种行业的电机传动设备中得到实际应用。目前,变频调速技术已经成为现代电力传动技术的一个主要发展方向。卓越的调速性能、显著的节电效果,改善现有设备的运行工况,提高系统的安全可靠性和设备利用率,延长设备使用寿命等优点随着应用领域的不断扩大而得到充分的体现。

二、综述

通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。而且期刊网,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现泵损坏同时电机也被烧毁的现象。近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用变频调速器(简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点;因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。变频器就是基于上述原理采用交-直-交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。

三、节能分析

通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2期刊网,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。

以一台水泵为例,它的出口压头为H0(出口压头即泵入口和管路出口的静压力差),额定转速为n0,阀门全开时的管阻特性为r0,额定工况下与之对应的压力为H1,出口流量为Q1。流量-转速-压力关系曲线如下图所示。在现场控制中,通常采用水泵定速运行出口阀门控制流量。当流量从Q1减小50%至Q2时,阀门开度减小使管网阻力特性由r0变为r1,系统工作点沿方向I由原来的A点移至B点;受其节流作用压力H1变为H2。水泵轴功率实际值(kW)可由公式:P=QH/(ηcηb)×10-3得出。其中,P、Q、H、ηc、ηb分别表示功率、流量、压力、水泵效率、传动装置效率,直接传动为1。假设总效率(ηcηb)为1,则水泵由A点移至B点工作时,电机节省的功耗为AQ1OH1和BQ2OH2的面积差。如果采用调速手段改变水泵的转速n,当流量从Q1减小50%至Q2时,那么管网阻力特性为同一曲线r0期刊网,系统工作点将沿方向II由原来的A点移至C点,水泵的运行也更趋合理。在阀门全开,只有管网阻力的情况下,系统满足现场的流量要求,能耗势必降低。此时,电机节省的功耗为AQ1OH1和CQ2OH3的面积差。比较采用阀门开度调节和水泵转速控制,显然使用水泵转速控制更为有效合理,具有显著的节能效果。另外,从图中还可以看出:阀门调节时将使系统压力H升高,这将对管路和阀门的密封性能形成威胁和破坏;而转速调节时,系统压力H将随泵转速n的降低而降低,因此不会对系统产生不良影响。

变频技术论文篇3

热油循环时油箱上部的气体与油之间的水蒸气也存在类似的扩散平衡,通过提高真空度降低空气中的水蒸气分压,可以进一步加快水分的析出。这就是热油循环加真空循环加快干燥的原理。热油循环只是对油进行了加热,变压器绝缘纸板本身的温度是通过热油传递的,对于特高压变压器来说,有大量较厚的绝缘纸板,热油循环很难快速提升纸板本身的温度,而由外向内传热的方式使绝缘纸板的温度梯度由外向内温度逐渐降低,致使绝缘纸板内部水分有向内部扩散的趋势,这种情况不利于绝缘的干燥。因此通过绕组的发热使纸板的温度梯度转向,使绝缘纸板内部水分具有向外扩散的趋势,可以有助于纸板内水分的析出。这就是热油循环中绕组辅助加热干燥的原理。

2短路法和低频加热技术

2.1短路法加热

由于工频电源的易于获得,工频短路法加热变压器绕组的方法最先被采用[2]。短路法的基本原理是将换流变压器一侧绕组(通常为阀侧绕组)短路,从另一侧绕组(通常为网侧绕组)施加交流电压,使绕组内部流过电流(应控制不超过其额定电流),使绕组内部发热,从内部将变压器器身绝缘均匀加热到指定温度,再经过抽真空和热油循环处理,带出绝缘内的潮气,从而达到干燥的效果。短路法是绕组从器身内部加热,能大大提高效率,缩短加热时间,器身的干燥效果优于普通的热油循环效果。其使用的设备及接线完全与变压器负载试验相同。但是工频短路法有诸多缺点难以在现场实施。工频短路法需要用到调压器、升压变、补偿装置等大型设备,设备布置和接线工作量大;试验电压为变压器阻抗电压,高达几十kV,且试验占地面积大,进行短路法加热干燥时需要大量的人员长时间值班看守,现场安全难以把控。因此,工频短路现场加热干燥方法补偿电容器组容量大,使用的调压器、中间变压器均为体积大、重量重的大型设备,不便现场应用。实现整体加热装置的小型化,在保证加热能力的同时满足移动方便的要求,是研制现场短路法加热装置的难点。当换流变压器电压等级升高、容量增大时,利用这种基于调压器的短路法进行变压器现场加热更为困难。

