变频供水设备范文

时间:2023-09-30 04:43:39

变频供水设备

变频供水设备篇1

关键词:无负压;变频设备;节能

在全民“低碳节能”的环保意识日益加深的大环境下,为适应社会节能环保的发展要求,同时也为合理节约建筑运营成本,成熟的建设方在项目立项之初就将节能思想贯彻始终,不仅考虑建设成本,更注重运营期的整体成本,功耗大、数量多的用电设备尤为注重选型,作为建筑基本功能要求的供水设备便是其中之一,自动给水设备的高效节能、无水源污染、低噪音、操作方便、运行可靠成为选型的主要标准。随着市政管网规划的日趋成熟完善,无负压变频供水设备的发展空间也进一步得以扩展。

1无负压变频供水的定义

随着我国社会主义现代化建设事业的持续发展,给排水设备也在不断提高,从过去老式的水泵加屋顶水箱到现在的变频供水。近年来又一新型的供水设备出现―――无负压变频供水,它是在变频供水设备上发展起来的,主要由无负压调节罐、水泵、气压罐、智能控制系统等组成。在采用独特的预压平衡技术、负压反馈技术、真空抑制技术及信号采集分析处理技术的基础上,无负压变频供水以完全和空气隔绝、外界管网不受影响为前提,利用原有自来水管网压力进行高效节能供水的一种二次加压方式。

2无负压变频供水节能设备原理及方式

2.1无负压变频供水节能设备原理

通过安装在出水管网上的压力传感器,把出口压力信号变成4-20mA的标准信号送入PID调节器,经运算与给定的压力进行比较,得出一比较参数,送给变频器,由变频器控制电机的转速,调节系统的供水量,使供水管网上的压力保持在给定的压力上,当用水量超过一台泵的供水量时,通过PLC控制切换器进行加泵。根据用水量的大小由PLC控制工作泵的数量增减及变频器对水泵的调速,实现恒压供水。当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。此外,系统还设有多种保护功能,充分保证了水泵地及时维修和系统的正常供水。

2.2无负压变频供水节能设备供水方式

无负压变频供水是在变频供水基础上发展起来的新型供水方式,由于该方式封闭运行无污染、节省占地面积、可利用管网压力叠压供水达到节能的目的,深受房地产开发商的青睐,该方式因不产生负压对市政管网不造成任何危害,也得到了建设部和主要大中城市供水部门的认可。因此我们可以把无负压变频供水列为供水设备发展的新阶段。

3无负压变频供水节能设备性能特点

3.1价格合理

变频调速供水系统价格适中,采用多台泵进行循环工作,系统根据供水量要求启动一台或多台主工作水泵,全部水泵的启动均用变频器进行软启动,系统电气及机械冲击很小;对于几台主泵的运行系统遵循先开先停、后开后停、循环变频启停、工作机会均等的原则进行选择工作,能有效延长每台水泵使用寿命.

3.2可靠性强

变频调速供水系统价格适中,采用了微机智能与全自动应急检测双保险控制模式,各台泵均配备了独立的变频器或软启动器,从而形成多通道控制,使变频调速供水设备可靠性极强。

3.3高效节能

变频调速供水系统价格适中,采用稳压罐稳压贮能与变频调速技术相结合,自动调速双重节能。

3.4人机界面触摸面板操作,设定参数灵活方便

控制柜操作面板设有人机界面显示(触摸显示屏),在人机界面上可通过触摸式按键灵活设定工作压力、频率下限、加速时间、减速时间、换泵时间、压力传感器量程等各种工作参数,能够显示系统时间、系统压力、设定压力,各泵工作状态等参数,并能在人机界面内查阅各种故障原因及处理方法。

3.5功能完善

变频调速供水系统价格适中,采用现代电子技术,微机控制与检测传感技术相结合,使产品功能完善,性能优异。主控智能自动化,机电一体化,稳压罐稳压系统,使变频调速供水设备设在全流量范围内及变压供水,具有水源自吸,过滤,曝气功能。在非常状态故障逢检保护报警,语言显示功能。

3.6变频调速供水系统价格适中,控制元件选择档次高

变频控制系统的核心部件变频调速器、可编程控制器、人机界面、空气开关、交流接触器、热继电器均采用国际品牌产品,确保各元件之间具有最佳的配合,使得整个变频调速供水设备系统的稳定性和可靠性进一步提高。可根据用户的不同需要或不同的应用场合而选择不同的品牌,如西门子、三菱、富士、ABB、施耐德、梅兰日兰等。控制系统丰富的管理及过程控制软件,由本公司专业工程师精心编制,实现了真正的人机对话以及参数设置窗口化、提问化,使得用户使用起来简单明了,即使初用者也只需通过人机界面的中文帮助功能进行正确的操作,所有的故障都将由系统进行监测、监控,并能准确指导用户进行排除。高品质的电气元件保证了控制系统具有更高的可靠性,大大降低了设备的故障率,提高了使用寿命。

3.7 变频调速供水系统价格适中,技术先进,自动化程度高,响应极快、精度极高,稳定性极好,可靠性极高,能确保系统在复杂的工况下,长期无故障运行,并具有强大的通讯功能和丰富的扩展功能。

3.8 变频调速供水系统价格适中,高效节能。采用进口变频器,按需要设定供水压力,根据管网用水量来变频调节水泵转速,使水泵始终在高效率工况下运行,变频调速供水设备同普通的无塔供水设备相比,节能效果达20%。

3.9 变频调速供水系统价格适中,采用触摸式按钮操作。变频调速供水设备手动部分均采用集成电路制成的触摸式按键操作,不仅比采用传统的按钮、指示灯、转换开关操作使用方便,而且美观大方,使用寿命长。

4无负压变频供水节能设备优势

4.1供水管网压力稳定

设备由微机构成自动闭环控制,能在0.5秒内使变化的压力恢复正常,压力调节精度为设定值的±5%。

4.2供水功能全,保险系数高

设备局部出现故障时,能启用应急功能继续供水。该设备可与市政供水网自动并网运行,并具有双恒压功能,即能满足生活生产用水的正常压力和流量,有能在出现火情时自动转换为高压大流量供水,可一机多用。

4.3节能环保

直接与自来水管网串联对接,而且能充分利用市政管网原有的压力,可达到降低能耗的目的。据“供水设备推广中心”专业调查资料显示,节电一般可达50%~90%以上。循环利用水池水箱内的水,可避免水源污染。

总之,相信,在市政管理、设计、用户及制造商的共同努力下,无负压给水设备的使用将会更科学、合理、环保、节能,为广大人民群众造福。

参考文献:

[1]伊君.无负压供水设备初步探讨[J].中国建设信息,2006(1):627.

