交流系统电压波动和闪变调节与控制问题研究

时间:2022-09-26 05:32:55

交流系统电压波动和闪变调节与控制问题研究

【摘 要】研究了基于STATCOM无功补偿的交流系统电压波动和闪变调节与控制问题,建立了STATCOM在d-q坐标系的数学模型,提出了基于直接电流控制策略的神经网络-滑模控制方法。该控制方法采用电压外环滑模控制和电流内环神经网络-滑模控制的双环控制策略,克服了传统PI控制不能自适应调整控制参数的缺点,实现了系统的自适应控制。在电压波动和闪变恶劣条件下STATCOM能够快速响应、控制品质好,交流系统能够稳定工作;控制性能比PID控制好。

【关键词】交流系统;STATCOM;神经网络;滑模控制

0.引言

交流系统电压波动和闪变问题严重威胁着系统的安全高效运行。静止同步补偿器(STATCOM)在交流系统电压波动和闪变调节与控制中能有效调节系统无功以解决电压波动与闪变、三相电压不平衡等电能质量问题,从而吸引了大批研究学者的研究热情,推动了该领域的持续发展与进步[1]。

目前较为传统的补偿方式是SVC,其原理就是为了实现动态无功补偿的目的,而利用电弧炉和TCR补偿装置,使其吸收的电流值和尽量的小,来达到抑制闪变的作用[2]。由于补偿容量会受到装置本身的影响,所以在连续投切电容器组的时候会产生非常多的谐波。电弧炉工作时,其电流往往会发生急剧的变化,SVC的感应速度又比较慢,响应速度和补偿容量一会对闪变的抑制效果产生影响[2]。可以迅速反应的STATCOM装置,可以将无功功率稳定迅速吸收,校正功率因数,调节系统的电压。由于具有如此多的优势,STATCOM也正在成为新的研究的热点[3]。

由于STATCOM是一个非线性系统,其控制方法也相对复杂。使用PI控制,采用非线性鲁棒控制。然而PI控制参数难以确定,并且其对参数变化以及扰动也非常敏感;而非线性鲁棒控制设计过程非常复杂;相对而言,滑模控制更容易实现,且对模型参数的变化和外部扰动具有较强的鲁棒性。实质上,滑模控制是非线性控制的一个特殊的情况,不连续性的控制输入是其非线性的一个表现,而在一个动态的过程是,是可以依据系统的不同状态,可以做有目的性的并且不停的变化的控制输入量,这样以来可以令滑动模态的状态轨迹按照系统预定做轨迹运动。所以本文采用滑模变结构控制的方法设计STATCOM的无功补偿控制策略。

本文主要研究基于STATCOM无功补偿的交流系统电压波动和闪变调节与控制问题。采用直接电流控制[2],提出了基于神经网络与滑模控制相结合的方法。通过建立控制对象的滑模等效控制器,利用神经网络优化等效控制与切换控制以实现STATCOM自适应控制。最后通过数值仿真验证了所提出方法的有效性。

1.神经网络-滑模控制器设计

在STATCOM的控制中,应用比较普遍和适用的方法是双闭环电流控制方法,选择内外环控制结构。外环指直流电压环,通常采用形式比较固定的反馈PI控制,但是本文创新性地采用滑模控制来实现外环电压指令的自适应控制。内环指的是无功电流环以及有功电流环,直流电压外环的输出作为有功电流控制的参考输入。本文针对的主要是内环控制,即将有功电流和无功电流作为输入。由于本文将电流环作为控制的重点,所以在电压环只采用传统滑模控制的设计方案。本文利用RBF对切换增益进行估计,并利用切换增益消除干扰项,从而消除抖振,使得对负载干扰和参数变化具有很好的鲁棒性。