2.2低频加热的电压及容量

工频短路加热存在的局限性,可以通过降低频率的方法进行克服,也即低频加热技术。变压器的短路状态下的等效电路如图1所示,其阻抗为Z=R+jωL。在工频状态下,jωLR,因此减小频率ω可以显著减小阻抗电压。当然在频率减小到一定程度后,R的大小不再可以忽略不计,进一步减小ω不会引起阻抗电压的降低。当频率足够低时,jωLR,变压器阻抗电压主要有变压器的直流电阻决定。图2显示了阻抗电压及无功容量与频率的关系。从图中可以明显地看出,阻抗电压总体上与频率成正比,当频率接近零时,阻抗电压趋近于常数,该常数即为变压器直流电阻与短路电流的乘积。无功容量与频率成正比。因此通过降低频率不单降低了阻抗电压,还降低了无功容量,提高了加热电源的功率因数,避免了用大容量的补偿装置。相比于工频短路加热,低频加热技术明显地能够克服其局限性。对于特高压换流变压器,频率低至1Hz以下时,其阻抗电压低于1kV,通过简单的绝缘措施就可以保证安全,避免大量的安全监护人员长时间值守。同时升压装置和补偿装置都可以省略,大大减少了设备占地面积,减少了现场工作量,提高了工作效率。

2.3低频加热电源干燥效果的仿真

采用基菲克第二定律描述电力变压器干燥处理的水分扩散模型,建立有限元模型进行模拟对比低频加热和传统的热油循环干燥处理效果。低频加热和热油循环组合使用时会是干燥处理效果得到明显改善。模拟考虑了5mm的绝缘纸片,原始水分含量为5%。模拟干燥时间为7天。干燥方式分为油循环干燥方式及加低频加热,热油循环温度为60℃和80℃两种油温条件,有低频加热时将油温度分别加热到80℃,95℃和110℃等三种情况。图3可以观察到热油循环在60℃时(没有低频加热)的干燥过程,以及同样的油温下采用低频加热温度为80℃,95℃和110℃的情况。当热油加热没有低频加热时,曲线的坡度是平的,因此干燥过程非常慢。这是因为在60℃时,绝缘材料的水分扩散系数很低,绝缘纸中的水分迁移速度很慢。根据模拟,在这种情况下,干燥7天之后,水分含量降低到2.4%。而降到2%的水分含量(按照IEEEStd62-1995的规定)需要的处理时间则长达255h。如果采用低频加热的方式,完成干燥处理会更快。使含水量降低到2%所需要的干燥时间会随着绝缘材料温度的增加而减少,低频加热80℃所需时间为64.5h,95℃为25.5h,110℃为10.7h。低频加热7天,三个加热温度下最终的纸板含水量将分别达到1.4%,1.3%和1.2%.当在热油循环80℃的油温下采用低频加热,获得的模拟结果如图4所示。在这种情况下,不同温度的最终含水量彼此很接近。然而当采用低频加热时,在开始处理的几个小时之内就可以达到最终含水量。这种方式的干燥处理节约大量的处理时间和电力,是非常经济的。然而以上模拟结果以及讨论均是基于模型的Foss扩散系数进行推论的,然而实际的试验数据则显示该模型的扩散系数太过乐观了,实际的干燥时间会比这个模型估计的干燥时间要长。即使如此,以上的讨论和研究也是很有价值的,例如通过模拟推论的结论在趋势上是正确的。

3低频加热电源的研制

3.1电源容量

按照现场应用经验,发热电源的发热功率(有功)达到换流变负载损耗的60%左右即可满足现场加热的需要。(6)式中:cosφ是功率因数,采用基于方波调制的交交变频技术方案功率因数接近1,此处取0.98;η是电源效率,该方案电源自身损耗较小,效率是较高的,可以取90%。最大加热容量为819.7kW,因此根据上式加热电源功率应为P=930kV•A,则能满足大部分场合需求。

3.2电压与电流

考虑到施工现场电源接线的方便和安全性,加热电源输入电压选择380V,输入电流1413A。由于直接由380V整流后的直流电压最高仅537V,对于部分变压器该电压即使在直流情况下也无法达到额定电流相当的加热电流,因此需要配备升压变压器提高整流桥电压。设升压后线电压为U,则直流电压近似为槡2U。

3.3整流桥与驱动电路

3.3.1晶闸管的选型变频技术电源工作电压为700V,工作电流为1200A。晶闸管的最大电流与电源的工作额定电流相等,最大电压为相间电压的一半。为了整个系统的安全可靠,根据晶闸管选用惯例,晶闸管电压选为大于其最大承受电压的2倍以上,额定电流为工作最大承受电流的3倍以上。因此晶闸管最终选型为南车公司的1000V/46000A晶闸管。