变频供水设备篇2

【关键词】供水系统;工作原理,变频调速;应用

随着经济迅速发展,工业企业对供水质量和供水系统可靠性的要求不断提高;加之能源紧缺等因素,采用自动控制及通讯技术、节能、适应性强的恒压供水系统发展迅速,在企业的供水系统中得到了广泛应用。

1 变频恒压供水系统的研究现状

随着工业自动控制技术、电力电子技术的发展,变频调速产业以及变频恒压供水系统都得到发展。变频恒压供水系统的稳定性、可靠性以及自动化程度都得到很大程度的提高。国内外都非常重视变频器及其相关附属产业的研究。现在变频器大都实现了PID调节器等硬件集成,功能模块通过设置指令代码,搭载相应的恒压供水单元,系统控制内部接触器实现控制功能。从现有资料来看,目前国内外对变频调速恒压供水系统的研究中有关水压的闭环控制研究不够充分,有关变频调速恒压供水系统的抗干扰、稳定性等方面还有待进一步研究和探索。

2 系统的工作原理、优点及主要功能

2.1 变频调速设备的工作原理

变频恒压供水系统主要由电动机、水泵、输水管路、阀门等部分组成。阀门开度不变是供水系统工作点扬程特性H=f(Qn)前提。流量Q与扬程H间为反比关系。管阻特性是指水泵转速恒定为前提,在阀门开度一定情况下,扬程H与流量Q之间的关系H=f(QG)。扬程曲线和管阻曲线交汇点为供水系统工作点,即图中A点,该点用水流量Qu和系统供水流量QG相等,系统稳定。

图1

供水系统变频调速控制的实质是交流异步电动机的变频调速。交流异步电动机的变频调速是通过改变施加在电动机定子绕组上的电源频率进而改变电动机的同步转速,最终实现调整电动机运行转速的目的。

交流异步电机的转差率定义为[1]:

s=

交流异步电动机同步转速定义为:

n =

交流异步电动机转速计算公式为:

n= (1-s)

n1:交流异步电动机空载转速;n:交流异步电动机转子转速;f:交流异步电动机电源频率;p:交流异步电动机磁极对数。

供水流量控制方法有出口阀门开度控制、原动机转速控制两种。前者通过调节出口阀门的开度调节,电动机的转速保持不变,其控制方式的实质是调整供水管路的阻力进而调整流量。原动机转速控制是改变电动机的转速达到调节供水流量的目的,系统管阻特性是固定的,而扬程特性随着水泵转速的变化而变化。根据用水量的变化,改变水泵电机的转速,使得供水管网的压力保持恒定,根据用户需要调整水的动能,而不用将大量的供水能量消耗在阀门及管网的损耗上面。

图2

由图2可知:当采用出口阀门控制供水流量时,若供水量高峰期水泵工作在图上的X点,对应流量为Q1,扬程为H0,当供水量从Q1减小到Q2时,关小出口阀门,则阀门的阻力变大,管阻曲线从β3上移到β1,而扬程特性曲线不变。而扬程则从H0上升到H1,机泵运行点从X点移至Y点,此刻,电动机输出功率用图形表示为(0,Q2,Y,H1)所包围而成的矩形部分,其数值为:

PY=

当采用调速控制供水流量时,管阻特性曲线为β2,扬程特性变为曲线n2,机泵组工作点从X点移到J点。此时电动机输出功率用图形表示为(O,Q2,J,H0)所包围成的矩形面积,其数值为:

PJ=

当采用调速控制供水流量时,所节省的能量为坐标(H0,J,Y,H1)所围成的矩形面积,其数值为:

DP=Py-pj= - =

所以,采用出口阀门控制供水系统流量时部分能量被浪费,随着阀门开度变小,供水管网的阻力增大,管阻特性曲线上移,系统运行点上移,供水扬程H1增大,被浪费的能量随之增加。调速前后流量Q、扬程H、功率P与转速N之间关系为:

= ; =( ) ; =( )

2.2 变频调速系统的优点

变频调速恒压供水系统优点有:首先,提高供水质量,满足工业生产精细化管理要求。传统恒速泵加压供水、水塔高位水箱供水等方式普遍存在能量转换效率低下、浪费水、电资源、系统控制自动化程度不高等缺点,变频调速恒压供水系统可有效控制供水压力的大小,实现精细化的供水管理;其次,变频调速恒压供水系统节约能源。恒压供水系统不仅避免了水资源浪费,而且还避免了供水过程中的电能的浪费;再次,变频调速恒压供水系统具有电动机软启动功能。电动机起动电流由零逐步升高至额定值,避免对电网产生冲击;最后,变频调速恒压供水系统还可以有效地消除供水管网水锤效应,水锤效应是供水系统中由供水压力突变化造成的,对供水管网及附件造成损伤,而变频调速恒压供水系统可以有效地消除这种效应 [2]。(下转第12页)

(上接第7页)2.3 变频调速供水系统的闭环控制功能

管网出口供水压力恒定是系统的控制目标:首先供水系统实现自动调节的功能。接通电源后,变频器输出的频率从0Hz逐渐上升,PID调节器随即接收来自出口压力表的反馈信号,经内部自动运算后与所给定的压力参数进行对比,自动调整电动机转速。若系统突然断电,系统则停机,而当电源恢复后就重新开始运行;其次系统具有恒压控制功能。根据用水量需求情况,变频调速恒压供水系统可以对电动机转速进行即时控制,保证恒压供水;再次系统具有系统保护功能。这个系统可以对工频电源和变频电源在供电控制回路上实现机械和电气互锁,这样可以保护电路,从而保护整个供水系统。

图3

3 变频调速恒压供水系统在石油化工企业用水环境中的应用

本用户用水量情况如下:

(1)系统必保最低安全用水量:为保证消防用水需要,该流量保证必须可靠,即使在日常生产中不消耗,也必须实时保持供应,该流量为280吨/小时;

(2)系统满负荷生产用水量:当企业满负荷生产时每小时消耗的水量。该流量为680吨/小时~700吨/小时左右;

(3)系统超负荷生产用水量:极端情况下,系统最大用水量1000吨/小时。

针对企业用水需求情况并兼顾系统保安供水需求,两台工频电机采用互投备用方式;两台变频电机采用恒压调整方式。采用PLC控制器实现工频电机的互投切换及变频电机的自动投、切及调速。全系统由:执行设备、控制设备、信号检测设备组成。

工程中应注意,优化闭环控制系统PID参数值,使得系统调节兼顾稳定性、灵敏性;充分运用变频器的电动机的软启动功能,减少电流突变对电动机本体和电网的冲击,竭力消除供水管网水锤效应;鉴于变频器是电网系统中不可忽视的谐波源,在全系统软、硬件设计、施工上均考虑抗干扰和谐波处理问题,加强谐波屏蔽及可靠接地使得系统具有可靠的抗干扰能力和稳定性[3]。

4 结束语

变频调速恒压供水系统因其优良的供水质量、有效的节约能源等优点,变使其在我国工业用水系统中扮演着重要的角色,在未来供水系统发展中具有重要的现实意义和社会意义。

【参考文献】

[1]卢权,张勇,闫军.基于九点控制器的变频调速恒压供水控制研究[J].供水技术,2010(01):27-28.