2.仿真实验与结果分析

为了探讨交流系统电压波动和闪变的抑制在实际工程中应用的可行性,利用科学研究软件MATLAB建立了的基于STATCOM的交流系统电压波动和闪变抑制模型,并对比了神经网络-滑模控制与传统PID控制在系统电能质量控制方面的性能。

在稳态运行时STATCOM调节无功电流来维持直流侧电压有名值的恒定。如果电源产生的电压高或低于系统电压、STATCOM生成(或吸收)无功功率。无功功率的数量取决于电源电压大小和变压器漏电抗。本节采用上述基于神经网络-滑模自适应控制的直接电流控制策略进行系统性能仿真。

当系统电源电压突变时,STATCOM迅速反应,通过控制交流侧电流来调整STATCOM功率输出,以补偿交流系统的功率变化,从而达到调节系统电压稳定的目的。在STATCOM静止无功补偿调节作用下,虽然电源输出电压出现了较为频繁的波动,但是系统电压能够平稳的保持在额定值上面,为负载提供稳定优质的电能。

进一步,为了深入研究交流系统的动态响应,STATCOM直流侧直流电压波形,STATCOM无功调节波形。当系统电源电压突变时,STATCOM直流侧迅速反应,通过放电与吸收电能来调节系统电压波动;为了抑制电源电压波动造成系统电压不稳定的情况,STATCOM大量吸收/释放无功功率,能量通过直流侧在纯电阻态和纯电感态之间不断循环,继而实现了交流系统的无功功率补偿,达到稳定系统电压的目的。

对比神经网络-滑模控制方法和传统PID控制方法的控制性能后发现,在0.1s系统电压从标识值1pu突然降低到0.975pu时,STATCOM迅速释放补偿电能到系统,以平稳系统负载电压;而在0.2s系统电压波动到1.025 pu时,STATCOM迅速吸收系统电能并存储到直流侧电容原件,从而抑制系统电压飙升。接着在后来的电压波动当中,STATCOM通过不断的能量吸收与释放来为负载提供稳定优质的电能。同时,传统的PID控制的能量吸收与释放的持续时间与快速性不如滑模控制。因此,本文所提出的神经网络-滑模控制具有更好的控制品质。

从以上仿真结果可见,神经网络-滑模控制器和传统PID控制器均能在系统参考指令时变情况下有效补偿系统无功功率。但是,由于采用了神经网络的强化学习,以及滑模控制的自适应能力,所设计的神经网络-滑模控制具有比传统PID控制器更快的反应速度与更优的控制效果。所设计的神经网络-滑模控制器能够有效补偿系统电压波动,实现STATCOM系统的高性能控制,且控制性能比传统PID控制器好。

3.结论

STATCOM无功补偿系统是一个复杂非线性的控制对象,利用传统的PID控制器很难得到理想的控制性能。为了提高控制系统控制性能,提出了神经网络-滑模控制器。创新点在于利用滑模控制器对伺服系统电压与电流环进行控制,并在电流环利用神经网络控制来优化滑模控制律,从而达到消除滑模抖振问题,实现STATCOM系统高精度控制。最后通过MATLAB仿真平台进行了实验测试研究,结果表明所设计的神经网络-滑模控制器能够有效控制STATCOM无功补偿系统,保证系统即使在较频繁电压波动与闪变情况下稳定工作,为负载提供优质电能,保证交流系统高效可靠运行。■

【参考文献】

[1]张秀峰,连级三,高仕斌.基于三相变四相变压器的新型同相牵引供电系统[J].中国电机工程学报,2006,26(15):19-23.

[2]刘玉雷,解大,张延尺.静止无功补偿器用于抑制厂用电系统电压波动仿真[J].电力系统自动化,2006,30(16):97-101.

[3]袁佳歆,陈柏超,万黎等.利用配电网静止无功补偿器改善配电网电能质量的方法[J].电网技术,2004,28(19):81-84.

上一篇:模具材料与热处理工艺选择问题研究 下一篇:浅析机床机械故障维修的诊断及方法