3.3.2整流桥的控制方式

不同的被加热换流变压器具有不同等效直流电阻,一定的加热电流情况下,变频电源的工作电压是不同的。为了较好地调节低频加热电源的工作电压,交-交变频技术法的低频加热电源应采用可控整流的方式,通过控制导通角来调节电压。同时,为避免两个反向整流桥同时导通造成电源的短路,应首先将前一个工作整流桥关闭触发脉冲,等全部整流桥中的晶闸管自然关断后再启动另一个整流桥,实现电流的极性发转。

3.4测量和控制系统

整流桥工作在全波整流工作状态,可以用电平触发的方式进行控制,为了避免两个反向的整流桥同时导通导致电源短路,开通一整流桥之前必须确认对侧整流桥已经全部关断。检测方法是通过检测负载电流过零比较结果与方波输出相。若需要调节导通角α,则不能采用电平触发,而用脉冲触发。以AC相线电压为参考电压,当线电压正向过零时延时180°-α角度后给晶闸管1发出触发脉冲,其余各晶闸管的触发脉冲依次再延迟60°角触发。但是触发脉冲的可靠性不好,因此不建议调节导通角,本方案仍采用电平触发的方式。作为加热电源,需要有调节输出电流的机制。根据式(13),输出电流与频率有关,通过控制频率可以比较方便地控制输出电流。式(13)仅是电流波形的近似计算公式,当频率较高时,电感未充电完成即撤去整流桥触发电平,负载电流就会进一步减小,电流波形如图5虚线所示。可见进一步提高调制频率,可以继续减小负载电流,直至减小到接近于零。所以通过控制调制频率完全能够实现加热电流的零起上升。

4低频加热电源的现场应用

4.1加热对象

加热对象为哈密换流站低端换流变压器极IIYDB相,变压器的主要参数如下:额定容量405.2MV•A;额定电压530/槡3+23-5×1.25%/171.9kV;额定电流1324.2A/2357.2A;阻抗电压19.71%;直流电阻(20℃)网侧0.16131Ω,阀侧0.05492Ω;生产厂家为特变电工沈阳变压器集团有限公司。

4.2试验接线

低频加热电源从400V低压配电室获取电源点,单相输出线连接到换流变压器网侧套管和中性点端子上,阀侧两套管短路线连接。连接图如图6所示。

4.3加热结果

该换流变油重138t,为其加热的两台滤油机加热功率共为120kW×2=240kW。由于现场环境温度较低,采用传统工艺完全利用滤油机工作,滤油机出口油温保持70℃情况下,经过48h换流变下层油温达到35℃后,随后增长缓慢,安装人员经验时间为3~5d才能到达需要保持的油温60℃。当晚20:33至第二日凌晨6:30,采用湖北电科院设计的低频加热电源,结合滤油机,仅用了10h就将换流变下层提升了近50℃,之后利用滤油机使油温达到安装要求。

5结论

低频加热电源技术可行,其工况与工频负载工况相比,电流、电压等参数均相对较低,有更高的安全性;低频加热电源的关键技术参量可测可控,具有较高的现场实用性;低频加热电源对电源侧有一定影响,但是电压畸变率可控制在标准范围内。

变频技术论文篇4

纺丝粘胶计量泵电机转速,每秒采集1个数据,表2为连续30s计量泵电机转速的统计结果。从表2可以看出,纺制2.5/2型竹节丝时,计量泵电机转速CV值较大,其随运行时间的波动幅度也较大且节奏明显。而纺制2.5/1、4.0/1型竹节丝时,计量泵电机转速随运行时间的波动节奏不明显。另外,纺制竹节丝时,计量泵电机转速平均值都比设定的基准值偏小,而最大值和最小值与设定的基准值相差很大,且两者较为接近。

2竹节丝性能及单丝截面参数

2.1丝条物理机械性能

从表3可以看出,三种粘胶竹节丝的变频技术平均线密度都比设计基准值低,这与计量泵电机转速达不到设计基准值有关;丝条强度低于常规丝,伸长率特别是湿伸率较高,说明其纤维素大分子结构不紧密,分子间作用力较小。竹节丝物理指标的均匀性明显比常规丝差,这表明其纤维结构不均匀。从表4看出,当竹节倍数(C)一定时,随着节长(L)的增加,丝条线密度、伸长增加,强度下降,各CV值增加;当节长(L)一定时,随着竹节倍数(C)的增加,丝条线密度、强度、伸长都下降,各CV值增加。说明分别提高竹节倍数与节长,都有利于竹节丝结构特点的体现,但提高节长效果显得更加明显。