[2]黄鹏.住宅小区变频调速恒压供水系统节能设计分析与应用[J].中外建筑,2010(01):23-24

变频供水设备篇3

关键词:变频调速;内置PID调节;恒压供水;PFC控制模式

中图分类号: O434 文献标识码: A

引言

随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。由于安全生产和供水质量的特殊需要,对恒压供水压力有着严格的要求,因而变频调速技术得到了更加深入的应用。目前变频恒压供水系统追求高度智能化、系列化、标准化,是未来供水设备适应城镇建设中成片开发、智能楼宇、网络供水调度和整体规划要求的必然趋势。

一、国内外发展现状

变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在变频器发展的初期,由于国外生产的变频器的功能主要限定在频率的控制,升降速控制,正反转控制,起动控制以及制动控制,以及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。随着变频技术的发展和变频恒压供水系统的稳定性,可靠性以及自动化程度高等方面的优点以及显著的节能效果的发现,国外许多生产变频器的厂家开始自行研究并推出具有恒压供水功能的变频器,一些生产变频器的厂家就推出了适合于恒压供水系统的应用模式,它具有变频泵固定方式,变频泵循环方式等,将PID调节器和PLC简易可编程控制器等硬件集成在变频器内。只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多七台电机(泵)的供水系统。这类设备微化了电路结构,降低了设备成本。但是也存在着一定的缺点,有些技术指标还不能达到用户的要求。

二、系统控制要求

以往的恒压供水设备往往采用诸如利用电接点压力表等来控制泵的起停,把压力控制在一定的范围之内亦或是采用带有模入/模出的可编程控制器或PID调节器与变频器配合使用来实现恒压供水,前者为机械式的联锁,运行中存在较大的压力波动而后者设备成本高,PID算法编程难度大,调试困难。

随着电力电子技术的发展,变频器的功能也越来越强,充分利用变频器内置的各种功能,合理采用带有内置PID调节器和简易PLC功能的变频器和压力传感设备来实现恒压供水,既做到了无级调速下稳定的、高品质的供水质量,又降低了设备成本,提高了生产效率,节省了安装调试的时间。

水压由压力传感器的信号4-20mA送入变频器内部的PID模块,与用户设定的压力值进行比较,并通过变频器内置PID运算将结果转换为频率调节信号,以调整水泵电机的电源频率,从而实现控制水泵转速。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试更为简单、方便。

本系统用在办公大楼的生活用水,根据办公大楼的用水特点选用ACS510系列的变频器为主件的供水系统。ACS510系列变频器有很多种的运行模式可以选择,根据本次设计使用的特点而选用了PFC控制模式,这是一种交替式水泵控制模式。如图3.1所示,整个系统由三台水泵,一台内置PID调节器的变频器,一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);本系统采用压力变送器(反馈4~20mA电流)。

本变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。

(1)执行机构

执行机构是由一组水泵组成,它们用于将水供入用户管网,图3-3中的3个水泵分为二种类型:

调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。

恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。

(2)信号检测

在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号:

水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。

(3)控制系统

本系统安装在供水控制柜中,包括变频器和电控设备两个部分。

变频器: 变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。它是对水泵进行转速控制的单元。变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。它是整个变频恒压供水控制系统的核心。

电控设备:它是由一组接触器、保护继电器、转换开关等电气元件组成。用于在供水控制器的控制下完成对水泵的切换、手/自动切换等。

(4)控制面板

控制面板是人与机器进行信息交流的途径。通过控制面板使用者可以更改设定压力,修改一些系统设定以满足不同工艺的需求,同时使用者也可以从控制面板上得知系统的一些运行情况及设备的工作状态。控制面板还可以对系统的运行过程进行监示,对报警进行显示。

(5)通讯接口

通讯接口是本系统的一个重要组成部分,通过该接口,系统可以和组态软件以及其他的工业监控系统进行数据交换,同时通过通讯接口,还可以将现代先进的网络技术应用到本系统中来,例如可以对系统进行远程的诊断和维护等。

(6)报警装置

当出现缺相、变频器故障、液位下限、超压、差压等情况时,系统皆能发出声响报警信号;特别是当出现缺相、变频器故障、液位下限、超压时,系统还会自动停机,并发出声响报警信号,通知维修人员前来维修。此外,变频器故障时,系统自动停机,此时可切换至手动方式保证系统不间断供水。

三、适用于恒压供水系统的应用

应用宏的使用使变频器的应用更加简单,调试更加方便,用于水泵的应用宏主要有PID、PFC、SPFC这三种方式。

PID应用宏适用于一台变频器拖动一台水泵的应用,可以做恒压,恒流量,恒温等的控制。

PFC应用宏通常用于一台变频器拖动多台水泵的情形。分为两种功能:一种是无定时切换的PFC,另一种是有定时切换的PFC。选择无定时切换状态时,如果增加继电器的扩展,结果能最多控制七台电机。一台电机变频调速运行,其他的电机恒速运行作为压力补充。选择有定时切换状态时,最多可控制6台电机。一台电机变频调速运行,其他的电机备用恒速运行,并且变频调速运行可在多台电机之间互相切换。

SPFC应用宏也称为带循环软启功能的PFC,该功能可以使变频器变成一台软启动器加一台变频器联合工作,并且一台变频器可拖动六台电机。但是在这种模式下没有定时切换功能。循环软启动功能工作过程是这样:当1号电机的工作频率达到电网的工频时,电机同传动单元脱离经过延时后直接接入电网运行,这时2号电机接入传动单元,2号电机根据变频器内部PID的预算结果逐渐增加频率,直到满足实际的工作压力。如果有3--6号电机则按照上述的步骤进行启动。停止时按照标准的PFC运行方式停车。

另外,变频器内置模块中还具有火灾模式,通常用于紧急情况下的变频器运行,在消防水系统中可利用这种模式。它可以通过DI口激活,如果此功能被激活变频器就会忽略绝大多数故障,忽略任何外部命令和给定值,忽略所有的通讯指令,但是可以通过密码保护。变频器在紧急情况下会尽可能的延长运行时间,直至自身损毁。火灾模式下,变频器即可以正反转运行,又可以在PID模式下运行,也可以在恒速下运行。

总之,应用宏的选择将使变频器的应用更加简单,调试更加方便。而且用户只需设计好所需的应用宏,相关的参数就设置完成了。并且全部逻辑数据都来自变频器的内部,无需在使用外部PLC控制,节省了外部设备的连接数。使设备的使用更贴近普通用户。

四、供水系统变频改造后的运行分析

本变频恒压供水系统原理,主要是由内置PID调节器及简单可编程控制器的变频器(ABB ACS510)、压力变送器、液位传感器、电控设备以及3台水泵等组成。用户通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。

