基于分布式基站覆盖高铁网络技术方案

时间:2022-10-11 06:59:55

基于分布式基站覆盖高铁网络技术方案

摘 要

列车在高速运行中通信网络也会受到速度的影响而出现服务质量下降的问题,针对这一问题,高铁移动网络覆盖技术就必须进行改进,下面就从分布式基站覆盖技术入手进行分析。

【关键词】高铁通讯 需求分析 克服问题 网络设置

高铁建设引发了相关技术的全面升级,其中关于网络覆盖的问题尤为复杂,高铁列车的先进技术带了的是信号消耗大,区域切换频率高,且重叠区域小、多普勒效应较强等等问题,因此网络覆盖的效果和效率问题就成服务网络技术的难题,下面就从分布式基站覆盖的网络技术方案入手进行相关问题的分析。

1 高铁网络覆盖所需要解决问题

1.1 高铁网络覆盖的硬性需求

虽然经济的发展人们对出行的需求量成几何数字增长,在不断提高铁路运行速度的同时,高铁技术得到了推广和应用,近些年我国的进行了大规模的铁路提速以及高铁建设,从原有的几千公里历程达到近万公里的历程,这个数字还在不断的增长。未来我国的高速铁路建设还将呈现出快速增长的模式,而随着旅客数量的增加,网络服务的质量要求也随之提高,各种通信业务需求不断被提出,而网络覆盖的问题就成为帮助高铁提高服务质量的重要技术措施,所以良好的网络覆盖不仅仅是对通信公司的要求,也是高铁发展的需求。

1.2 覆盖中技术难题

高铁车辆运行的速度快,且车体材料特殊,运行的路线长,地域跨度大,因此网络覆盖对于高铁而言是一个较为特殊的场景,其和以往的铁路以及区域覆盖技术都不尽相同。具体难题如下:

1.2.1 成本高但是收益不明显

高铁跨越的区域较大,因此要实现对其进行网络覆盖投资成本较大,但是相对的收益回收成果却不是十分明显,因此在网络覆盖方案选择中必须考虑性价比的因素。而现实因素是,高铁的运行车速较快,通常在300公里左右,且运行中可以实现双向对开,所以在一定的距离内要满足对开列车的覆盖就需要更多的基站来完成,如果要控制基站的数量就必须提高单个基站的设备覆盖能力,但是矛盾是列车运行的范围较大历程较长,所以多个基站在工作中实际分配的工作量并不多,所以基站数量较多是高铁覆盖网络中的一个重要特征。同时考虑到高铁自身的车体因素,运行因素,基站数量必须满足基础数量,所以相对而言就提高了覆盖成本,而且经济效益不高。所以在网络构建中通常会考虑利用现有资源进行共享和拓展,以此控制成本,同时尽量多的采用公共网络覆盖。

1.2.2 多普勒效应的影响

首先,高铁运行的速度高,因此相对的信号衰弱也就快,其变化与运行的速度有较大的关系,同时工作频率也会有所影响。如2.1GHz的频率而言,如果列车的运行速度为300公路,其衰减的速度将达到近千赫兹,而变化幅度也较大。如果运行速度超过一定的速度时,移动通信的快速功率将出现失效的情况,列车靠近或者远离基站的时候,还会受到各种干扰的影响,因此会降低有效的覆盖。其次。多普勒频移效果也是一个重要的影响因素,以WCDMA为例,接收机在检波时选择相干解调,解调的过程中载波和接收的信号相位相同,多普勒频移则会对接收机的调制解调性能产生影响,从而导致信号质量的下降。目前可以采用提高设计指标以及覆盖电平等技术措施加以克服,也可采用正对性的补偿措施来减弱多普勒频移的影响。第三,区域性改变频发引发切换和重选问题。高铁运行速度较快,而基站覆盖的区域有限,如果按照两公里的覆盖范围计算,其在几十秒内就出现了区域切换,从而导致区域重选。如果一个简单的电话为六十秒,期间就会出现至少两次的区域切换和重置。而切换和重置往往会导致信号的起伏改变,从而降低功率覆盖效果、当然利用扩大基站覆盖范围的方式可以降低切换频率,也可增加覆盖区域的重合面积等方式进行克服,以此提高覆盖区域切换的问题。

最后就是高铁车体对信号的消耗较大。因为高铁车辆是相对密闭的,所以其信号穿透的效果相对较差,测量显示车内和车外的信号差甚至可以高达1000倍,所以车辆运行中车内的信号就很难保证理想。当然现在的技术措施是扩大基站的覆盖范围,使其持续发出强信号对高铁车辆进行覆盖。也可采用车载直放站的方式来增加信号强度。通过车辆向内部的信号接收装置来提高信号覆盖,但是技术措施还不够成熟。