2.2单丝纤度和直径

从表5的测试结果可以看出,竹节丝轴向单丝纤度CV值随着竹节倍数与节长的增加而加大,但其极值远没有达到设计要求。这是由于竹节丝在纺丝成形时单丝的纤度存在“均化效应”。产生“均化效应”的原因主要有以下几个方面:(1)计量泵自身的脉冲与变频产生的脉冲的叠加;(2)机械传动部分的间隙造成的反应滞后与转速传递效率的损失;(3)粘胶细流的粘弹性;(4)计量泵之后粘胶管道的阻力作用。随着竹节倍数与节长的增加,竹节丝轴向单丝纤度波动幅度加大,进一步说明这是计量泵自身脉冲叠加作用的结果;当竹节倍数一定时,竹节周期变化基本与设计相吻合,并随着节长的增加竹节丝“时粗时细”的结构特点表现得更加鲜明;当节长一定时,随着竹节倍数的增加单丝纤度提高、节长延长,说明“均化效应”较强。从表6的测试结果可以看出,竹节丝轴向单丝直径基本与单丝纤度相吻合,且轴向单丝直径波动幅度随着竹节倍数与节长增加而加大。

2.3单丝截面积

从表7所示竹节丝的单丝截面积比较可以看出,粘胶竹节丝的单丝截面积明显不均匀,随着竹节倍数与节长的增加,单丝截面积的极值差异加大,说明竹节结构特点表现得愈发突出;2.5/2规格的竹节丝单丝截面积的CV值为最大。

3结论

(1)对R535A纺丝机供胶机构进行变频技术改造,纺制不同竹节倍数、不同节长的166.7dtex/24F粘胶竹节丝,工艺过程稳定,纺丝可纺性良好。(2)竹节丝的平均线密度达不到要求;与常规丝相比,竹节丝强度较低,伸长率特别是湿伸率较高。(3)分别提高竹节倍数与节长,都有利于竹节结构特点的体现,而提高节长则效果更加明显。(4)由于线条在纺丝成形时的“均化效应”作用,使得竹节丝单丝纤度的极值达不到设计要求。(5)竹节丝单丝截面积明显不均匀,随着竹节倍数与节长的增加,单丝截面积的CV值加大。

变频技术论文篇5

【关键词】经验小波 故障诊断

1 理论阐述

EMD(经验模态分解)是1998年由美籍华人黄锷等人率先提出的,EMD是一种新的自适应信号时频分析方法。EMD最大的特点在于其克服传统方法当中利用没有意义的谐波分量来表示不平稳以及非线性信号的缺陷。EMD在使用的过程中呈现出了十分良好的时频聚焦性。该技术在非线性以及非平稳信号的分析处理等方面呈现出了良好的性能并得到了广泛应用。截至目前,EMD得到了广泛应用,并在实际应用的过程中展现出了良好的性能。随着对EMD技术研究的不断深入,该技术存在的一些缺陷也逐渐暴露出来,这对该技术应用造成不利影响。EMD技术存在的主要问题在于以下几个方面:首先,EMD是一种经验性的方法,缺乏必要的理论基础,EMD技术虽然得到了广泛应用,但是在实际上EMD方法分解得到的IMF分量正交性还缺乏理论证明;其次,EMD在具体使用的过程中由于其收敛条件不合理、过包络以及欠包络等问题会导致出现模态混叠情况;最后,EMD技术在使用的过程中药分解出一个IMF分量,这个过程中需要进行多次迭代,因此,使用该技术想要得到一个实际信号所有的IMF分量,必须要进行长时间的计算。

针对EMD技术中存在的缺陷,Gilles依托EMD技术的自适应性以及小波分析的框架,提出了一种新的自适应信号处理方法也就是EWT(经验小波变换)。本方法的主要原理是通过对信号的频谱进行自适应划分,从而构造合适的正交小波滤波器组从而提取有紧支撑傅里叶频谱的AM-FM成分,在此基础上,对已经提取出来的AM-FM模态进行Hilbert变换,就可以得到有意义瞬时频率和瞬时幅值,这样就可以得到Hilbert谱。由于小波变换技术是建立在小波框架之上的,因此该技术剧由坚实的理论技术,并且该技术在具体使用的过程中起计算任务要远远小于EMD。文章在写作的过程中,讨论了一种基于EWT技术的机械故障诊断方法,结果证明EWT方法的有效性。

2 一种基于EMT技术的机械故障诊断方法

为了验证经验小波变换在机械故障诊断中的有效性,文中将EWT技术具体应用到双盘转子的磨碰数据研究当中。实验选择的转子是通过电机进行驱动的,轴承是互动轴承,并通过非接触式的电涡流传感器测量垂直于水平方向上的转动。

转子的径向碰磨故障通过以下的装置进行模拟,通过对不同内径定子置换,可以对不同的碰撞摩擦故障进行模拟,如图1所示。在转子的转速为3000r/min情况下,采样的频率是1.6kHz,采样点数是1024。通过传感器可以得到两种不同碰磨程度下的振动信号以及频谱图。