通过安装在出水管网上的压力变送器,把出口压力信号变成4-20mA的标准信号送入变频器内置PID调节器,调节器将实际压力与给定压力进行比较,并经过PID运算,得出调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力范围内;当用水量很少时(如深夜),系统压力长时间无变化,变频器便进入休眠状态,水泵停止运行;用水量增加时,系统压力降到一定值后,变频器被自动唤醒开始工作,这样既节约了能源,又减少了设备磨损。

以往的变频恒压供水系统在水压高时,通常是采用停变频泵,再将变频器以工频运行方式切换到正在以工频运行的泵上进行调节。这种切换的方式理论上要比直接切工频的方式先进,但其容易引起泵组的频繁启停,从而减少设备的使用寿命。而在本系统中,直接停工频泵,同时由变频器迅速调节,只要参数设置合适,即可实现泵组的无冲击切换,使水压过渡平稳,有效的防止了水压的大范围波动及水压太低时的短时缺水现象,提高了供水品质。

结束语

在供水系统中采用变频调速运行方式,系统可根据实际设定水压自动调节水泵电机的转速或加减泵,按实际需要随意设定压力给定值,根据压差调整水泵的工作情况,实现恒压供水,使给水泵始终在高效率下运行,在启动时压力波动小。使供水系统管网中的压力保持在给定值,以求最大限度的节能、节水、节地、节资,并使系统处于可靠运行的状态,实现恒压供水;减泵时采用“先启先停”的切换方式,相对于“先启后停”方式,更能确保各泵使用平均以延长设备的使用寿命;压力闭环控制,系统用水量任何变化均能使供水管网的服务压力保持给定,大大提高了供水品质;变频器故障后仍能保障不间断供水,同时实现故障消除后自启动,具有一定的先进性。目前该系统已投入使用,效果明显。

参考文献:

[1] 韩安荣。通用变频器及其应用。 机械工业出版社。2000

[2] 宗红星。变频器内置PID功能在恒压给水系统中的应用。城镇供水2006

[3] ABB-ACS510系列变频器用户手册。

变频供水设备篇4

【关键词】变频调速;恒压供水;无级调速;PLC控制

随着变频器的快速迭代,变频调速技术在各个领域得到了广泛的应用,特别是在供水行业,由电动机、泵组、压力仪表、变频器、微控制器和传感器等现代控制设备所构建的变频调速恒压供水系统以其节能、安全、高品质的供水质量等优点,将我国供水行业的技术装备水平经历了一次飞跃。某一供水单位希望设计一套变频调速恒压供水系统,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求。

1 变频调速恒压供水系统的总体分析

1.1 系统的功能要求

恒压供水要求用户端不管用水量大小,总保持管网中水压基本恒定,这样,既可满足各部位的用户对水的需求,又不使电动机空转,造成电能的浪费[1]。某供水单位为实现恒压供水这一目标,对系统提出了以下几点要求:

(1)三台水泵中1台备用,其余2台处于工作状态。为了提高设备的综合利用率,工作泵与备用泵不固定;

(2)三台水泵均可实现变速、定速运行。但水泵运行的实际台数(1台还是2台)和电机速度,还要由住户用水量的高低来决定(进行不同频率的切换);

(3)系统具有“手动”、“自动”控制切换;

(4)系统具有较完善的保护措施,以防止、避免事故的发生和扩大;

(5)具有完整的报警功能;

(6)对泵的操作要有手动和自动控制功能,手动只在应急或检修时临时使用。

1.2 系统设计原理分析

变频调速恒压供水系统的工作原理如下:压力传感器将主管网水压变换为电流信号,输入PID调节运算,与给定值进行比较,得出一个调节参数,再进入变频器,变频器根据要求调速,调节水泵电机的频率。当用水量较大时,一台泵在变频器的控制下恒压运行,当用水量大到水泵全速运行也不能保证管网的压力达到设定值时,压力传感器上传的信号经PID调节再到变频器,变频泵的频率增大,转速变大;如果用水量增加很多,使变频器的输出频率达到最大值,仍不能使管网水压达到设定值时,PLC就发出控制信号,将刚才运行的水泵切换为工频状态,用变频器起动另一个泵。由PLC控制两台泵同时工作,一台变频运行,一台工频运行,若还不能满足,则再启动备用泵,两台工频,一台变频,如果此时还不能满足需要,则全部设为工频运行。相反,如果用水量减少,则按照相反的过程减少水泵的运行量。

由于变频器的转速控制信号是由PID回路调节给出的,所以对PLC来讲,不需要有模拟量输入接口和模拟量输出接口。减少了连线和附加设备,降低了给水设备的成本,增加了整套设备的可靠性。且PID回路调节可以进行量纲的变换,因而可以进行供水压力的直接设定,直观可靠。

2 变频调速恒压供水系统的电路设计

2.1 系统的总体规划

该系统主要由3台水泵(两台生活水泵,一台备用泵)、1台变频器(内带PID调节功能)、PLC、及线性压力传感器等组成。PLC控制各台水泵的运行状态(如工频运行、变频运行、停止),从而控制水泵的运行台数,在供水中利用PID回路调节功能将检测到的现场压力值与整定值进行比较[2]。比较后的信号送至变频器,对变频器进行调节,从而达到控制电泵速度的目的。水泵的速度具体的调节是采用变频调速技术,利用变频器对水泵进行速度控制。

2.2 系统的主电路设计

该系统包括3台水泵电动机M1、M2、M3,其中M3为备用,系统为一台变频器依次控制每台水泵实现转速的调节,并实现恒压控制。系统具有变频及工频两种运行状态,当变频泵达到水泵额定转速后,如水压在所设定的判断时间内还不能满足恒压值时,系统自动将当前变频泵状态切换为工频状态,并指示下一台泵为变频泵[3]。主电路如图1所示。

2.3 PLC控制回路设计

控制电路包括继电器控制电路及PLC控制电路。

(1)PLC电路如图2所示。

上图给出了系统的PLC控制电路。其中SA1为手动/自动控制转换开关,SA2为自动起/停控制转换开关,P1表示压力小于设定值时闭合,P2表示压力大于设定值时闭合,SB1为1泵手动起动按钮,SB2为1泵手动停止按钮,SB3为2泵手动起动按钮,SB4为2泵手动停止按钮,SB5为3泵手动起动按钮,SB6为3泵手动停止按钮,SB7、SB8为变频器的启动和停止按钮,SB9为关闭报警声音按钮,SB10为复位按钮,X16、X17、X20、X21、X22分别接变频器、PLC及各电机的故障节点;KA0~KA10为中间继电器,它们分别控制KM0~KM6工作以及故障显示和报警控制。

2)继电器外部连接图如图3所示。

3 系统的工作流程(图4)

