玄武岩纤维混凝土与钢筋粘结锚固性能试验与分析

时间:2022-09-02 04:04:18

玄武岩纤维混凝土与钢筋粘结锚固性能试验与分析

摘要:为了研究玄武岩纤维混凝土(BFRC)与钢筋粘结锚固性能,对18个中心拔出试件和9个梁式试件进行加载试验,获得各级荷载下加载端、自由端滑移量及钢筋应变,得到了粘结应力滑移曲线和粘结应力沿锚固长度的曲线分布。试验结果表明:随着玄武岩纤维的掺入,钢筋与混凝土粘结锚固性能未表现出有利影响,极限粘结强度有所降低;掺入长度为25 mm纤维的混凝土与钢筋的极限粘结强度优于掺入长度为15 mm纤维的混凝土与钢筋的极限粘结强度;混凝土强度的提高有利于改善玄武岩纤维混凝土与钢筋粘结锚固性能,混凝土相对保护层厚度对粘结锚固性能影响不大;锚固钢筋的应变曲线整体呈下凹形,沿锚固长度逐渐递减;粘结应力沿锚固长度呈多峰曲线;基于试验数据建立的玄武岩纤维混凝土与钢筋粘结应力滑移本构关系可以为玄武岩纤维混凝土的理论与工程设计提供参考依据。

关键词:玄武岩纤维混凝土;粘结锚固性能;滑移;粘结强度;粘结应力滑移本构关系

中图分类号:TU528.572文献标志码:A

Abstract: In order to study the bondanchorage properties between basalt fiber reinforced concrete (BFRC) and steel bars, the loading end, the free end slip and strain of steel bars under various loads were acquired. Bond stressslip curves and bond stress curves along anchorage length were obtained through 18 center pullout specimens and 9 beam specimens loading experiment. The experiment results show that basalt fiber has an adverse impact on the bondanchorage properties between steel bars and concrete and reduces the ultimate bond strength. 25 mm basalt fiber shows greater ultimate bond strength between concrete and steel bars than 15 mm basalt fiber. The bondanchorage properties between BFRC and steel bars will be improved with the increase of the concrete strength. Relative thickness of concrete cover has little effect on bondanchorage properties. Strain curves of anchor steel bars are concave as a whole and decrease gradually along anchorage length. The bond stress curves along anchorage length are multimodal. The constitutive relation of bond stress and slip between BFRC and steel bars on the basis of experiment data can provide reference for the theory and engineering design of BFRC.

Key words: basalt fiber reinforced concrete; bond anchorage property; slip; bond strength; constitutive relation of bond stress and slip

0引言

在钢筋混凝土结构中,混凝土和钢筋的粘结作用是保证钢筋和混凝土这2种材料共同工作的基本前提。玄武岩纤维作为一种天然无机材料,具有较高的抗拉性能、良好的化学稳定性与热稳定性、高性价比等特点,被称为21世纪无污染的“绿色工业材料”。以混凝土作为基体,掺入玄武岩纤维,充分发挥2种材料的优势,可很大程度上改善混凝土抗拉性能低、易开裂、耐腐蚀性差等不足,起到增强增韧、延长寿命等作用。

目前,中国对玄武岩纤维混凝土(BFRC)的研究仍处于初期阶段,主要涉及力学性能、耐久性等研究[14]。各国关于混凝土与钢筋的粘结锚固性能已做了大量研究,主要涉及影响混凝土与钢筋粘结性能的因素、粘结滑移本构关系等。关于BFRC与钢筋粘结锚固性能研究的报道尚较少,为了拓宽BFRC的理论研究与工程实际应用,BFRC与钢筋粘结锚固性能的研究愈发成为不可忽视的问题。本文以玄武岩纤维掺量、纤维长度、混凝土强度、混凝土相对保护层厚度、钢筋表面特征为参数,采用梁式试验和中心拔出试验探讨参数改变对BFRC与钢筋粘结锚固性能的影响。

1试验方案

(2)长度为25 mm纤维BFRC与钢筋的粘结锚固性能优于长度为15 mm纤维的。混凝土强度的增加可提高BFRC与钢筋的粘结性能,混凝土相对保护层厚度的变化对钢筋粘结锚固性能影响不大。

(3)BFRC中钢筋应变、粘结应力沿锚固长度的分布规律与普通混凝土相似。根据梁式试件粘结应力滑移曲线回归可得到玄武岩纤维混凝土与钢筋粘结应力滑移本构关系。

(4)可考虑工程设计时对锚固长度乘以修正系数1.15作为BFRC与钢筋锚固长度计算依据。参考文献:

References:[1]李为民,许金余.玄武岩纤维对混凝土的增强和增韧效应[J].硅酸盐学报,2008,36(4):476481,486.