对得到的数据进行经验小波变换,采取相对振幅比a=0.15。

利用EWT技术可以使时频图得到更好的分割,主要的倍频都处于支撑边界的中间,且严重碰磨的分割断段数N比轻微碰磨大。当转子出现比较轻微的碰磨时,高阶频率分量会表现出周期性的冲击信号,与此相反,低阶频率分量则比较微弱,当转子出现比较轻微碰撞时,轻微碰磨Hilbert谱分量反映明显,增值也基本上处于稳定状态,并且会持续存在,而在高阶部分则比较微弱,但都是周期性被激发的。当转子出现严重的碰磨时,倍频成份十分丰富,并且其高阶频率分量的幅值也很大,高阶频率分量都表现出了一定的冲击特性, Hilbert幅值不会发生变化,在更高阶频率成份反映的也比轻微碰磨时更加明显, 并且较有规律地间断地出现。

通过文中具体的分析,我们可以得知在机械故障检测中使用EWT变换可以根据频率特征有效的从低频到高频自适应地分解碰磨故障信号。在进行故障诊断时,Hilbert谱能够客观地反映转子碰磨故障的严重程度,并且能够客观地显示碰磨故障的频率特征结构。当转子出现比较轻微的碰磨故障时,此时低阶频率分量持续存在,并且幅值比较稳定,高阶频率分量则十分轻微,随着转子碰磨不断加重,低阶频率分量仍然存在,这时高阶的频率成分的幅度则会出现周期性的变化,并且幅值增加也十分明显。

3 结语

文中主要对经验小波变换进行了理论分析,并以双盘转子为例研究了经验小波变换在机械故障检测中的应用。相对于EMD技术,EWT技术具有更好的适用性,可以预见EWT技术将得到更加广泛的应用。

参考文献

[1]李志农,朱明,褚福磊,肖尧先.基于经验小波变换的机械故障诊断方法研究[J].仪器仪表学报,2014(11).

[2]雷亚国.基于改进Hilbert-Huang变换的机械故障诊断[J].机械工程学报,2011(05).

作者简介

郝瑞卿(1985-),女,山西省人。硕士学位。现为西安航空职业技术学院助教。研究方向为机械制造及其自动化、项目工程。

作者单位

变频技术论文篇6

关键词:变频器,控制技术,应用

 

1.变频调速技术的现状

电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。免费论文。不调速电动机直接由电网供电。但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。以我国为例,60%的发电量是通过电动机消耗的。因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。近年来。变频调速技术已成为交流调速中最活跃、发展最快的技术。

1.1国外现状

采用变频的方法,实现对电机转速的控制,大约已有40年的历史,但变频调速技术的高速发展,则是近十年的事情,主要是由下面几个因素决定:

1.1.1市场有大量需求

随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。

1.1.2功率器件发展迅速

变频调速技术是建立在电力电子技术基础之上的。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。在大功率交―交变频(循环交流器)调速技术方面,法国阿尔斯通已能提供单机容量达30000kW的电器传动设备用于船舶推进系统。

IPM投入应用比IGBT约晚二年,由于IPM包含了1GBT芯片及的驱动和保护电路,有的甚至还把光耦也集成于一体,是一种更为适用的集成型功率器件。目前,在模块额定电流10-600A范围内,通用变频器均有采用IPM的趋向。IPM除了在工业变频器中被大量采用之外,经济型的IPM在近年内也开始在一些民用品,如家用空调变频器,冰箱变频器,洗衣机变频器中得到应用。IPM也在向更高的水平发展,日本三菱电机最近开发的专用智能模块ASIPM将不需要外接光耦,通过内部自举电路可单电源供电,并采用了低电感的封装技术,在实现系统小型化、专用化、高性能、低成本方面又推近了一步。

1.1.3控制理论和微电子技术的支持

在现代自动化控制领域中,以现代控制论为基础,融入模糊控制、专家控制、神经控制等新的控制理论,为高性能变频调速提供了理论基础;16位、32位高速微处理器以及信号处理器(DSP)和专用集成电路(ASIC)技术的快速发展,则为实现变频调速的高精度、多功能提供了硬件手段。

1.2国内现状

从整体上看我国电气传动系统制造技术水平较国际先进水平差距10-15年。免费论文。在大功率交-交,无换向器电动机等变频技术方面,国内只有少数科研单位有能力制造,但在数字化及系统可靠性方面与国外还有相当差距。而这方面产品在诸如抽水蓄能电站机组启动及运行、大容量风机、压缩机和轧机传动、矿井卷扬机方面有很大需求。免费论文。在中小频率技术方面,国内学者做了大量变频理论的基础研究。早在80年代,已成功引入矢量控制的理论,针对交流电机具有多变量、强耦合、非线性的特点,采用了线性解耦和非线性解耦的方法,探讨交流电机变频调速的控制策略。国内学者一直致力于变频调速新型控制策略的研究,但由于半导体功率器件和DSP等器件依赖进口,使得变频器的制造成本较高,无法形成产业化,与国外的知名品牌相抗衡。国内几乎所有的产品都是普通的V/f控制,仅有少量的样机采用矢量控制,品种与质量还不能满足市场需要,每年需大量进口高性能的变频器。