首先,开主电源和PLC电源,然后根据需要选择手动或自动,如果选择手动,则根据需要选择各泵的运行,如果选择自动,开变频器后,系统会自动根据水压情况调节水泵的运行,当用水量大,水压过小的时候,PLC和变频器配合工作,根据需要来投入各泵的运行,变频调速无法满足时,PLC将各泵调整为工频运行。当水压变大时,PLC和变频器配合工作,切除相应的泵运行,如果水压一直过大时,PLC则调整1泵为变频运行。

4 小结

本文结合供水系统的现状,根据某供水单位的要求,设计了一套以变频调速技术为基础的变频调速恒压供水系统。系统采用一台变频器拖动3台(其中一台为备用)电动机的启动、运行与调速。PLC控制三台水泵的手动和自动装置,压力表采集管网压力信号,把此信号反馈到变频器的PID环节进行控制,再经变频器进行内部调整,从而输出适当的频率,调节电机的转速,进而利用PLC控制水泵电机的工频和变频之间的切换[5]。

变频恒压供水在企业及高层生活小区的应用越来越广泛,它可取代传统的水塔、高位水箱或气压罐等供水方式,它具有节能、安全、高品质的供水质量等优点。采用PLC作为控制器,硬件结构简单,成本低,系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求。

如果有需要,可加计算机控制和一些设备或器件,使其与楼宇监控中心进行通讯,进行界面管理和人机“对话”,实现远程控制。

【参考文献】

[1]张燕宾.变频调速应用实践[M].北京:机械工业出版社,2000,55-56.

[2]冯垛生.变频器的应用与维护[M].广州:南华理工大学出版社,2001,26-27.

[3]姚锡禄.变频器控制技术与应用[M].福州:福建科学技术出版社,2005,56-57.

[4]高湘.给水工程技术及工程实例[M].北京:化学工业出版社,2002,56-58.

变频供水设备篇5

关键词:变频调速装置 恒压供水 调速系统可编程序控制器(PLC)

随着变频调速技术的日益成熟,其显著的节能效果和可靠稳定的控制方式,在供水系统中得到广泛的应用。变频恒压供水系统对水泵电机实行无级调速,依据用水量及水压变化通过微机检测、运算,自动改变水泵转速保持水压恒定以满足用水要求,是目前最先进,合理的节能供水系统。与传统的水塔、高位水箱、气压罐等供水方式比较,不论是投资、运行的经济性、还是系统的稳定性、可靠性、自动化程度等方面都具有很大的优势。

1.变频控制恒压供水优点

变频调速恒压供水设备具有节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平有了进一步的提高。

2.变频控制恒压供水控制方式

水泵消耗功率与转速的三次方成正比(即N=Kn3瘀中N:为水泵消耗功率;n:为水泵运行时的转速;K为比例系数)。而水泵设计是按工频运行时设计的,但供水时除高峰外,大部分时间流量较小,由于命名用了变频技术及微机技术有微机控制,因此可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。实践证明,使用变频设备可使水泵运行平均转速比工频转速降低20%,从而大大降低能耗,节能率可达20%-40%。

当前国内使用的供水设备电控柜大致有以下四类:

2.1 逻辑电子电路控制方式:

这类控制电路难以实现水泵机组全部软启动、全流量变频调节。往往采用一台泵固定于变频状态,其余泵均为工频状态的方式。因此控制精度较低、水泵切换时水压波动大、调试较麻烦、工频泵起动有冲击、抗干扰能力较弱,但成本较低。

2.2 单片微机电路控制方式:

这类控制电路在应付不同管网、不同供水情况时调试较麻烦,追加功能时往往要对电路进行修改,不灵活也不方便。电路的可靠性和抗干扰能力都不是很高。但些控制电路优于逻辑电路。

2.3 带PID回路调节器/可编程控制器(PLC)的控制方式:

该控制方式变频器的功能是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化。传感器的任务是检测管网水压。压力设定单元为系统提供满足用户需要的水压期望值。压力设定信号和压力反馈信号在输入PLC后,经PLC内部PID控制程序的计算,输出给变频器一个转速控制信号。还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由PID回路调节器在调节器内部进行运算后,输入给变频器一个转速调节信号。

2.4 新型变频调速供水设备:

新型变频调速供水设备将PID调节器以及简易PLC的功能都综合进变频器内,形成了带有各种应用宏的新型变频器。由于PID运算在变频器内部,这就省去了对PLC存贮容内部存贮容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提高了生产效率。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失真,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试非常简单、方便。这类变频器的价格仅比通用变频器略微高一点,但功能却强很多,所以采用带有内置PID功能的变频器生产出的恒压供水设备,降低了设备成本,提高了生产效率,节省了安装调试时间。在满足工艺要求的情况下,应优先采用。

3.供水专用变频器的功能

供水专用变频器=普通变频器+可编程控制器,是集供水控制和供水管理一体化的系统。内置供水专用PID调节器,只需加一只压力传感器,即可方便地组成供水闭环控制系统。传感器反馈的水压信号直接送入变频器自带的PID调节器输入口,而压力设定既可以使用变频器的键盘设定,也可以采用一只电位器以模拟量的形式输入。每日可设定多段压力运行,以适应供水压力的需要。还可设定指定日供水压力的需要,设定指定日供水压力控制。同时面板可以直接显示压力反馈值。

系统供水有两种基本运行方式:变频泵固定方式和变泵循环方式。

变频泵固定方式最多可以控制7台泵,选择“先开先关”和“先开后关” 2种水泵关闭顺序。

变频泵循环方式最多可以控制4台泵,系统以“先开先关”的顺序关泵。灵活配置常规泵、消防泵、排污泵、休眠泵,便于实现供水泵房全面自动化。工作泵与备用泵不固定死,可自动定时轮换。可以有效地防止因为备用泵长期不用时发生的锈死现象,提高了设备的综合利用率,降低了维护费用。工作小时自动累计功能,方便节能分析和设备状况维护。夜间供水量急剧减少时,方便指定每日休眠工作的起始/停止时刻,并可设定休眠时的压力给定值。休眠期间,只有休眠水泵工作,变频器只监测管网压力,当压力低于设定压力时,系统自动唤醒。变频泵投入工作,当压力高于设定值时,系统再次进入休眠状态,只有休眠水泵运行。这样,能有最大限度地节水节电功效。具有零星停机功能,在用户不用水的情况下会自动停机。故障泵退出功能,水泵出现损坏时,让故障泵自动退出工作。有消防信号外部输入接口,当有火警或消防信号到来时,系统能自动切换到消防模式,有多种消防工作模式可选,主要根据消防和生活管网是否共用,以及进水池是否共用等条件来进行选择。另有消防泵自动巡检功能,定时巡检周期可设定。

结束语:

采用PLC、PID仪表和变频器的变频恒压供水系统,能根据管网压力变化,自动控制多台水泵工频、变频切换以及变频泵的转速,从而实现恒压供水。实践表明,这一系统具有降耗节电、延长水泵电机使用寿命、降低工人劳动强度等优势,值得广泛应用。

参考文献:

[1]姜乃昌 陈锦章.水泵及水泵站[M].北京:建筑工业出版社,1994..

