微积分法在高中物理中的应用

时间:2022-10-24 08:15:24

微积分法在高中物理中的应用

最近两年的高中物理练习题中出现了这样一种处理问题的方法:为了求总和,先分割成无数小微元再求和,有种欲擒故纵的演绎思想,这就是数学上的积分法.微积分法最初的建立本身就是为了研究物体的运动问题而提出来和被广泛的应用的.牛顿对其的解释是,已知连续运动的路径求速度就是微分,已知运动的速度求一段时间内的路程就是积分.可见微积分,就其发展的经历以及对物理学的作用来说,可以说是功不可没,只不过以往高中数学没有学习微积分,所以这种方法在高中阶段被搁置了,实在是种缺憾.随着新课改的推进,由于高中数学内容的改动,增加了微积分,故相应微积分在处理高中物理问题的思想和方法又浮出来,会逐渐被广泛应用,可以说是符合学生学习发展的客观需要,是与时俱进的体现,掌握和熟练应用这部分内容来处理高中物理问题应该成为一种基本要求.我们先来体会一下:

如图1所示,在方向竖直向上、磁感应强度为B的匀强磁场中,有两条相互平行的且相距L的光滑金属导轨P1P2P3-Q1Q2Q3,两导轨间用阻值为R的电阻连接,导轨P2P3、Q2Q3在同一水平面上,P2Q2P2P3,倾斜导轨和水平导轨均用相切的一小段光滑圆弧连接,其长度可以略去不计.在倾角为θ的斜导轨P1P2-Q1Q2上放置一根质量为m的细金属杆AB,杆AB始终垂直于导轨并与导轨保持良好接触.现用沿P1P2方向的拉力F施加于杆AB,使杆AB在高h处由静止开始向下做匀加速直线运动,当杆AB运动到P2Q2时撤去拉力,最终在CD处停下,测得CD与P2Q2之间的距离为s.不计导轨和杆A的电阻,不计空气阻力.求:(1)杆AB下滑的过程中通过电阻R的电荷量q.(2) 杆AB运动到P2Q2处时的速度大小v.(3) 回路中的最大感应电流IM和杆AB在斜导轨上的加速度大小a.

在高三复习时讲解用这种方法时,担心学生不能接受,而实际恰恰相反,学生接受和理解的相当容易,因为已有了数学功底.实际上微积分的思想在高中物理学习中是贯穿始终的,最初接触应该是由v-t图象求位移的时候,只不过当时学生数学上还没有学到此部分内容,故只是把思想加以渗透,没有过多解释及应用.高中所谓的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分,在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道.现在我们明白,物体在变速直线运动时候的位移大小等于速度时间图象与时间轴所围图形的“面积”,在高二数学课学习过以后我们可以加以巩固,把这种方法应用到解决物理问题上来,学生很容易接受,同时又多了一种处理变加速直线运动的方法,具有很强的实际意义,毕竟实际运动更多的是变加速运动,学生又多了一种处理问题的方法.从物理中来回到物理中去,这种方法已经很广泛的被运用解决各种问题当中.

再如:如图2所示,四分之一光滑绝缘圆弧轨道AP和水平绝缘传送带PC固定在同一竖直平面内,圆弧轨道的圆心为O,半径为R;P点离地高度也为R,传送带PC之间的距离为L,沿逆时针方向的传动速度v=2gR ,在PO的左侧空间存在方向竖直向下的匀强电场.一质量为m、电荷量为+q的小物体从圆弧顶点A由静止开始沿轨道下滑,恰好运动到C端后返回.物体与传送带间的动摩擦因数为μ,不计物体经过轨道与传送带连接处P时的机械能损失,重力加速度为g.(1)匀强电场的场强E为多大;(2)物体返回到圆弧轨道P点,物体对圆弧轨道的压力大小;(3)若在直线PC上方空间再加上匀强磁场,方向垂直于纸面向里,磁感应强度为B(图中未画出),物体从圆弧顶点A静止释放,运动到C端后做平抛运动,落地点离C点的水平距离为R,试求物体在传送带上运动的时间t.

在物理学中,这是一种很重要的计算方法,千万不可忽视.如求变力功问题:利用微积分思想,把物体的运动无限细分,在每一份位移微元内,力的变化量很小,可以忽略这种微小变化,认为物体在恒力作用下的运动;接下来把所有位移内的功相加,即“无限求和”,则总的功就可以知道.

在高中物理中还有很多例子,比如我们讲过的瞬时速度,瞬时加速度、感应电动势、引力势能等都用到了微积分思想,所有这些例子都有它的共性,这种思想无不贯穿整个高中物理.“微积分思想”丰富了我们处理问题的手段,拓展了我们的思维.我们教学的时候,要学会这种研究问题的思想和方法,并传授给学生,符合学生求知发展的需求,在处理物理问题上更可以起到事半功倍的效果.

实际上大学物理中几乎每个物理量都和微积分有着联系,由于高中教学数学内容的更新,这种处理问题的方法过渡到高中是一种必然趋势.

上一篇:换位教学让学生学会建构,学会发展 下一篇:小故事帮助物理教学