因此,国内交流变频调速技术产业状况表现如下:(1)变频器控制策略的基础研究与国外差距不大。(2)变频器的整机技术落后,国内虽有很多单位投入了一定的人力、物力,但由于力量分散,并没形成一定的技术和生产规模。(3)变频器产品所用半导体功率器件的制造业几乎是空白。(4)相关配套产业及行业落后。(5)产销量少,可靠性及工艺水平不高。

2.变频调速技术未来发展的方向

变频调速技术主要向着两个方向发展:一是实现高功率因数、高效率、无谐波干扰,研制具有良好电磁兼容性能的“绿色电器”;二是向变频器应用的深度和广度发展。随着变频器应用领域深度和广度的不断开拓,变频调速技术将越来越清楚地展示它在一个国家国民经济中的重要性。可以预料,现代控制理论和人工智能技术在变频调速技术的应用和推广,将赋予它更强的生命力和更高的技术含量。其发展方向具有如下几项:(1)实现高水平的控制;(2)开发清洁电能的变频器;(3)缩小装置的尺寸;(4)高速度的数字控制;(5)模拟与计算机辅助设计(CAD)技术。

3.变频调速技术的应用

纵观我国变频调速技术的应用,总的说来走的是一个由试验到实用,由零星到大范围,由辅助系统到生产装置,由单纯考虑节能到全面改善工艺水平,由手动控制到自动控制,由低压中小容量到高压大容量,一句话,由低级到高级的过程。我国是一个能耗大国,60%的发电量被电动机消耗掉,据有关资料统计,我国大约有风机、水泵、空气压缩机4200万台,装机容量约1.1亿万千瓦,然而实际工作效率只有40%-60%,损耗电能占总发电量的40%,已有经验表明,应用变频调速技术,节电率一般可达10%-30%,有的甚至高达40%,节能潜力巨大。

有关资料表明,我国火力发电厂有八种泵与风机配套电动机的总容量为12829MW,年总用电量为450.2亿千瓦小时。还有总容量约为3913MW的泵与风机需要进行节能改造,完成改造后,估计年节电量可达25.69亿千瓦小时;冶金企业也是我国的能耗大户,单位产品能耗高出日本3倍,法国4.9倍,印度1.9倍,冶金企业使用的风机泵类非常多,实施变频改造,不仅可以大幅度节约电能,还可改善产品质量。

我国变频调速技术的应用已取得显著成绩,主要表现在下面二个方面:

3.1变频调速技术的应用范围已发展到新阶段,以石油、石化、冶金、机械等行业为例,都经过了单系统试用、大量使用和整套装置系统使用3个发展阶段。如广东茂名石化公司和九江石油化工厂现已发展到引用常减压和催裂化变频装置,取得了节能、增产的显著效果。

3.2变频调速技术已成为节约能源及提高产品质量的有效措施,很多用户实践结果证明,节电率一般在10%-30%,有的高达40%,更重要的是生产中一些技术难点也得到解决。例如包钢1150轧机采用变频装置后,年平均事故时间达到工作时间的0.1%以下,大幅度提高了产品质量和产量,且年节约电费约50万元。

4.结束语

变频调速技术作为高新技术、基础技术、节能技术,已经渗透经济领域的所有技术部门中。今后我国在变频调速技术方面应积极作好如下工作。

4.1应用变频调速技术来改造传统产业,节约能源及提高产品质量,获得较好的经济效益和社会效益。

4.2大力发展变频调速技术,必须把我国变频调速技术提高到一个新水平,缩小与世界先进水平的差距,提高自主开发能力,满足重点工程建设和市场的需求。

4.3规范我国变频调速技术方面的标准,提高产品可靠性工艺水平,实现规模化、标准化生产。

 

变频技术论文篇7

关键词 PHP;Smarty;播客

中图分类号TN948 文献标识码A 文章编号 1674-6708(2011)42-0211-01

0 引言

播客系统主要是一种利用互联网音、视频文件,允许用户自主订阅、自动下载、同步播放的全新技术,也是Web2.0体系中的典型传媒形态[1]。

传统的点播技术在网络教育及远程教育中运用比较成熟,但这种点播视频比较单一,内容不够丰富,只能由专门人员收集和视频,很难满足一些渴望学习的教师和学生。播客的迅速发展,得到许多教育机构的重视,都纷纷尝试引入到教学中去, 播客可以让更多的学生和教师上传或下载视频进行分享,通过播客去教学和交流,受到很多师生的认可。