[2]陈耀宗 姜文源.建筑给水排水设计手册[M].北京:建筑工业出版社,1994..

变频供水设备篇6

中图分类号:TM241 文献标识码:A 文章编号:1009-914X(2016)30-0040-01

前言:随着现代社会的而不断发展,为了实现工作的高效,自动化控制已经成为了工业生产中的一项基本要求。在供水系统中应用PLC和变频器就是为了实现对供水系统的自动化控制。但是在近些年的自动化系统的分析中却出现了水源污染和资金的浪费等问题,对此我们对PLC与变频器组成的恒压供水系统进行了系统化的分析,并通过不断的优化系统来解决实际应用中的问题。

1.PLC、变频器与恒压供水系统的概述

1.1 可编程控制器(PLC)技术

可编程控制器(PLC)实质上是一种具有专门为工业环境应用而设计的可以编程的控制器,是一种新型的可靠的工业自动化的控制设备。可编程处理器主要以循环扫描的原理工作,具体包括输入采样,用户程序执行和输出刷新这三个阶段的循环扫描。而它的主要硬件就是计算机的硬件设备,具体包括中央处理器,存储器,输入设备,输出设备,通信接口等。所以综合上述的工作原理和外部设备可以得知可编程控制器操作简单,而且可靠性比较强。而且可编程控制器(PLC)技术也已经比较成熟,在冶金领域和水处理领域已经被广泛使用。

1.2 变频器技术

变频器技术简单来讲就是把电压以及频率不变的交流电变为电压和频率可变的交流电的一种装置。变频器具体的工作原理主要分为两个部分,第一部分是把通过变频器技术把单项或者是三项的交流电变成直流电,第二部分则是把第一步得到的直流电逆变成三相交流电。变频器在调压,调频,稳压,调速方面有着明显的优势,而且在电压的稳定性和设备的操作性以及节能等方面也有着比较明显的优点。

1.3 恒压供水系统

恒压供水系统无论在工业方面还是在国民生活方面都有着非常重要的意义,可以说恒压供水系统是整个国民生活和经济中的最重要的系统,在国家提倡绿色经济的背景下恒压供水系统能更多的减少能源和资源在使用中的浪费。是未来居民供水的一个使用趋势。

2.基于PLC和变频器的恒压供水系统

2.1 系统的组成和原理

基于PLC和变频器的恒压供水系统,主要由可编程控制器(PLC)及其扩展模块、变频器、水泵机组和压力变送器等组成[1]。供水系统的控制主要是通过对供水管道压力的而控制来实现的。根据实际的要求,人为的设定一个水压标准值,变PLC用来检测管内的实时水压,然后自动将检测值与设定值作比较,PLC内部强大的计算能力,计算出为了维持设定水压水泵电机应维持的转速的电压,输出到变频器端,变频器根据接收到PLC输出电压,进而自动化调整到该转速并维持运转,保持恒压的供水状态。当用水量过大,而变频器对水压水泵电机转速的控制不足以维持设定水压时,系统中PLC模块发挥重要的作用,PLC可根据变频器的频率将在变频工作状态下的泵转入工频运行状态,并且自动将备用的变频器和泵启动,用以维持较大的管内水压。而当管内水压下降时,PLC自动转换到变频工作状态,将备用泵关闭。

2.2 系统流程

2.2.1 系统上电

PLC控制元件判断是否有警报信号输入,警报信号包括PLC模块自身故障、变频器故障,供水系统的压力超过设定值等,这些情况如果出现,就会在屏幕上显示警示信号,警示信号一旦显示,我们就应该停止程序,将故障处理以后在进行接下来的流程。

2.2.2 系统运行

首先根据供水的实际情况来设定可以达到供水要求时的管道的水压,设定过程很简单,只需在触摸输入屏上输入电压值即可。在触摸显示屏上还有运行开启的按钮,通过按钮即可实现系统的启动运行。系统运行后,PLC就可以检测实时水压,并通过PID运算的结果控制水泵的转速,使管内水压维持在设定值,系统维持正常工作。

2.2.3 水泵运行条件判断

水泵运行过程中始终是多水泵运行状态,但最多只有一台水泵在变频状态下运行。为了延长水泵的使用寿命和解决维修时的不停产的问题,我们一般在系统中设置多台台水泵,采取轮替工作的模式,当一台水泵运行到一定时间就自动转换到另一台水泵上继续工作。如果出现一些特殊情况使用水量骤增,一台水泵达到最大输出功率仍不能满足用水需求时,此时PLC模块会对采集供水管道的水压进行判断,这是水泵运行中一个最重要的判断点,若判断结果显示实际检测值大于触摸屏上的设定值,这时两台水泵会同时运行,系统继续根据PID算法进行变频控制[2]。

2.2.4 系统的故障判断

系统运行的过程中,随时可能出现一些故障,所以PLC模块中始终进行故障的判断,PLC自身的故障可自己检测;变频器发生故障时或者变频器检测到机电发生故障时也会向PLC发出故障信号。此时,PLC只要检测到故障信号时,会自动停机并报警,等待工作人员维护。

3.系统的硬件设计

3.1 变频器硬件设计

变频器根据实际需要,我们选择7.5kW的产品,变频器内部可以通过检测电动机的电流和电压自动运行计算输出频率。变频器的面板上还设有故障警示灯以及恢复启动按钮,方便故障后系统的重新启动。变频器的输出端接一个接触器接到四个泵上面,泵在通过另外四个接触器连接到工频电源上。

3.2 PLC硬件设计

PLC控制器x择西门子一中的CPU224系列,I/O地址分配在控制器的说明书中有具体的展示。PLC的接线也较为复杂,根据I/O地址的分配进行接线,使其分别控制一个接触器,PLC还具有模拟量输出功能控制变频器的输出频率,模拟量输入功能检测管网的水压。

3.3 系统原理框图

4.PLC和变频器恒压供水系统的发展前景

当今,PLC和变频器恒压供水系统的技术已经比较成熟,而且也被社会普遍承认,得到了广泛的应用。出现这种情况的主要原因是在于PLC和变频器恒压供水系统在节省电,节水,可控性,耗能,反应速度和自我保护等方面相对于传统的恒压供水系统都有显著的优势和提高。而且随着当今社会科技的高速发展,节能环保呼声的愈长愈高,国家大的政策走向的侧重,PLC和变频器恒压供水系统这种节能而且科技性强的设备的发展前景更是非常光明。所以,我们可以预见PLC和变频器恒压供水系统在以后的生活和工作生产中会得到更加广泛的应用。

结语

综上所述,PLC和变频器的恒压供水系统在工业及生活供水系统的供水中有着广泛的应用,随着相关技术的不断发展,该供水系统在节约能源,可控性强,安全等许多方面显示出一定的优势。通过实践总结也可以看出,PLC与变频器恒压供水系统可实现自动化运行,运行精准,平稳可靠,延长泵的使用寿命,节约了电能,得到了广泛的认可。

参考文献

[1] 李义辈.基于PLC和变频器的恒压供水系统研究[J].经营管理者,2014(12):380-381.