2 基于分布式基站覆盖方案的技术分析

分布式的基站覆盖方式从本质上看就是利用分布式基站网络,采用BBU和RRU技术来改善网络覆盖效果,利用多个RRU小区技术、自动频率校正等技术措施来实现对高铁移动网络的覆盖。是一种综合形式的技术方案。对高铁沿线而言实现的是一种专用网络覆盖。

基本原理就是多个不同位置的基站RRU设备配置一致的频率组。通过BBU控制实现多点同步发射与接收。理论逻辑是不同的RRU隶属于一个小区。即通过公用小区的技术来扩大单个基站的覆盖面积,减少在高速运行中的多区域切换问题,节约网络建设的成本,提高服务质量。具体看就是将多个物理小区进行逻辑划分。即多个映射可以完成对一个逻辑小区的覆盖,而多个RRU被一个BBU统一管理,构成一个可控的逻辑区域。而多个BBU小区则可以构成高铁沿线的多层次的覆盖区域。两个逻辑小区的边缘由BBU完成切换。保证两个相邻的BBU逻辑区域之间的信号连贯性。这样就可在高铁运行的过程中实现多个相对固定的网络切换。在技术上操作相对简单,且模式固定也可保证准确,最大限度的降低了覆盖边缘的切换不连贯的问题。也可降低乒乓效应的干扰。

当然在实际的运行和建设中仍需要结合实际解决一些关键问题,其中主要的问题包括以下几个:

2.1 载频增加问题

在网络配置中,其区域的大小多数是按照BSC作为划分的基础,各个地区和城市内的高铁覆盖都已经形成一个相对完善的模式,即独立BSC负责对区域进行管理。列车通过LAC的边界时,手机需要对多个指令进行频繁的交换。此时就会出现大量的关于手机位置的信息在系统中被保留和传递,而数量众多的信息会造成网络的堵塞,影响服务区域的正常业务。所以位置寻呼和通话容量之间存在一定的矛盾,所以在设置中应考虑区域构建时通信通道的余量。在载频配置的时候应尽量高于高铁沿线所配置的基本载频,从而保证在通信量增加时不会出现拥堵的情况。

2.2 隧道小区切换

隧道是高铁运行中不可避免的,而隧道内外的信号切换也是解决网络覆盖问题的重点。以往的技术措施在隧道进出时会出现信号覆盖的缺失。手机在切换时发生失败。所以在基站建设中应将隧道区域与隧道附近的区域进行整合使之可以在同一个服务区域内,以此改善隧道通话质量差的问题。

2.3 专网建设

高铁可以说是特殊的运输模式,因此在为高铁服务的过程中网络覆盖应有针对性,普通的网络服务已经不能满足对高铁用户的服务模式,所以应尽量利用专用网络进行服务,避免公共网络对高铁网络资源的占用和干扰,这样可以最大限度的提高对高铁用户的服务效率,也为后续的技术改进提供一个空间。

2.4 功分器的选择和应用

功分器在应用中解决的是切换以及塔下黑的情况,设计和选择的思路就是在覆盖的同时减少小区切换和重选的频率,扩大独立的小区覆盖的范围,即涵盖的距离。目前因为BBU的技术性能的限制,每个BBU在附带RRU的时候数量往往是固定的,为了减少区域切换的频率,引入功分器系统就显得十分必要的,即在RRU 的后端安装功分器将信号分别传送到覆盖两侧铁路的高增益天线。在 RRU 一定数量下,通过加入功分器可以增加高增益天线的数量来扩大小区的覆盖距离。

3 结束语

高铁是我国经济发展的必然产物,随着高铁产业的发展也好带动与之相关的技术产业升级,通讯技术升级与改进也是其中的重要一环。综合利用分布式基站的思路对网络覆盖进行技术提升是十分有效的技术措施。但是在建设过程中应注意细节问题的改进和适应性提高,这样才能让技术措施成为真正可行且有效的服务技术。

参考文献

[1]杨璇,周海峰.建设GSM专网解决高铁用户话音感知的探讨[J].电信工程技术与标准化,2014(04):15-16.

[2]张磊,王锃.分布式基站BBU集中部署建设方案研究[J].通讯世界,2014(03):25-26.

[3]李兴龙.高铁场景3G网络优化技术研究[J].互联网天地,2013(05):31-32.

[4]李兴龙,史文祥,李巍.高铁WCDMA网络问题分析及优化技术研究[J].邮电设计技术,2013(01):20-21.

[5]宋钢,张亮.大秦线分布式基站提升特殊区段GSM-R无线网络质量的研究[J].中国铁路,2013(11):12-13.

[6]倪世昆.京广高铁GSM-R网络优化[J].郑铁科技,2013(03):56-57.

[7]李中友.GSM高铁覆盖规划[J].科技信息,2013(05):5-6.

[8]罗崇光.移动网络分布式基站建设方案研究[J].通信技术,2012(02):10-11.

作者单位

福建省邮电规划设计院有限公司 福建省福州市 350000

上一篇:东北空管局视频会议系统的管理与实现 下一篇:我国电子测量仪器市场将迎发展黄金期