鉴于播客目前的广泛应用,本文基于PHP技术完成了一个视频共享的校园播客系统。

1 播客系统的分析与设计

本系统包括前台功能模块和后台管理模块,前台功能模块提供了在线播放播放、针对视频发表评论、播客的个人主页等功能,同时也为后台管理人员提供了对应的信息维护及管理的功能,包括上传视频管理、注册会员管理、评论内容管理、视频类型管理等。

1)在前台模块中,有两种角色,分别为注册会员和未注册会员。

未注册会员可以浏览视频、查看视频分类、对视频进行匿名评价、查看最新推出及热播视频、站点搜索等相关功能。

注册会员不但拥有未注册会员的所有权限,而且还有更多的操作权限,如拥有播客个人主页,可以上传视频、删除视频、修改个人信息、订阅节目等功能。功能结构如图1。

2)在本系统的后台模块中,后台管理员可以对学生或教师上传的视频进行浏览、审核和删除,只有通过审核的视频文件才能在前台播放或下载;也可以对视频的相关评价进行管理;还可以添加、修改、删除视频类型,并浏览及删除注册会员信息等功能。功能结构如图2。

2 播客系统的关键技术

2.1 Smarty模板技术

Smarty模板采用MVC模式把Web应用程序的逻辑层和显示层分开,提高后期的可维护性和可重用性,克服了传统模式缺点。

在视频点击超级链接的栏目识别时,默认是以视频文件名传输,这样暴露了实际的内容,为了隐藏实际内容,使用Smarty模板的变量调节器中的escape技术对URL进行编码。

escape用于html转码,url转码,在没有转码的变量上转换单引号,十六进制转码,十六进制美化,或者javascript转码。默认是html转码[2]。

2.2 Ajax技术的无刷新评论及分页

在线视频的评论是不可缺少的,传统情况下,如果在视频播放过程中发表评论,就会出现刷新整个页面,正在播放的视频会重新加载播放,这样就会影响用户的观看效果。为了解决这个问题,我们采用Ajax无刷新技术来实现,视频播放与评论同步进行,在用户观看的同时对视频作出评论不会影响视频播放,如果用户评论有很多页,查看其他页时也采用了Ajax技术来实现,给用户带来更好的体验。

3 结论

本文使用PHP的Smarty模板技术实现了校园播客系统,利用escape对URL进行编码,并对视频的评论采用目前流行的Ajax无刷新技术,同时体验了Smarty模板实现MVC模式把Web应用程序的逻辑层和表示层分开,所带来的开发效率及可用性。

参考文献

[1]张强.中国播客发展现状及前景探析[D].大连理工大学学位论文,2007.

[2]Smarty手册 escape参数的解释.

变频技术论文篇8

[关键词]认知无线电 信号 调制识别

中图分类号:TN925 文献标识码:A 文章编号:1009-914X(2016)02-0390-01

认知无线电系统能够连续地对外部环境的调制方式、传输功率等多种传输参数进行感知,并进行分析、学习以及判断,然后再通过重新配置选择科学合理的工作频率、调制方式等等。伴随着现代通信技术水平的不断提升,为了使大部分用户的需求都能够得到满足,当前的无线电系统充分地应用了信道容量,通信信号采用了不同的调制方式,以为之后的信号处理提供依据。

1 认知无线电的简介

当今时代,无线电用户日益增加,这就导致了无线通信业务量的急速增长,使可用频谱资源变得愈发匮乏。为了解决这个问题,认知无线电技术应运而生。认知无线电技术的基本理论是:非授权用户在感知无线电环境发现频谱空洞之后,通过对信道环境的分析来调整一部分传输参数,在不对授权用户造成干扰的前提下接入频谱,以提升频谱利用率。

1.1 认知无线电的特点

认知能力,即无线电技术能够通过对周围环境的了解来捕捉并感知信息,换句话说,就是认知无线电能够在对频带信息进行检测的基础上发现频谱空穴,并对可用频谱空穴的特点进行分析,最后依据频谱的特征以及用户的需求选择合适的频段。无线电环境是伴随着时间和空间不断发生变化的,授权用户的出现及离开都可能会造成可用频带的变化,因此认知无线电系统必须实时跟踪监测并分析频带占用的变化,保证授权用户的正常操作。认知无线电的重新配置能力指的是能够不变更任何硬件部分而改变传输功率、调制方式等发射参数来与无线环境的变化相适应,保证正常的通信能力。不论是认知无线电的感知能力还是重新配置能力,都必须要了解信号的每一项参数并作出科学合理的判断,实现智能通信。认知无线电的自动调制解调能力能够促使系统依据可用频谱来变更各项参数,完成频谱的动态接入,提升频谱的利用率。