变频供水设备篇7

【关键词】变频器;恒压供水;PLC

1 供水系统分析及变频器的特点

人们在生活和工农业生产中离不开水,水是生命存活的必备资源,是关系到人类幸福指数的核心物质。随着社会的发展,人口数量不断增加,城市人口逐年提高,住宅楼向高层化、集中化进展,人均日用水量也在急剧增加,使得在用水高峰期供水压力不足,高层的建筑上不去水,而低峰期则压力过高,又造成能源浪费。而压力过高也存在着安全隐患,易造成爆管事故,同时影响正常供水和居民用水,给居民生活带来不便。

社会的发展也伴随着科技的创新,居民用水面临的上述问题能够得到很好的解决。为此,设计出变频器恒压供水方式。恒压供水,是供水系统保持供水压力恒定,使供水和用水之间保持平衡,即用水量多时供水量多,用水量少时供水量也少。这样就满足了在不同用水量状况时总能保持供水管网中的水压基本恒定,满足终端用水客户的需求。

变频技术是应交流电动机无级调速的需要而诞生的,变频器是把电网提供的工频(50赫兹)交流电变换成输出频率连续可调的交流电,以实现交流电动机平滑变速运行的设备。(三相异步电动机转速公式为:n=60f/p(1-s),f即为电源频率P为电机极对数 s代表转差率)交流电动机变频调速技术是一项广泛应用的节能技术,它可以实现设备的软起动和软停止,降低对电网的冲击,同时也降低了设备的故障率,大幅减少了电能的消耗,同时减少了机械磨损,确保系统安全稳定、长周期运行。

2 变频恒压供水系统的硬件组成及控制原理

变频恒压供水系统是由压力传感器、变频器、可编程序控制器(PLC)、水泵机组及若干辅助部件构成的闭环控制系统。

2.1 硬件的功能

压力传感器 压力传感器是将测得的压力信号转换成电信号的器件。是使用最为广泛的一种传感器,应用于各种工业自控环境中。压力传感器的精度直接影响系统的控制质量。变频供水系统中的压力传感器一般采用电阻式传感器或压力变送器,压力传感器的输出信号传递到变频器。

可编程序控制器(Programmable Logic Controller),也称为可编程逻辑控制器,简写为PLC。 是整个恒压供水系统的核心控制部件。PLC是以微处理器为基础,综合计算机、通信、联网以及自动控制技术而开发的新一代工业控制装置。它使用可编写程序的存储器来存储指令,实现逻辑运算、顺序控制、计数、计时和算术运算功能。PLC的工作原理也就是通过对外部输入的状态进行检测、并对输入的数据进行运算和处理后,再输出控制量。它具有编程简单易学、工作可靠性高、安装维护方便等特点。

变频器 是一种将电网供电频率50Hz的交流电转换成输出频率连续可调的交流电的电气设备,是输出频率可调的电源。因为异步电动机的转速公式为n=60f/P(1-s),从中可以看出,改变电动机供电电源的频率f,可以实现电动机的无级调速。在恒压供水系统中变频器接收来自传感器采集的压力信号,通过变频器内部自带的采样程序及PID闭环程序与用户设定的压力构成闭环, 对终端设备电机(水泵)进行控制,以达到水泵恒压力供水的要求。供水系统中可以一台变频器控制多台电动机(水泵)即水泵组的运行,也可以每台变频器只控制一台电动机(水泵)运行。

水泵组 把电动机和水泵连成一体,通过调节电动机的转速来控制水泵水量和水压的变化,是恒压供水系统的执行机构。恒压供水系统中通常设置多台水泵(3台为例),供水量大时开启3台,供水量小时开1台或2台。每台水泵的出水管均有手动阀,以供维修和调节水量之用。水泵组中的水泵统一协调工作,以满足供水需要。

2.2 变频器恒压供水系统的控制原理

压力传感器检测管网压力,将压力信号转换为标准电信号送进变频器的模拟量输入端,与设定的压力值进行比较,并通过变频器内置的PID运算将结果转换为频率调节信号,以调整水泵电动机的电源频率,进而实现控制水泵转速,调节了供水系统的供水量,达到恒压供水的目的。

自动运行时,由PLC控制电动机的工频运行和变频运行继电器,依据条件进行增泵升压和减泵降压控制。每次运行先启动1#泵,当用水量增高水压下降,变频器输出频率增加至工频时,水压仍低于设定值,由PLC控制将1#泵切换至工频电网恒速运行,同时启动2#泵并进入变频运行,系统恢复对水压的闭环调节,直到水压达到设定值为止;如果用水量继续增加,当2#泵加速运行变频器输出频率达到工频时,水压仍低于设定值,由PLC控制切换至工频电网恒速运行,同时3#水泵启动变频运行,系统对水压闭环调节,直到水压达到设定值为止;当用水量下降水压增高时,变频器输出频率降到启动频率而水压仍高于设定值,停止该水泵的运行,系统恢复对水压的闭环调节,使压力重新达到设定值;当用水量继续下降,每当减速运行变频器输出频率降至启动频率时,则将此泵停止运行,直到剩下最后一台变频泵运行为止。

系统还设置了手动运行模式,该模式主要用于系统出错或是变频器的故障检修。

3 变频器恒压供水的优势

1)采用变频器恒压供水系统,实现了真正意义上的无人值守全自动供水控制;

2)电动机启动电流从零逐渐增加到额定电流,启动时间相应延长,对电网没有较大的冲击;

3)系统实现了软启动,消除启动电流大的冲击,减轻了机械启动转矩对电机的机械损伤,延长了电机和泵的使用寿命;

4)可以消除启动和停机时的水锤效应;

5)系统可以按照需求来设定压力,系统根据设定的压力自动调节水泵转速和水泵运行台数,使设备运行在高效节能的最佳状态,从而达到了节水节电节省人力的节能目的。

【参考文献】

[1]张威.PLC与变频器项目教程[M].机械工业出版社.

[2]张娟,吕志香.变频器应用与维护项目教程[M].化工工业出版社.

[3]肖朋生.变频器及其控制技术[M].机械工业出版社.

变频供水设备篇8

关键词:无负压供水设备;应用发展;节能;环保

Abstract: Along with the national energy saving and environmental protection policy come on stage ceaselessly, energy-saving and environmental protection type water supply equipment development raised new requirement ceaselessly, no negative pressure water supply equipment is developed in energy saving and environmental protection the concept of Health launched a new generation of water supply equipment. This paper introduces the non-negative pressure water supply equipment of the working principle, process flow and the traditional water supply equipment comparison and application scope.