LI Weimin,XU Jinyu.Strengthening and Toughening in Basalt Fiberreinforced Concrete[J].Journal of the Chinese Ceramic Society,2008,36(4):476481,486.

[2]陈伟,王钧.玄武岩纤维混凝土梁斜截面受剪试验[J].沈阳建筑大学学报:自然科学版,2011,27(4):674678,689.

CHEN Wei,WANG Jun.Experimental Research on Shear Capacity of Inclined Section of Basalt Fiber Reinforced Concrete Beams[J].Journal of Shenyang Jianzhu University:Natural Science,2011,27(4):674678,689.

[3]叶焕军.玄武岩纤维混凝土梁受弯性能研究[D].哈尔滨:东北林业大学,2011.

YE Huanjun.Study on Flexural Performance of Basalt Fiber Reinforced Concrete Beams[D].Harbin:Northeast Forestry University,2011.

[4]朱华军.玄武岩纤维混凝土耐久性能试验研究[D].武汉:武汉理工大学,2009.

ZHU Huajun.Study on Durability of Basalt Fiber Reinforced Concrete[D].Wuhan:Wuhan University of Technology,2009.

[5]GB 50152―92,混凝土结构试验方法标准[S].

GB 50152―92,Standard Methods for Testing of Concrete Structures[S].

[6]RILEMFIPCEB.Tentative Recommendation:Bond Test for Reinforcing Steel[J].Materials and Structures,1973,6(32):97105.

[7]张野.短切玄武岩纤维混凝土基本力学性能研究[D].哈尔滨:东北林业大学,2011.

ZHANG Ye.Research on Basic Mechanical Properties of Chopped Basalt Fiber Reinforced Concrete[D].Harbin:Northeast Forestry University,2011.

[8]JGJ 55―2011,普通混凝土配合比设计规程[S].

JGJ 55―2011,Specification for Mix Proportion Design of Ordinary Concrete[S].

[9]GB/T 23265―2009,水泥混凝土和砂浆用短切玄武岩纤维[S].

GB/T 23265―2009,Chopped Basalt Fiber for Cement,Cement Mortar and Concrete[S].

[10]马银华,易志坚,杨庆国,等.基于砂浆收缩抗裂性能的混凝土纤维选型研究[J].混凝土,2008(2):102105.

MA Yinhua,YI Zhijian,YANG Qingguo,et al.Research on Type Selection of Fiber Used in Cement Concrete on the Basis of the Shrinkage and Anticrack Property of Cement Mortar[J].Concrete,2008(2):102105.

[11]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986.

LI Rusheng.Nonequilibrium Thermodynamics andDissipative Structure[M].Beijing:Tsinghua University Press,1986.

[12]徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):2637.

XU Youlin,SHEN Wendu,WANG Hong.An Experimental Study of Bondanchorage Properties of Bars in Concrete[J].Journal of Building Structures,1994,15(3):2637.

[13]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007.

JIANG Jianjing,LI Jie,JIN Weiliang.Theory of Advanced Concrete Structures[M].Beijing:China Architecture & Building Press,2007.

[14]洪小健,张誉.粘结滑移试验中的粘结应力的拟合方法[J].结构工程师,2000(3):4448.

HONG Xiaojian,ZHANG Yu.The Fitting Method of the Smooth Bond Stress in the Bondslip Test[J].Structural Engineers,2003(3):4448.

[15]GB 50010―2010,混凝土结构设计规范[S].

GB 50010―2010,Code for Design of Concrete Structures[S].

上一篇:再生混凝土长龄期强度与收缩徐变性能 下一篇:企业实行全面预算管理的问题研究