1.2 认知无线电的其他关键技术

认知无线电的概念自从被提出之后就收到了社会各界的广泛关注,国内外许多研究机构都在通过多种手段努力研究。在我国,当前在研究无线电时主要涉及到的领域是可用频谱资源的检测、动态频谱感知以及分配机制及系统和协议框架。

通常来说,认知无线电的关键技术包括频谱检测、动态频谱管理、传输功率控制以及原始用户检测。对于认知无线电技术来说,频谱检测占有着基础的地位,为了避免对授权用户产生干扰,认知用户必须要能够检测到授权用户的出现,要求认知用户能够随时侦听频谱来提升检测的可靠性,可靠检测概率必须在99%以上。动态频谱管理是以频谱检测为基础来对频谱进行分析及决策,依据每个用户的不同需求来选择最优的信道来提升利用率。传输功率控制能够在很大程度上解决授权用户和非授权用户共享频谱时可能会发生的冲突问题,达到授权用户在不扰的情况下尽可能接入较多的非授权用户。原始用户检测的作用时是尽最大能力避免非授权用户强行占用一部分因信号较为微弱而不能够被认知无线电系统及时检测到的授权用户的频谱。这也能够在很大程度上保证授权用户能够进行正常的通信。

2 认知无线电的应用趋势

依据认知无线电技术的主要作用,该技术通常应用在授权频段的电视广播频段以及蜂窝移动通信频段。特别是在广播频段中应用时,认知无线电系统能够较好地利用频谱中空闲的部分以提升频谱利用率。应用在蜂窝移动通信系统时能够促使移动用户科学合理地共享频谱,解决空闲时段频谱浪费问题。

因为超宽带系统的应用面临着周围窄带无线通信系统的干扰,同时也会对周围的环境造成干扰威胁。同时其自身拥有着较宽的工作频谱,又能够进行测频,因此将UWB系统同认知无线电相结合是未来无线通信的发展方向之一。

3 调制识别的基本理论

通信的目的是保证通信系统能够较为科学准确地传输信息。伴随着当代的人对通信提出的越来越多的要求,通信技术有了较大的提升,无线环境也变得更加复杂,信号的调制方式也慢慢增多。当前的局面是多体制通信并存,因为在不同的体制下调节方式存在着一定的差异,这就需要科学地分辨不同调制方式的信号。通信信号调制识别技术能够自动分辨出不同调制方式的信号,这对于研究无线电接收机和调制解调器就有着十分重要的作用。

在通信系统中,调制是一个重点环节,因为从消息变换过来的原始信号有着频率较低的频谱分量,在大部分信道中不能够直接进行传输。而调制是在处理了信号源的信息之后并将其加到载波之上,使其变成能够在信道中进行传输的形式的过程,总的来说就是使载波随着信号的变化而进行改变的技术。实际上,调制就是通过改变信号的载波即所传输消息的载体信号的某个或是几个参量,促使其伴随着基带信号幅度的变化而进行更改来实现的。而解调则是在载波中提取出基带信号信息来促进预定的接受者的理解并进行深入的处理的过程。

调制识别是在先验知识缺乏或是前提条件较少的情况下,通过分析研究接收到的各种信号来准确地判断信号应用的调制方式及其他的调制参数,给深入的信号处理提供必要的信息。

当代的调制识别手法通常分为两种:一是判决论方法,而是统计模式识别方法。判决论方法需要得到一定的先验信息的支持,通过概率论以及假设检验理论完成调制方式识别这一过程,这种方法计算的过程比较复杂但是在分类的方面则较为容易。模式识别不需要统计先验概率,而是通过提取特征来表示出不同调制方法之间存在的差异,通过设计一个科学合理的分类器在对所提取的特征参数进行应用实现调制识别。因为实际中的信号调制识别通常是盲识别问题,因此一般来说应用模式识别方法。

认知无线电技术是为了解决当前频谱资源利用率较低的问题,通过较为科学合理的手段来寻找可用频谱来提升频谱利用率以达到完成智能通信的目标的新技术。认知无线电系统想要实现智能通信,就必须了解周围环境中的各项参数,通过一系列的手段配置较为合理的调制方式等参数完成建立连接,这样才能在社会各个领域发挥认知无线电的实际作用。

参考文献

[1] 谢勇.无线电信号的调制识别研究[J].中国新通信,2014,(8):100-101.

[2] 高文欢.浅析无线电信号通用解调和调制识别技术[J].中国无线电,2015,(3):61-62.

上一篇:质量检测论文范文 下一篇:数控机床论文范文