Key words: no negative pressure water supply equipment; application and development; energy saving; environmental protection

中图分类号:TU81 文献标识码:A文章编号:

一、无负压供水设备的发展背景

随着国家经济的高速发展,城市建设中的高层建筑越来越多,由于市政自来水一般只能满足6层以下建筑供水的水压,为满足供水水压的要求,6层以上的建筑就必须采用二次加压的供水方式,以往传统的第一代供水方式就是采用高位水池(水箱)或水塔供水,此种供水方式最大的弊端就是二次污染非常严重,经常导致用户的水中出现红虫等污染物质,因此必须经常对水池进行清洗、消毒,导致日常的维护费用较高,而且最高几层住户由于水压较低会导致热水器无法正常打开。随着科技的发展,出现了第二代供水方式-气压供水,此种供水方式虽然从一定程度上减少了水质的二次污染,解决了顶层压力不足的问题,但由于气压供水需要有足够大的调节水量,那气压罐的容积也就比较大,设备的占地面积也很大,此外由于此种供水方式为变压供水,所以经常导致用户洗澡时的水忽冷忽热。在九十年代初,由于变频器的出现,供水设备出现了第三代产品-变频供水,变频供水方式相对于以上两种供水方式而言,其有着节能、卫生、供水压力稳定等优点,因此在市场上得到了迅速的推广和应用,从最初的单片机控制发展到现在的采用可编程序控制器(PLC)控制,实现全自动运行,操作维护方便,逐步取代了高位水箱和气压供水设备。由于我国《城市供水条例》规定:禁止在城市公共供水管道上直接装泵抽水。以上三种供水方式均采用蓄水池,也就是将有压力的自来水流入蓄水池,再从蓄水池零压力由水泵加压到用户给水管网中,浪费了自来水的原有压力。气压供水和变频供水虽然取消了高位水池减少了二次污染,但蓄水池还是存在二次污染。随着国家节能环保政策的不断出台,对节能环保型供水设备的发展不断提出了新的要求,无负压供水设备的发展正是其于节能环保健康的理念推出的新一代供水设备。

二、无负压供水设备工作原理及工艺流程图

无负压供水设备是在继承智能型变频调速供水设备基础上,将市政自来水压力与水泵提升的压力相叠加,充分利用自来水的压力,使供水更加节能和环保的新型供水设备。该设备采用微机控制技术、变频控制技术、负压处理技术实现叠压(无负压)供水,通过稳流调节系统、负压抑制系统及全封闭结构实现与自来水管网的直接串接,无负压供水,避免对自来水管网产生任何负作用。工艺流程图见图1。

图1 无负压供水设备工艺流程图

三、无负压供水设备的性能和特点

1、一般均采用变频器控制,采用PID闭环控制,自动化程度高,系统运行平稳、安全可靠、故障率低。2、系统控制多台泵,可靠地实现软启动,无冲击电流,机械磨损小,可延长设备使用寿命。3、根据用水量变化,可完成泵组的循环变频,按照先开先停的原则运行,均衡各泵的工作量,从而延长水泵寿命。4、设备能自动检测进出口压力,按实际需要控制水泵的启停(带旁路系统),同时自动调节用户管网水量、水压,使系统始终运行在节能高效区,较传统供水设备相比,节能效果显著。 5、系统设有手动、自动两种控制方式,互为备用,当变频器、控制器故障时,将转换开关切入“手动”位置,人工操作面板上各泵的启停按钮,保障连续供水。6、实际工作水压由现场人工根据需要进行数字设定,并进行数码显示实际工作压力,使实际工作压力与设定压力一致。7、自来水压超低(或停水)报警停机,水压恢复后自动开机运行,出口管网水压异常报警,LED频率指示,变频器异常指示,电机故障工况指示。8、保护功能:欠压保护、过载保护、缺相保护、失速保护、电机接地保护等。

四、传统供水设备与无负压供水设备对比

1.无负压供水设备、变频供水设备等供水设备的区别

无负压供水设备是水源都是从蓄水池中来,这样自来水的压力就被卸掉了,而且蓄水池需要二次消毒设备。无负压给水设备系直接利用自来水管网压力的一种叠压式供水方式,卫生、节能、综合投资小。安装调试后,自来水管网的水首先进入稳流罐,并通过真空消除器将罐内的空气自动排除。当安装在设备出口的压力传感器检测到自来水管网压力满足供水要求时,系统不经过加压泵直接供给;当自来水管网压力不能满足供水要求时,检测压力差额,由加压泵差多少、补多少[1];当自来水管网水量不足时,空气由真空消除器进入稳流罐破坏罐内真空,即可自动抽取稳流罐内的水供给,并且管网内不产生负压。

变频恒压供水设备,既能利用自来水管道的原有压力,又能利用足够的储存水量缓解高峰用水,且不会对自来水管道产生吸力。二次加压供水设备广泛应用在自来水管网压力不足的场合。按水泵(离心式水泵,下同)与管道连接方式的不同,供水方式可分为2种:①水箱―水泵加压供水;②管道泵加压供水。

供水方式①由于水箱能有效地进行水量的吞吐,即在非用水高峰时储存水量(此时自来水管道所能提供的流量Q自大于用户所需要的水量Q用,即Q自>Q用),而在用水高峰(Q自<Q用=时释放所储存的水量,因此能有效地保障用户用水的可靠性[2],同时由于自来水管是通过水箱与水泵相接的,故水泵始终不会对自来水管网产生负压,但自来水管网中的原有压力无法被水泵利用,势必造成能量的浪费;供水方式②虽然在Q自>Q用时能利用管网原有的压力,但因没有蓄水装置而不能满足高峰期用水量,故无法确保用户用水的可靠性,并且在用水高峰时对自来水管网产生吸力(这是由水泵本身的性质所决定的)[3],因而无法被广泛应用。变频供水设备在城市高层建筑供水用得比较广泛。能有效控制压力的设定,采用静水专用变频器,缓启动,缓停止,无启动电流,无水锤振动小。

2.传统供水设备与无负压供水设备对比

四、无负压供水设备应用范围

1、适用于任何自来水管网压力不足地区的二次加压供水;2、各类工矿企业的生产、生活用水及各种补水系统;3、住宅小区及高层建筑生活用水;4、各种循环用水系统,自来水厂的中间加压泵站;5、改造替代原有的传统增压设备;6、由于功能特殊而不能停水的,可以采用无负压供水设备与水池公用的供水方式;7、可与水池、水箱结合使用。

参考文献:

[1] 付宇,魏思源.住宅给水排水节能技术的探讨[J].中华民居,2011,(4):177-177.

[2] 杨志强,江定国,周兵等.高位蓄水箱无负压供水系统用于二次供水[J].中小企业管理与科技,2010,(27):115-116.

上一篇:设备安装范文 下一篇:蛋白质范文